DEFLECTION ANALYSIS OF UNDERPINNED SECANT PILE WALL

MARINI BINTI MARDI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Geotechnics)

> Faculty of Civil Enginneering Universiti Teknologi Malaysia

> > JANUARY 2013

ACKNOWLEDGEMENT

It is a pleasure to thank many people who made this project paper possible. My sincere thanks to my project supervisor, Dr. Hisham Mohamad for his guidance and advise thus makes this project paper meaningful.

I also wish to thank the staff and official of the Civil Engineering Department, UTM for their cooperation during my period of producing this project paper until its completion. My pleasure to thank my colleagues and friends for their support and not forgetting Dr. Xiao H.B. (Central South University, China) and Dr Li Q.S. (City University of Hong Kong, Hong Kong) who response to my inquiries until this project paper materializes.

Lastly, I would like to extend my gratitude to my parents and family for their encouragement, support and everything.

ABSTRACT

Underpinned retaining wall commonly been used for the construction of underground basement or any other open cut excavation projects, especially in urban areas. The excavation process at a different ground level induced the deflection of the retaining wall. Factors that influence the deformations of retaining wall are the excavation length, excavation depth, wall penetration depth, stiffness of the wall, stiffness of struts, struts spacing, struts preloaded and time dependent. The project focuses on the horizontal movement of the braced retaining wall due to lateral load. The analyses of horizontal deflection are by the beam on elastic foundation (BEF) method (manual calculation) and by the finite-element method (Plaxis v7.2 software). Mohr-Coulomb model is applied in the analysis using Plaxis v7.2. Comparisons are being made on both methods with the secant pile wall field measurement.

ABSTRAK

Dinding penahan jenis bertupang kebiasaannya digunakan dalam pembinaan tingkat bawah tanah atau mana-mana pembinaan yang melibatkan pengorekan tanah terutamanya di kawasan bandar. Proses pengorekan pada kedalaman yang berlainan akan menyebabkan pemesongan pada dinding penahan itu. Faktor yang mempengaruhi pemesongan dinding penahan ialah lebar pengorekan, kedalaman pengorekan, kedalaman penusukan dinding, kekuatan dinding, kekuatan penahan, jarak di antara penahan, pra beban penahan dan masa. Projek ini memfokuskan kepada pergerakan mendatar oleh dinding penahan jenis bertupang disebabkan beban mendatar. Analisis pergerakan mendatar ini menggunakan kaedah rasuk pada asas elastik (pengiraan manual) dan kaedah unsur terhingga (perisian Plaxis v7.2). Model Mohr-Coulomb telah digunapakai dalam analisis perjesian Plaxis v7.2. Perbandingan dibuat di antara kedua-dua kaedah dengan bacaan pengukuran tapak dinding penahan 'secant pile'.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	ACKNOWLEDGEMENTS	iii
	ABSTRACT	iv
	ABSTRAK	v
	TABLE OF CONTENTS	vi
	LIST OF TABLES	ix
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiii
	LIST OF APPENDICES	XV
1	INTRODUCTION	
	1.1 Background of the Study	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	1.4 Scope and Limitation	3
	1.5 Importance of the Study	4
2	LITERATURE REVIEW	5
	2.1 Lateral Earth Pressure	5
	2.2 Typical Deflection Mechanism of	10
	Underpinned Retaining Wall	
	2.3 Struts Design	11

	2.4	Beam on Elastic Foundation Method	13
		2.4.1 Elastic Analysis of Laterally Loaded	14
		Retaining Walls	
	2.5	Finite Element Method	22
		2.5.1 Mohr-Coulomb Model	23
	2.6	Factors Influence Retaining Wall Deformation	24
	2.7	Site Monitoring - Inclinometer	25
3	RES	SEARCH METHODOLOGY	27
	3.1	Case Study	27
	3.2	Analysis using Beam on Elastic Foundation	28
		(BEF) Method	
	3.3	Analysis using Finite Element Method	28
4		SE STUDY: SECANT PILE WALL,	30
	PR	OJECT LATERAL, LONDON	
	4.1	Design Data	31
		4.1.1 Retaining Wall	31
		4.1.2 Temporary Wall Supports (Struts)	31
		4.1.3 Soil	31
		4.1.4 Water Level	33
		4.1.5 Building Loading	33
	4.2	Construction Sequence	33
	4.3	Design and Deflection Analysis	34
		4.3.1 Design and Analysis by Beam on	34
		Elastic Foundation (BEF) Method	
		4.3.1.1 Wall Earth Pressure	34
		4.3.1.2 Calculations	36
		4.3.1.2.1 First Excavation	41
		4.3.1.2.2 Second Excavation	42
		4.3.1.2.3 Third Excavation	44

	4.3.1.2.4 Fourth Excavation	45
	4.3.1.2.5 Fifth Excavation	47
	4.3.2 Design and Analysis by Finite Element	49
	Method (Plaxis v7.2)	
5	RESULTS AND DISCUSSION	52
	5.1 Excavation Induced Horizontal Deflection	52
	5.2 Secant Pile Wall Moment Distributions	54
	5.3 Inclinometer Reading	56
	5.4 Comparison Between Plaxis v7.2, Manual	57
	Calculations and Field Measurement	
	(Inclinometer) - Deflection	
	5.5 Comparison Between Plaxis v7.2, Manual	62
	Calculations and Field Measurement	
	(Inclinometer) - Moment	
6	CONCLUSION	66
	6.1 Conclusion	66
	6.2 Recommendations for Further Studies	67
	REFERENCES	68
	APPENDIX A	70
	APPENDIX B	82

LIST OF TABLES

TABLE NO.	TITLE	PAGE	
2.1:	Equations to determine lateral earth pressure	6-7	
2.2	Strut materials and details	12	
2.3	Coefficient of deflection, Ax (After Fan W., 1978)	16-17	
2.4	Coefficient of deflection, Bx (After Fan W., 1978)	18-19	
2.5	Coefficient of deflection, Ex (After Fan W., 1978)	20-21	
2.6	Values of n_h (after Braja M. D., 2007)	22	
2.7	Relationship of modulus of subgrade reaction	22	
	(k_1) to undrained shearing strength of stiff		
	over-consolidated clay (after Tomlinson M.		
	and Woodward J., 2008)		
4.1	Soil Stratum	32	
4.2	Soil Parameters	32	
4.3	Building foundation loading	33	
4.4	Lateral earth pressure	35	
4.5	First excavation results by BEF method	42	
4.6	Second excavation results by BEF method	43	
4.7	Third excavation results by BEF method	45	
4.8	Fourth excavation results by BEF method	47	
4.9	Fifth excavation results by BEF method	49	

5.1	Support Distance at Excavation Phase	54
5.2	Maximum Horizontal Displacement on	60
	Excavation Phases	
5.3	Maximum Moment on Excavation Phases	64

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE	
2.1	Coefficient of Rankine's, Coulomb's and	8	
	Caquot-Kerisel's active earth pressure		
	(horizontal component $K_a = K_a \cos \delta$ (after Ou		
	C.Y., 2006)		
2.2	Coefficient of Rankine's, Coulomb's and	9	
	Caquot-Kerisel's passive earth pressure		
	(horizontal component $K_p = K_p \cos \delta$ (after Ou		
	C.Y., 2006)		
2.3	Typical deflection mechanism of underpinned	10	
	retaining wall		
2.4	Typical lateral wall deflection (after Ye Lu and	11	
	Yong Tan, 2011)		
2.5	Peck's Apparent Earth Pressure Diagram	12	
	(a)Sand (b)Soft to medium soft clay ($\gamma H_{e}/s_{u} > 4$)		
	(c) Stiff Clay ($\gamma H_e/s_u \leq 4$) (after Ou C.Y., 2006)		
2.6	Forces in Beam on Elastic Foundation	14	
2.7	Principle of inclinometer operation (After	26	
	Dunnicliff J., 1988)		
4.1	Layout of Construction Site	30	
4.2	Sections in BEF method analysis	40	
4.3	First excavation cross section	41	
4.4	Second excavation cross section	42	
4.5	Third excavation cross section	44	
4.6	Fourth excavation cross section	45	
4.7	Fifth excavation cross section	47	

4.8	Analysis Geometry and Mesh Generate	50
4.9	Calculation Phase in Plaxis v7.2	50-51
5.1	Excavation Induced Defelction by Manual	53
	Calculation	
5.2	Excavation Induced Deflection by Plaxis v7.2	53
5.3	Moment Distribution of Secant Pile Wall by	55
	Manual Calculation	
5.4	Moment Distribution of Secent Pile Wall by	55
	Plaxis v7.2	
5.5	Inclinometer Reading on Fourth Excavation	56
	Phase	
5.6	Inclinometer Reading on Fifth Excavation	57
	Phase	
5.7	Secant Pile Wall Deflection Results at	58-59
	Different Level of Excavation	
5.8	Secant Pile Wall Moment Results at Different	62-63
	Level of Excavation	

LIST OF SYMBOLS

a_{ii}	-	Constant of integration
A_x , B_x , E_x	-	Coefficient of deflection for laterally loaded piles
A_{ϕ} , B_{ϕ} , E_{ϕ}	-	Coefficient of slope for laterally loaded piles
BEF	-	Beam on elastic foundation
С	-	Soil cohesion
с'	-	Effective soil cohesion
c_u , S_u	-	Undrained shear strength
E	-	Young's Modulus
EI	-	Wall/pile stiffness
H, He	-	Soil depth
h_i	-	Length of sections
K	-	Earth pressure coefficient
K_a	-	Coefficient of active earth pressure
K_i	-	Stiffness of supports (struts)
K_o	-	Coefficient of earth pressure at restt
K_p	-	Coefficient of passive earth pressure
k	-	Strut stiffness
k	-	Permeability of soil
M	-	Moment
M_0	-	Moment at excavation level
m, n_h	-	Constant of modulus of horizontal subgrade reaction
pl	-	Lateral pressure caused by self weight of soil above
		excavation level
p , q	-	Uniformly distributed load
Q_0	-	Shear force at excavation level
$Q_i(x_i), R_i(x_i),$	-	Load function at length of integration (x_i) at sections
$S_i(x_i), T_i(x_i)$		

u	-	Pore water pressure
v	-	Poisson's Ratio
X_i	-	Length of integration at sections
У	-	Displacement
y_i , δ_i	-	Displacement at excavation level
α	-	Deformation coefficient of pile
$\sigma_a{}'$	-	Active effective stress/earth pressure
σ_a , P_a	-	Active stress/earth pressure
$\sigma_p{}'$	-	Passive effective stress/earth pressure
σ_p , P_p	-	Passive stress/earth pressure
${\sigma'}_h$	-	Horizontal effective stress/earth pressure
σ'_v	-	Vertical effective stress/earth pressure
σ_{v}	-	Vertical stress/earth pressure
Φ'	-	Soil friction angle
ф	-	Effective soil friction angle
Y	-	Soil unit weight
Ψ	-	Dilatancy angle

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Analysis of Multi-Braced Earth Retaining Structures (Xiao, H.B., J. Tang, et al., 2003)	70-81
В	Coefficient for slope Аф, Вф, Еф (After Fan W., 1978)	82-87

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Underpinned retaining wall commonly been used in the construction of underground basement, road and rail tunnel or any other open cut excavation projects. The retaining wall is prevented from moving to avoid failure of adjacent properties, i.e. buildings, utilities, etc. The excavation process will then induce the wall deflection because of the unbalance forces acting on the retaining wall. Many previous studies have been conducted on the excavation induced deflection of embedded retaining wall due to excavation process. The studies conducted will then be as a reference in designing of retaining wall in the future.

Embedded retaining walls can be in terms of soldier piles, sheet piles, secant piles and diaphragm walls. Each of the types of retaining wall has their own characteristics and the selection of the retaining wall depending on various situations.

One of the analyses involved in design the underpinned retaining wall is the deformation and stress analysis. The deformation analysis is conducted to predict the wall deflection due to the excavation process while stress analysis is done in conjunction with the structural retaining wall design. These analyses may be conducted using simplified method, beam on elastic foundation method and finite-element method. The deflection of underpinned retaining wall is dependable on the stiffness of the wall structure, soil characteristics and struts.

1.2 Problem Statement

Studies have been conducted to evaluate the performances of excavation induced wall deflections and some empirical or semi-empirical approaches have been developed. Prediction of the wall deflection is important to avoid failure from happens and to control surrounding properties from damage. Analysis with different methods will give different results of predicted deflection thus a comparison is done to validate the effectiveness and preciseness of the analysis.

Beam on elastic foundation (BEF) method is one of the methods that has been used in understanding the excavation induced stress and deformation analysis. In this method, certain assumptions are made for the ease of the analysis. Another method in stress and deformation analysis is by using the finite-element method. The method is capable to simulate various factors of instability forces acting on retaining wall thus it is more accurate than the beam on elastic foundation method. However, limited studies have been done for comparison of these two methods, therefore this project will be focusing on the analysis of the wall deflection using beam on elastic foundation (BEF) method and finite-element method. The analysis that will be discussed is on the horizontal deformation and the moment of the wall structure.

During construction, a set of monitoring instrumentation will be installed on the underpinned retaining wall to evaluate the design performance of the constructed wall. The instrumentation reading will then be used as a back analysis of the predicted wall deflection. In this project, inclinometer readings from a field case study will be discussed. The inclinometer readings measure the horizontal displacement of the underpinned retaining wall on different levels of excavation.

1.3 Objectives

The objectives of the study are as follows:

- i. To analyze the horizontal deflection of underpinned secant pile wall due to lateral load on a given type of soil using beam on elastic foundation method (manual calculation).
- To analyze the horizontal wall deflection under different excavation level of a given type of soil using finite-element software; Plaxis version 7.2.
- iii. To make a comparison between the predicted retaining wall deflection and field measurement (inclinometer).

1.4 Scope and Limitation

A case study for this project is Project Lateral, Belgravia, London. An inclinometer reading from the case study will be taken for back analysis using beam on elastic foundation (BEF) method and finite-element method. The type of wall, geometry and soil parameters in the analysis will be conducted using the data from the case study. For this project, only the lateral loading was considered in the deflection analysis of the retaining wall.

The procedure of analysis of the horizontal deflection using beam on elastic foundation method was referring to the paper on 'Analysis of Multi-Braced Earth Retaining Structures' by H.B. Xiao, J. Tang, Q.S. Li and Q.Z Luo (2003).

Software Plaxis version 7.2 is selected in the analysis using the finite-element method. The Mohr-Coulomb soil constitutive model was chosen for the deflection analysis in the software.

REFERENCES

- ArupGeotechnics Report (2005). Calculation Report, Project Lateral. Ove Arup & Partners Ltd, London.
- Bowles, J. E. (1996). <u>Foundation Analysis and Design</u>, McGraw-Hill Companies.
- Brinkgreve, R. B. J. (2005). <u>Selection of Soil Models and Parameters for</u> <u>Geotechnical Engineering Application</u>, ASCE.
- Burland, J. B., J. R. Standing, et al. (2001). <u>Building Response to Tunneling</u>, Thomas Telford Publishing, London.
- Clayton, C. R. I., J. Milititsky, et al. (1993). <u>Earth Pressure and Earth</u> <u>Retaining Structures</u>, Blackie Academic & Professional.
- Der, G. L. and M. W. Siu (2007). "Three Dimensional Analysis of Deep Excavation in Taipei 101 Construction Project." <u>Journal of Geoengineering</u> Vol. 2(No. 1): pg 29-41.
- Dunnicliff, J. and G. E. Green (1988). <u>Geotechnical Instrumentation for</u> <u>Monitoring Field Performance</u>, John Wiley & Sons.
- Fan, W. (1978). <u>Static Calculation of Underground Wall and Column</u>, The People's Railway Press, Beijing, China.
- Gaba, A. R., B. Simpson, et al. (2003). CIRIA C580: Embedded Retaining Walls - Guidance for Economic Design, CIRIA, London
- Koungelis, D. K. and C. E. Augarde (2004). <u>Interaction Between Multiple</u> <u>Tunnels in Soft Ground</u>. Proceedings of the 18th Australasian Conference on the Mechanics of Structures and Material, Perth, Australia, Taylor & Francis
- Hwang, R. N., C. M. Za, et al. (2007). "Toe Movement of Diaphragm Walls and Correction of Inclinometer Readings." <u>Journal of Geoengineering</u> Vol. 2(No. 2): pg. 61-71.

- Lu, Y. and Y. Tan (2012). "Top-down Excavation of a Metro Station in Soft Clay." <u>Advanced Materials Research, Trans Tech Publications, Switzerland</u> Vols. 368-373: pg: 2866-2869.
- 13. Macnab, A. (2002). Earth Retention System Handbook, McGraw Hill.
- Mohamad, H., K. Soga, et al. (2011). "Performance Monitoring of a Secant-Piled Wall Using Distributed Fiber Optic Strain Sensing." <u>American Society</u> <u>of Civil Engineers</u>.
- 15. Ou, C. Y. (2006). <u>Deep Excavation Theory and Practice</u>, Taylor & Francis/Balkema.
- 16. Phienwej, N. and C. H. Gan (2003). "Characteristic of Ground Movements in Deep Excavation with Concrete Diaphragm Walls in Bangkok Soils and their Prediction." <u>Southeast Asian Geotechnical Society</u>.
- Site Engineering Surveys Report (2005). Project Lateral Monitorig Report. Site Engineering Surveys Ltd, London.
- Tomlinson, M. and J. Woodward (2008). <u>Pile Design and Construction</u> <u>Practice</u>, Taylor & Francis Group.
- Xiao, H. B., J. Tang, et al. (2003). "Analysis of multi-braced earth retaining structures." <u>Proceedings of the Institution of Civil Engineers</u>(SB3): pg: 307-318.
- 20. Xiao, H. B., J. Tang, et al. (2004). "Discussion: Analysis of multi-braced earth retaining structure." <u>Proceedings of the Institution of Civil</u> <u>Engineers</u>(SB5): pg: 355-356.