
 

 

 

 

 

ALTERNATING GROUP EXPLICIT METHOD FOR EDGE DETECTION ON 

BRAIN AND BREAST TUMOUR IMAGES 

 

 

 

 

 

 

 

 

 

 

 

ZAWANAH BINTI MD. ZUBAIDIN 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 

 

 



 

 

 

 

ALTERNATING GROUP EXPLICIT METHOD FOR EDGE DETECTION ON 

BRAIN AND BREAST TUMOUR IMAGES 

 

 

 

 

 

ZAWANAH BINTI MD. ZUBAIDIN 

 

 

 

 

 

A dissertation submitted in partial fulfilment of the 

requirements for the award of the degree of 

Master of Science (Mathematics) 

 

 

 

 

 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

JANUARY 2013 



 

 

 

 

 

 

 

 

 

 

 

 

To my beloved family, 

 

Md. Zubaidin Muhamad @ Mamat 

Rohaya Ismail 

Zawani Md. Zubaidin 

Md. Zulkarami Md. Zubaidin 

Zatil Syarafana Md. Zubaidin. 

 

With love and much thanks. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

 In the name of Allah, the most Gracious and the most Merciful. Firstly, I would 

like to express my gratitude to Allah S.W.T. for His love and giving me strength and 

patience so that I can completely finish this dissertation task.  

 

 In particular, I would like to thanks and wish a greatest appreciation to my 

supervisors, Assoc. Prof. Dr. Norma Alias and En. Che Rahim Che Teh for their 

guidances, encouragements, and knowledges. Their meaningful advices to me 

throughout this period will never be forgotten. 

 

 Much love and many thanks I would like to express to my beloved mum, Mrs. 

Rohaya Ismail, and dad, Mr. Md. Zubaidin for all their loves, cares, and support. For my 

siblings, thank you for the great motivation. I am so blessed to have their loves in my 

life. 

 

 Finally, I would like to express my sincere appreciation to my senior, Rosdiana 

Shahril for her teaching and knowledge sharing. Greatest thanks to my fellow friends, 

Nor Aziran, Maizatul Nadirah, Nor Hafizah, Wan Sri Nurul Huda, Nurul Alya, Hafizah 

Farhah, Asnida and others for their helps throughout the way in completing this 

dissertation. 

 

 

 



 

 

 

 

 

ABSTRACT 

 

 

 

 

 In this research, we used Geodesic Active Contour (GAC) model to detect the 

edges of brain and breast tumor on MRI images. An additive operator splitting (AOS) 

method is employed in the two dimensional GAC model to maintain the numerical 

consistency and makes the GAC model computationally efficient. The numerical 

discretization scheme for GAC model is semi-implicit and unconditional stable lead to 

sparse system matrix which is a block tridiagonal square matrix. The proposed AOS 

scheme capable to decompose the sparse system matrix into a strictly diagonally 

dominant tridiagonal matrix that can be solved very efficiently likes a one dimensional 

problem. Gauss Seidel and AGE method is used to solve the linear system equations. 

The AGE employs the fractional splitting strategy which is applied alternately at each 

half (intermediate) time step on tridiagonal system of difference scheme and it is proved 

to be stable. This advanced iterative method is extremely powerful, flexible and affords 

users many advantages. MATLAB has been choosing as the development platform for 

the implementations and the experiments since it is well suited for the kind of 

computations required. In the implementation of GAC-AOS model for edges detection 

of tumor, the experimental results demonstrate that the AGE method gives the best 

performance compared to Gauss Seidel method in term of time execution, number of 

iterations,.RMSE, accuracy and computational cost.  

 

 

 

 



 

 

 

 

 

ABSTRAK 

 

 

 

 

 Model kontur aktif Geodesik digunakan dalam kajian ini untuk menjejak sisi-sisi 

tumor bagi barah otak dan payudara pada imej MRI. Kaedah agihan separa tersirat 

(AOS) diguna dalam model GAC dua dimensi untuk mengekalkan kekonsistenan 

berangka dan membolehkan pengiraan dibuat secara berkesan bagi model GAC. Skema 

pendiskritan berangka bagi GAC model ialah dalam skema separuh tersirat dan stabil 

secara tidak mutlak. Hal ini menghasilkan sistem matrik yang jarang dan besar. Sistem 

matrik adalah dalam bentuk segi empat yang mempunyai bilangan baris dan kolum yang 

sama dan merupakan matrik blok yang mempunyai tiga unsur pada pepenjuru. Skema 

AOS mampu menguraikan sistem matrik yang jarang kepada sistem matrik yang hanya 

mempunyai tiga unsur pada pepenjuru. Sistem matrik ini boleh diselesaikan secara 

berkesan sepertimana menyelesaikan masalah satu dimensi. Kaedah Gauss Seidel dan 

AGE digunakan untuk menyelesaikan persamaan sistem linear. Kaedah AGE adalah 

berorientasikan strategi belahan paras masa terkini secara berselang-seli bagi sistem 

persamaan linear tiga pepenjuru dan terbukti stabil. Kaedah lelaran yang maju ini adalah 

sangat berkuasa, fleksibel, dan memberi banyak kelebihan kepada para pengguna. 

Perisian MATLAB dipilih sebagai platform pembangunan kerana ia sesuai untuk semua 

pengiraan yang diperlukan. Dalam pelaksanakan model GAC-AOS untuk mengesan sisi-

sisi tumor, hasil kajian menunjukkan bahawa kaedah AGE memberi persembahan yang 

bagus berbanding kaedah Gauss Seidel dalam aspek pelaksanaan masa, bilangan lelaran, 

RMSE, ketepatan dan kompleksiti pengiraan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

In the past several years, active contour models have been widely applied in 

computer vision especially in image processing since they were first introduced by 

Kass et al. (1988). It is an effective tool for image segmentation, object tracking, 

shape recognition, edge detection and stereo matching. 

 

 According to representation and implementation, active contours can be 

classified into two types which are parametric active contours Kass et al.(1988), 

Cohen(1991), Eviatar and Samorjai(1996), Xu et al.(2000), Wang et al.(2009) and 

geometric active contours Caselles et al.(1993), Caselles et al.(1997), Xu et al.(2000), 

Goldenberg et al.(2001).  

 

Parametric active contours are represented explicitly as parameterized curves 

or splines. Geometric active contours are represented implicitly as level sets of two-

dimensional distance functions which its evolution does not depend on particular 

parameterization. These models are based on the curve evolution theory and 

geometric flows, Caselles et al.(1993) 
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  In ),( yx  plane, the contour is defined as a parametric curve (Rosdiana, 

2012), 

 

))(),(()( sysxsv                                                                                                  (1.1.1) 

 

where )(sx  and )(sy  are the coordinates throughout the contour as shown in Figure 

1.1. Parameter s  is independent and with domain ]1,0[s . 

 

 

 

 

 

 

 

 

Figure 1.1: Parametric curve in ),( yx plane 

 

 In 1988, Kass et al. make a contribution in image processing field with the 

introduced Snake active contour model. This model is a parametric active contour 

model. The contour of Snake model is a controlled continuity spline associated to its 

energy functional which is the sum of two terms of internal and external forces.  

 

 Snake is called as an active model because it always minimizing its energy 

functional to develop the contour line. The implementation of Snake model is based 

on the image processing to the targeting region. The energy functional of Snake 

model is defined as ( Kass et al.,1988), 
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 snakeE   : Energy functional of Snake 

 intE   : Internal energy of Snake to smooth the edge curve 

extE   : External Snake forces lead the curve to the edges of object in  

      the image. 

 imageE   : Image forces pushing the Snake toward the desired object. 

 conE   : External constraint forces 

 

 The internal energy can be expressed as ( Kass et al.,1988), 

 

2

))()()()((
22

int

svssvs
E

sss  
                                                                  (1.1.3) 

 

The first-order term sv  is controlled by )(s  and the second-order term ssv  is 

controlled by )(s . The function of first-order term is to make the Snake act like a 

membrane while the second-order term is to make Snake act like a thin-plate. 

 

 The relative importance of the membrane and thin-plate terms can be control 

by adjusting the weighted )(s  and )(s . By reviewing some previous researches, a 

constant applied as a coefficient for the first-order term in (1.1.3) i.e.,  )(s , 

Wang et al.(2009). While the weight of )(s  need to set as zero. This is to make 

sure that Snake can be second-order discontinuous and extract a corner. 

 

 The total image energy is a weighted combination of the three energy 

functionals. This energy can be represented as follows 

 

termtermedgeedgelinelineimage EwEwEwE                                                               (1.1.4) 

 

The three different energy functional ( timeedgeline EEE ,, ) can attract a the contour of 

Snake to lines, edges, and terminations. A wide range of Snake can be created by 

adjusting the weights ( linew  , edgew , termw  ). 
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 A line functional lineE   is the image intensity itself. It is defined as, 

 

),( yxIEline                                                                                                         (1.1.5) 

 

where  yxI ,  is the image function and it is viewed as a function of continuous 

position variables  yx, , Cheng et al. (2007). It is depending on the sign of linew  so 

that the contour or Snake will be attracted to either low level prediction contour or 

high level of prediction contour. 

 

 The edges of the image can be found by the energy functional (1.1.6), Kass et 

al.(1988). This allows Snake model to be attract to contours with large image 

gradient. 

 

2
),( yxIEedge                                                                                               (1.1.6) 

 

 A different edge functional (1.1.7) issued by Kass et al.(1988) in order to 

show the relationship of scale-space continuation to the theory of edge-detection by 

Marr and Hildreth(1980). 

 

    22 ,, yxIyxGEedge                                                                              (1.1.7) 

 

where  yxG , represent as a two dimensional Gaussian of standard deviation   and 

  is the gradient operator. The functional lies on zero-crossing of IG 2 . The 

location is minima which defined edges in the Marr-Hildreth theory. The Snake will 

attract to zero-crossing if we add the edge functional term (1.1.7) to the existing 

equation (1.1.4). Despite of adding this term to Snake model, it is still constrained by 

its own smoothness. 

 

 Curvature of level lines in equation (1.1.8) is used to find the terminations of 

line segments and corners in a slightly smoothed image. 

 



5 

  2/322

22

22

2

/

/

yx

yxxyxxyxyy

term

CC

CCCCCCC

nC

nC

n
E






















                                                              (1.1.8) 

 

where      yxIyxGyxC ,,,    is the smoothed image,  
xy CC /tan 1  is the 

gradient angle, and   sin,cosn   and   cos,sinn  be unit vectors and 

perpendicular to the gradient direction. From the iterations in numerical 

implementation, the combination of edgeE  and termE  full fill the convergent criterion. 

 

 

 

 

1.2 Background of the Problem 

 

 

 The image processing problem in this research is to detect the edges of object 

on medical resonance image (MRI). The traditional active contour or Snake model 

has some drawbacks. Basically, it depends on its parameterization. The characteristic 

of active contour parameterization is limited ability to draw the geometrical 

regularity of contour. Other problem is the model cannot deal with changes in 

topology directly and impossible to detect all the objects in an image. 

 

 To overcome the problem of Snake, Caselles et al. (1993) proposed 

geometric models of active contours based on the curve evolution theory and the 

level set method. The proposed model is as follows, 
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with the initial data as, 

 

)(),0( 0 xuxu   2x                                                                               (1.2.2) 

 

2

0 )(1

1
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                                                                                       (1.2.3) 

 

where 

 

u   : To controls the interior and exterior of contour 



















u

u
div  : To ensures that the grey level at a point increase 

                          proportionally to the algebraic curvature. Also  

                          responsible in regularizing effect of the model  

                          and done its rule in internal energy (1.1.3) 

v   : A positive real constant and a correction term so that    

                         v
u

u
div 


















  remains always positive. 

0gG   : The convolution of the image 0g  and  

                             4/exp
22/1 xCxG  

 

)(xg   : Stopping function. The aim is to stop the evolving curve 

                          when it arrives to the object edges 

 

 The improvement of geometric active contour model is not dependent on the 

curve’s parameterization. The implementation level-set based on numerical 

algorithm (Osher and Sethian, 1988) is allowed changes in the topology 

automatically .So, the good implementation of geometric active contour is several 

objects can be detected simultaneously. 

 

 Other alternative model proposed by Caselles et al.(1997) was geodesic 

active contour  model. It is a geometric model and also energy functional 

minimization. 
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 Caselles et al. (1997) suggested the model of geodesic active contour as 

follows 

 

)()( xguv
u

u
xgdivu

t

u
























     2,0, xt               (1.2.4) 

 

 The real fact is, geodesic active contour model yields the same result as that 

of a simplified Snake model. It is up to arbitrary constant that depends on the initial 

parameterization (Goldenberg et al. 2001). 

 

 However, geodesic active contour also has its drawbacks that we need to 

consider in this research. The main disadvantage is its nonlinearity that will cause 

bad implementation. 

 

 To linearize the geodesic active contour model, we apply the additive 

operator splitting (AOS) scheme based on the Weickert et al. (1998). It can be 

defined as follows, 

 

   k
m

l

k

l

k uuAmI
m

u

1

1

1 1




                                                                               (1.2.5) 

 

where 

 

k   : Number of iteration 

m   : Dimension of the problem 

l   : Index running over the dimension 

I   : Unit matrix 

   : Time step 

 

 This numerical scheme is an unconditionally stable for nonlinear diffusion for 

image processing problem. It is consistent, first order and semi-implicit scheme. In 

this research, we are going to consider the two dimensional model of active contour. 

So the AOS scheme for two dimensional cases is given by, 
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                                                                                 (1.2.6) 

 

where  
ijijll aA   (Rosdiana,2012) corresponds to derivative along the l -th 

coordinate axis. Even though the problem to be overcome is in two dimensional 

cases, AOS scheme will easily turn that problem into one dimensional case, Weickert 

(1998). All coordinate axes can be treated in exactly the same manner since the AOS 

is an additive splitting scheme. 

 

 Therefore in this research, we will consider to use the geodesic active contour 

model based on additive operator splitting scheme to detect the edges of brain and 

breast tumor on medical images. 

 

 

 

 

1.3 Statement of the Problem 

 

 

 In this study, we use GAC model based on AOS scheme to detect the edges 

of tumor on MRI images. To implement this model, it needs to be descretized first. 

Hence we tend to use the finite different method in order to discretize the model. 

From the discretized version of GAC-AOS model, we could derive the linear system 

equations. We should get the tridiagonal and diagonally dominant matrix system so 

that we can solve easily by using AGE and GS method. The solution of the matrix 

system by AGE and GS method would give the different numerical results in term of 

time execution, number of iterations, root mean square error, accuracy, rate of 

convergence, and computational cost. Based on the numerical result performances, 

the best iterative method between AGE and GS method can be determined. 
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1.4 Objectives of the Study 

 

 

The objectives of the study are: 

 

i) To detect the edges of brain and breast tumor on MRI images. 

 

ii) To apply some iterative methods (AGE and Gauss Seidel) to solve the linear 

system equations. 

 

iii) To compare the numerical analysis of the iterative methods (AGE, and Gauss 

Seidel) in term of time execution, number of iterations, computational 

complexity, root mean square error (RMSE), convergence rate and accuracy. 

 

 

 

 

1.5 Scope of the Study 

 

 

This study will focus on detecting the edges of tumor by using 

Geodesic active contour (GAC) model based on additive operator splitting (AOS) 

scheme. The solution for linear system of equation (LSE) can be done by using some 

iterative methods. The iterative methods under consideration are Gauss-Seidel, 

alternating group explicit (AGE). This experiment will be applied to brain and breast 

tumor on MRI images. The MRI images are the real image of two patients from 

Hospital Kubang Kerian, Kelantan and Hospital Kuala Batas, Pulau Pinang. The 

algorithm will be run using MatlabR2011a. 
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1.6 Significance of the Study 

 

 

 From this study, it is hope that we can detect the edges of brain and breast 

tumor on medical resonance image (MRI). Other than that, the numerical analysis 

results can be the measurement in proving that AGE method is the best iterative 

method with accuracy (2, 4) than Gauss Seidel method with accuracy (2, 2). 

 

 

 

 

1.7 The Organization of the Dissertation 

 

 

This dissertation consists of six chapters. Chapter 1 describes the introduction 

of active contour models. In this chapter, we included the problem formulation, 

active contour model under consideration, objectives, scope, and significance of the 

research. 

 

 Chapter 2 focuses on the literature review. This chapter describes the use and 

application of GAC model by different researchers year by year. There also have 

descriptions about AOS scheme, finite difference method, Gauss Seidel method, and 

AGE method. We also explain briefly about the numerical analysis of sequential 

algorithm and the computational platform used in this research. At the end of the 

chapter, we show the chart of our research scope. 

 

 Chapter 3 describes the discretization process for GAC-AOS model by using 

finite differences method. From the discretized version of GAC-AOS, we derived the 

linear system equations. Because of the AOS scheme, the linear system can be solves 

for two directions separately. At the end of the chapter, we explain the flowchart of 

the sequential algorithm for edge detection problem on MRI image. 

 

 In Chapter 4, we describe the solution of tridiagonal and diagonal matrix 

system using AGE and GS methods. We show how the formulation of AGE and GS 
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method could solve the matrix system for two directions which are x -direction and 

y -direction. We also included the computational molecule for each AGE and GS 

method. 

 

 Chapter 5 presents the results of edge detection on MRI images. We analyse 

the results based on number of iterations, time execution, root mean square error, rate 

of convergence, accuracy and computational complexity. All the numerical results 

are shown in the form of table while the visualization results of the captured edge of 

tumor by contour line are shown by images. 

 

 The last chapter is the Chapter 6. In this chapter, we state the conclusions of 

this research based on the results that we showed in Chapter 5 and relate them with 

our objectives in Chapter 1. Then, there are some suggestions and recommendations 

for the future researchers. 
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