
ADAPTIVE COHERENT HIERARCHICAL CULLING ALGORITHM FOR UTM
CAR DRIVING SIMULATOR

MOHD KHALID MOKHTAR

UNIVERSITI TEKNOLOGI MALAYSIA



Replace this page with form PSZ 19:16 (Pind. 1/07), which can be
obtained from SPS or your faculty.



Replace this page with the Cooperation Declaration form, which can be
obtained from SPS or your faculty.



ADAPTIVE COHERENT HIERARCHICAL CULLING ALGORITHM FOR UTM
CAR DRIVING SIMULATOR

MOHD KHALID MOKHTAR

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing
Universiti Teknologi Malaysia

JANUARY, 2013



iii

Dedicate to the people that involve in this research. Thanks to Allah gives me the

change to finish this research for my master study.



iv

ACKNOWLEDGEMENT

Praise be to Allah, we seek His help and His forgiveness. We seek refuge with
Allah from the evil of our own souls and from our bad deeds. Whomsoever Allah
guides will never be led astray, and whomsoever Allah leaves astray, no one can guide.
I bear witness that there is no god but Allah, the One, having no partner. And I bear
witness that Muhammad is His slave and Messenger. I wish to express my sincere
appreciation to my supervisor, Associate Professor Dr. Mohd Shahrizal Sunar who
has supervised me during four years of my study. He has always supported on my
research ideas and activities. With his experiences, encouragements, guidances, critics
and friendship brought much impact to my study and also personal life.

I am also would like to thank all members in UTM ViCubeLab research group
at Faculty of Computer Science and Information System for their supports, interests
and cooperations. Ab Al Hakam, Siti Aida, Hassan, Ku Faisal, Ismahafizi, Zakiah,
Nuramalina, Iklima, Dr. Hoirul, Norsharina, Azhar and those friends who close to me
during my year of studies. Hope you all will success in the near future. I am also
indebted to Malaysia Government Programme for funding my studies with National
Science Fund Scholarship. I able to complete my studies and concentrate on my
research without facing any financial problems. Unfortunately, this is not possible
without support from my family. I am grateful to all my family members especially,
my mother Halimah Binti Harun and all my siblings: Khirriri, Khairul, Khamal,
Khairuddin, and Norhaslinda.



v

ABSTRACT

Driving simulator is a virtual reality tool that emulates actual driving
environment. In a virtual world, feedback between the user and the application is
a very critical aspect to be considered. Fundamentally, the drop of frame rates that
influences feedback can cause control delay and disruption of user interactivity. To
maintain human and computer interactivity, the best possible quality of rendering
graphics would have to be within 60 frames per second. To achieve this quality,
good selection of Visibility Culling (VC) algorithms are needed one of which is the
Online Occlusion Culling (OOC) algorithm. The OOC requires no pre-processing
and is suitable for dynamic scenes. The characteristic of the 3D dynamic scene is
one of the main factors to efficiently integrate OOC into an existing driving simulator
system. Hence, this research proposed an adaptive algorithm for Coherent Hierarchical
Culling (CHC) algorithm derived from OOC to manage complex and dynamic objects
in a dynamic driving simulation scene. The CHC requires a two-level process: pre-
processing and online processing which are implemented to manage the occlusion
queries. The proposed adaptive algorithm aims at improving CHC efficiency by
manipulating two parameters which are the car movement speed and the visibility
threshold. An experiment was conducted using car driving simulator engine tested
on winding and hilly road, and an open straight road. The experiment showed that
the speed of the car influenced the number of objects to be culled based on distance
whereas the varying visibility thresholds reduced the popping artifacts problem of
higher visibility threshold. Concurrently, both of them were able to reduce number
of insignificant objects to be rendered. The results of the research showed that this
adaptive algorithm improved the CHC rendering performance and maintained visual
quality. This research has proven that the adaptive algorithm really improved upon the
CHC for real-time simulator applications.



vi

ABSTRAK

Simulator pemanduan merupakan satu alat realiti maya yang menggambarkan
suasana pemanduan yang sebenar. Dalam dunia alam maya, tindakbalas antara
pemandu dan aplikasi adalah aspek yang paling kritikal untuk diambil kira. Pada
asasnya, penurunan bilangan kerangka per saat mempengaruhi maklumbalas yang
menyebabkan kelewatan kawalan dan mengganggu interaktiviti pengguna. Kualiti
paparan grafik yang terbaik memerlukan sekitar 60 kerangka per saat untuk
mengekalkan interaktiviti antara manusia dan komputer. Untuk mencapai kualiti
ini, pilihan yang baik pada algoritma Pemilihan Kebolehanlihatan (VC) diperlukan,
dimana salah satunya ialah algoritma Pemilihan Terlindung Segera (OOC). OOC
ini tidak memerlukan pra-pemprosesan dan ia sesuai untuk persekitaran yang
dinamik. Kriteria yang ada dalam persekitaran 3D menjadi faktor penting dalam
mengintegrasikan OOC secara efisien dengan sistem simulator pemanduan yang sedia
ada. Justeru, penyelidikan ini mencadangkan satu algoritma penyesuaian untuk
algoritma Pemilihan Koheren Berhierarki (CHC) dibawah OOC bagi mengurus objek-
objek yang kompleks dan dinamik dalam persekitaran simulator pemanduan. CHC
memerlukan dua pemprosesan untuk menguruskan pertanyaan terlindung iaitu pra-
pemprosesan dan pemprosesan segera. Algoritma penyesuaian yang dicadangkan
bertujuan untuk meningkatkan keberkesanan CHC dengan memanipulasikan dua
parameter iaitu kelajuan kereta dan nilai ambang kebolehlihatan. Proses pengujian
dilaksanakan menggunakan enjin simulator pemanduan pada jalan selekoh berbukit
dan jalan besar yang lurus. Hasil ujian menunjukkan bahawa kelajuan kereta
mempengaruhi jumlah objek yang akan dibuang berdasarkan jarak manakala nilai
ambang kebolehlihatan yang berbeza-beza dapat mengurangkan masalah artifak
pemunculan oleh nilai ambang yang tinggi. Pada masa yang sama kedua-duanya
dapat mengurangkan jumlah penjanaan objek yang tidak penting. Hasil penyelidikan
menunjukkan algoritma penyesuaian ini dapat meningkatkan prestasi CHC dan
mengekalkan kualiti penjanaan. Kajian ini membuktikan algoritma penyesuaian telah
menambah baik CHC untuk aplikasi masa nyata bagi simulator.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xvi
LIST OF SYMBOLS xvii
LIST OF APPENDICES xviii

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Problem Background 3
1.3 Problem Statement 7
1.4 Aims 8
1.5 Objectives 9
1.6 Research Justification 9
1.7 Scope and Research Limitations 10
1.8 Thesis Organization 10

2 LITERATURE REVIEW 12
2.1 Introduction 12
2.2 History of Driving Simulator 13
2.3 Driving Simulator and Its Application 15
2.4 Key Elements in Driving Simulator 19
2.5 Real-Time Rendering in Driving Simulator 21



viii

2.6 The Graphics Rendering Pipeline 23
2.7 3D Scene Management 26

2.7.1 Spatial Data Structures 27
2.7.1.1 Bounding Volume Hierarchy (BVH) 28
2.7.1.2 Binary Space Partitioning Tree 29
2.7.1.3 kD-tree 30
2.7.1.4 Octree 30

2.7.2 Level of Detail (LOD) 31
2.7.3 Visibility Culling 32

2.7.3.1 Back-Face Culling 33
2.7.3.2 View Frustum Culling 34
2.7.3.3 Occlusion Culling 35

2.8 Previous Works in Online Occlusion Culling Algorithm 36
2.8.1 Hierarchical Z-Buffering 37
2.8.2 Hierarchical Occlusion Map 38
2.8.3 Hardware Occlusion Queries 39

2.9 Discussion 41

3 RESEARCH METHODOLGY 44
3.1 Introduction 44
3.2 Development Processes of UTM Driving Simulator 46

3.2.1 Simulation Physic of a Car 48
3.2.2 Rendering Methods for 3D Driving Simulation

Environment 51
3.2.2.1 Pre-processing 53
3.2.2.2 Online Processing 62

3.2.3 Hardware and Software Specifications 66
3.3 Experimental Setup of Proposed Algorithm 67

3.3.1 Environment Settings 67
3.4 Summary 72

4 ADAPTIVE COHERENCE HIERACHICAL CULLING 75
4.1 Introduction 75
4.2 Coherent Hierarchical Culling 76
4.3 Adaptive Coherence Hierarchical Culling based on the

Speed of Car Movement and Varying Visibility Threshold
Values 78
4.3.1 Speed of Car Movement 80



ix

4.3.2 Varying Visibility Thresholds 82
4.3.3 The Proposed Adaptive Algorithm 87

4.4 Summary 89

5 RESULT AND DISCUSSION 91
5.1 Introduction 91
5.2 Evaluation of the Proposed Method 92

5.2.1 Rendering Performance 92
5.2.2 Realism of Rendering 93

5.3 Evaluation of Rendering Performance in View Frustum
Culling 94

5.4 Rendering Performance Evaluation to the Implementation
of Coherent Hierarchical Culling Algorithm 98

5.5 Rendering Performance Evaluation to the Implementation
of the Proposed Adaptive Algorithm Based on Speed of Car
Movement 101

5.6 Rendering Performance Evaluation of the Proposed
Adaptive Algorithm Based on Speed of Car Movement and
Varying Visibility Threshold Values 103

5.7 Realism Evaluation of the Original CHC Algorithm 105
5.8 Realism Evaluation of the Proposed Adaptive CHC

Algorithm 105
5.9 Discussion 108
5.10 Summary 111

6 CONCLUSION AND FUTURE WORKS 112
6.1 Research Summary 112
6.2 Contribution 114
6.3 Future Works 115

6.3.1 Static and Dynamic Objects 115
6.3.2 GPU-Based Techniques 115
6.3.3 Game Engine Integration 116
6.3.4 Other Parameters 116

REFERENCES 117



x

Appendix A 124



xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Previous algorithm on hardware occlusion queries features. 41
3.1 Physic Algorithm. 52
3.2 Typical chuck structure 54
3.3 Octree Algorithm. 59
3.4 View Frustum Culling Algorithm. 61
3.5 Algorithm to create cube bounding box. 63
3.6 Hardware occlusion queries algorithm. 64
3.7 Hierarchical stop and wait method. 65
3.8 Hardware and software specifications. 66
3.9 3D models triangles count. 70
3.10 Parameters for application specifications. 72
4.1 Coherent Hierarchical Culling algorithm. 79



xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Antoinette is first training rig for flight simulator (Slob,
2008). 14

2.2 Low level fidelity of driving simulator. 17
2.3 Medium level fidelity of driving simulator. 17
2.4 High level fidelity of driving simulator 18
2.5 Functional elements in driving simulator. 19
2.6 The evolution of visual system in driving simulator over

years (Allen et al., 2010). 20
2.7 Human-in-the-Loop (Human-in-the-Loop (HITL)) archi-

tecture in driving simulator (Liao, 2006) 22
2.8 Elements in a 3D object. 23
2.9 High details to low details 3D model with varying number

of faces. 24
2.10 A scene geometry in driving simulator environment. 24
2.11 Rendering 3D objects concept (Moller et al., 2008). 25
2.12 Rendering pipeline. 26
2.13 Object hierarchies verse space subdivision (Mattausch,

2010). 28
2.14 Bounding sphere hierarchy and its object hierarchy

representation. (Moller et al., 2008). 29
2.15 BSP tree. (Moller et al., 2008). 29
2.16 kD-tree. (Moller et al., 2008). 30
2.17 Octree subdivision. (Moller et al., 2008). 31
2.18 A rabbit model is simplified. (Moller et al., 2008). 31
2.19 Creating levels of detail or LODs to reduce the rendering

cost based on contribution of geometry. (Moller et al.,
2008). 32



xiii

2.20 A frame that has high depth complexity.. (Moller et al.,
2008). 32

2.21 View frustum, backface culling and occlusion
culling. (Staffans, 2006). 33

2.22 View vector and normal vector to perform back-face
culling. (Zamri, 2006). 34

2.23 Hierarchical view frustum culling. (Moller et al., 2008). 35
2.24 The hierarchical Z-buffer. (Greene et al., 1993). 38
2.25 The hierarchical occlusion map. (Zhang et al., 1997). 39
2.26 Research focus area for the literature reviews. 43
3.1 Research methodology 45
3.2 Steps for creating a driving simulator (Jia et al., 2007) 47
3.3 UTM Driving simulator. 48
3.4 Software design. 49
3.5 Hardware architecture. 50
3.6 Simulation of physic car on road surfaces 50
3.7 Create mass of car. 51
3.8 Create box geometry for collision detection. 51
3.9 Pre-processing process and online processing integration 53
3.10 Pre-processing process 54
3.11 Hierarchical fashion of used chucks 55
3.12 Class Cload3DS handle loading code. 55
3.13 Reading Chunk ID and Model information to store to 3D

database. 56
3.14 Constructing hierarchical scene processes. 57
3.15 Partioning space in octree. 58
3.16 Six plane of view frustum (Zamri, 2006) 60
3.17 Fill mode bounding volumes issued to GPU. 63
3.18 Integration hierarchical structure and hardware occlusion

queries. 65
3.19 Steering Wheel. 66
3.20 Straight road in testing area using hierarchical octree

subdivision in Scene 1. 68
3.21 Hill and curvy road in testing area of Scene 2. 69
3.22 Inside view from car’s driver. 69
3.23 Outside view shows the cars involve in road 70
3.24 Two models used as dynamic moving objects. 71
3.25 Number of rendered cars difference based on number lanes

used in Scene 1. 73



xiv

3.26 Difference number of cars used in Scene 2. 74
4.1 Diagram of the CHC algorithm. 76
4.2 Queue concepts. 77
4.3 CHC process. 78
4.4 Diagram of the adaptive CHC algorithm. 80
4.5 Speed of car movement and varying visibility threshold

parameters used in adaptive algorithm. 81
4.6 Scene in city driving and open highway (Vehicles and

Motor, 2006). 82
4.7 Distance culling based on look ahead distance of the car. 83
4.8 Changes of threshold affect number of cars rendered. 84
4.9 Normal visibility threshold and varying visibility thresh-

olds. 85
4.10 Level 1 of without cascaded visibility threshold based on

certain distances. 86
4.11 Level 2 of cascaded visibility threshold based on certain

distances. 86
4.12 Level 3 of cascaded visibility threshold based on certain

distances. 87
4.13 Level 4 of cascaded visibility threshold based on certain

distances. 87
4.14 Adaptive algorithm based on distance of drivers look

ahead and automatic varying visibility thresholds to CHC
algorithm. 89

5.1 View frustum culling with default length of far plane. 94
5.2 Visual output resulted from view frustum culling. 95
5.3 Rendered car against car speed in the Scene 1. 96
5.4 Rendered car in 1000 frame numbers in Scene 2. 96
5.5 Frame per second against car speed driven by user in Scene

1. 97
5.6 Frame per second against frames numbers in Scene 2. 98
5.7 Rendered cars against car speed driven by user in Scene 1. 99
5.8 Rendered cars against car speed driven by user in the Scene

2. 99
5.9 Rendering performances between previous and integrated

CHC implementation in Scene 1. 100
5.10 Rendering performances between previous and integrated

CHC implementation in Scene 2. 101



xv

5.11 Rendered cars against car speed driven by user in Scene 1
with and without distance culling. 102

5.12 Rendering performances between integrated CHC and
adaptive algorithm based look ahead distance implemen-
tation in Scene 1. 103

5.13 Number of rendered cars against speed of car in performing
varying visibility thresholds. 104

5.14 FPS against speed of car in performing varying visibility
thresholds. 104

5.15 Visual output resulted from CHC algorithm. 106
5.16 Visual output resulted from CHC algorithm with look

ahead distance based on speed to perform distance culling. 107
5.17 Visual output resulted from CHC algorithm with Level 2 of

varying visibility thresholds. 108
5.18 Visual output resulted from Coherent Hierarchical Culling

(CHC) algorithm with level 3 of varying visibility
thresholds. 109

5.19 Visual output resulted from CHC algorithm with level 4 of
varying visibility thresholds. 110



xvi

LIST OF ABBREVIATIONS

VR – virtual reality

fps – frame per second

PVS – potential visibility set

TC – Temporal Coherence

3D – three-dimensional

CHC – Coherent Hierarchical Culling

PVS – potential visibility set

HZB – Hierarchical Z-buffer

HOM – Hierarchical Occlusion Maps

NOHC – Near Optimal Hierarchical Culling

HITL – Human-in-the-Loop

DOF – Degree of Freedom

NOHC – Near Optimal Hierarchical Culling

CHC++ – Coherent Hierarchical Culling Revisited



xvii

LIST OF SYMBOLS

x – X axis

y – Y axis

z – Z axis



xviii

LIST OF APPENDICES

APPENDIX PAGE

A LIST OF PUBLICATION 124



CHAPTER 1

INTRODUCTION

1.1 Introduction

Rendering physically correct images with rich visual effect is one of driving
forces to the advancement of computer graphics (Scherzer et al., 2010). The evolution
of real time graphics with better graphics hardware, more detailed models and better
techniques gives challenge to researcher and developer to more and more sophisticated
algorithm (Mattausch, 2010). Computer graphics refer to a field of computer science
where computation techniques are applied for digitally synthesizing and manipulating
visual content. Contribution from this area has been made impact to many different
type of media such as animation, movies and video game industry. Many researchers
have been done in applying computer graphics in simulation and animation for
scientific visualization and entertainment. One major problem faced by practitioners is
battle with the trade-off between complexity and performance (Luebke et al., 2002).

Both scene complexity and rendering performance are played importance roles
in interactive computer graphics (Luebke et al., 2002). Scene complexity refers to
the number of primitives (pixels, edges or vertices) which are in view depending on
the viewer position and orientation (Gilbert, 1994). Complexity of a virtual scene
can influence the rendering performance if the scene is too complex because it is not
interactively rendered and frame rate drop (Luebke et al., 2002). The performance of
rendering refer to the number of frames rendered in one second also known as frame
rates. Low frame rates can cause the system more real-time rendering rather than



2

interactive. Interactivity in real-time rendering refer to suitable frame rate that require
for an application. 60 frame per second (fps) is considered enough frame rate for
human observer (Mattausch, 2010; Moller et al., 2008) because currently most LCD
monitors and TVs can refresh at least at 60Hz. In one frame, calculation performed
involve not only rendering algorithms but also other calculations in application such
as input processing, sound rendering and artificial intelligences. All these shared
calculations must perform within this time budget while maintain between interactive
application and realism of the virtual scene especially in single frame (Scherzer et al.,
2011).

Driving simulator is one example of real-time rendering application which
is useful in providing a synthetic experience and interaction for it′s user in real-
time (Whyte, 2002). Driving simulator consists of computer hardware, software,
the input and output devices, the data and the users that support the usage of an
interactive, spatial and real-time medium (Burns and Wellings, 1997). The main issue
in driving simulator system is to develop a system that able to maintain interactive
frame rate and fidelity like a real world (Whyte, 2002). Managing the scene complexity
while maintaining interactive frame rates of driving simulator system needs the
implementation of visibility algorithm (Cohen-Or et al., 2003).

Visibility algorithm is one of the most important component in real-time
rendering system architecture (Bittner et al., 1998; Bittner and Wonka, 2003; Cohen-
Or et al., 2003; Coorg and Teller, 1996; Lengyel, 2003; Mattausch, 2010). Since
the beginning of computer graphics, visibility algorithm is a fundamental and
crucial problem that attract researcher and developer to provide solution (Bittner
and Wonka, 2003; Cohen-Or et al., 2003; Mattausch, 2010). There are various
kind of visibility algorithms for several visibility problems domain one of them is
visibility culling (Bittner and Wonka, 2003). The goal of visibility culling is to reduce
computational cost of rendering by limit the portion of complex scene to visible
part. Visibility culling play roles by allowing the real-time rendering application to
achieve output-sensitive where the render time depends only on the complexity of the
actual output, not the scene complexity. It means that any objects that do not make
contribution to final image will be removed from calculation.



3

Occlusion culling is one of the visibility culling technique that still have a
room for improvement for research (Staffans, 2006). Occlusion culling can be divided
into visibility preprocessing and online occlusion culling (Mattausch, 2010). The
introduction of occlusion queries in graphic hardware encouraged research direction to
use online occlusion culling. This online occlusion culling called hardware occlusion
queries that requires no pre-processing, easy and simple to implement and can
handle dynamic scene (Mattausch, 2010). However, only when the introduction of
Temporal Coherence (TC) concept in managing hardware occlusion queries has made
this technique practicable used in complex virtual system. Introduction of coherent
hierarchical culling (CHC) algorithm by Bittner et al. (2004) exploits the temporal
coherence (TC) concept to avoid CPU stall and GPU starvation in performing hardware
occlusion queries. CHC algorithm is suitable to be implemented in arbitrary and
dynamic scenes (Bittner et al., 2004; Mattausch, 2010; Scherzer et al., 2011). Thus
the driving simulator is suitable as a platform to implement this algorithm which can
provide dynamic scenes. A research need to be done to make sure after CHC technique
is implemented in the driving simulator system maintains as a real-time rendering
application with interactive frame rates and realism of it′s environment .

1.2 Problem Background

Visibility algorithms in computer graphics started with the introduction of
visibility line and surfaces method in a synthesized images of a 3D scene (Bittner
and Wonka, 2003; Cohen-Or et al., 2003). Roberts (1963) claimed himself as the
first person introduced solution to determine hidden line segments. Many different
types of visibility algorithms emerged together with the development of computer
graphics. Based on survey done by Bittner and Wonka (2003), visibility algorithms
classified within several problem domains. This research focuses on domain called
visibility culling. Visibility culling started with introduction of two algorithms: back-
face culling and view frustum culling (Foley et al., 1990).

Most research in visibility culling later focus on occlusion culling algorithm
because the complexity of the algorithm involved interrelationship between
polygons (Cohen-Or et al., 2003). A survey on occlusion culling trends and recent



4

developments is done by Cohen-Or et al. (2003) provided researcher a taxonomy on
visibility culling. Bittner and Wonka (2003) later provided a better survey on visibility
culling where two problems domains are involved in most visibility culling. There are
visibility from point and visibility from a region (Bittner and Wonka, 2003; Mattausch,
2010). The visibility from a region worked corresponds to preprocessed visibility is
applied offline in preprocessing stage and potential visibility set (PVS) is computed
(Aila and Miettinen, 2004; Cohen-Or et al., 1998; Durand et al., 2000; Koltun et al.,
2000; Lloyd and Egbert, 2002; Schaufler et al., 2000; Teller, 1992; Wonka et al., 2000).
The visibility from point corresponds to online culling is applied online that requires
no preprocessing for each particular viewpoint and work also for arbitrary environment
(Bittner et al., 1998; Greene et al., 1993; Hudson et al., 1997; Klosowski and Silva,
2001; Wonka and Schmalstieg, 1999; Zhang et al., 1997). Most online occlusion
culling algorithms are image based where any objects draw to screen depend on its
contribution to the current frame.

The evolution of occlusion culling has seen on those who preform large
amount of preprocessing and those who perform occlusion culling online with less
dependable to preprocessing (Staffans, 2006). Visibility preprocessing provides simple
and powerful solution for certain type of scenarios such as indoor and city scenes
which contain static objects. In environment such as outdoor or dynamic scenes and
complex scenarios like massive foliage scenes, the visibility preprocessing is suffered
from visibility errors and no specific solution available that provide satisfactory result
in term of robustness and speed (Mattausch, 2010). Theoretically, online occlusion
culling attracted by developer because it can handle dynamic scenes. Mostly online
occlusion culling are notorious hardware unfriendly and rarely used in existing game
designs (Staffans, 2006).

Hierarchical Z-buffer (HZB) and Hierarchical Occlusion Maps (HOM) is
early online occlusion culling conceptually introduced by researchers that big influence
on occlusion culling research (Moller et al., 2008). The HZB is worked by Greene
et al. (1993) using two hierarchical data structure and temporal coherence, octree for
object space and z-pyramid for image space. HZB is suitable to be implemented in
dynamic environment but current hardware does not support enough for reading of Z-
buffer and updating of the Z-pyramid in real-time. Zhang et al. (1997) introduced
HOM, in this algorithm the scene is subdivided using bounding volume hierarchy
in preprocessing stage and require preselection of occluders which not suitable to



5

be applied in dynamic environment. The differences between HZB and HOM are
division between occluders from occludees and add occlusion tests into depth test and
overlap test. Zhang et al. (1997) utilized hardware texturing to propose HOM. Main
problem with HOM is not updated although an object is rendered and the algorithm
depend on selecting good occluder. Staffans (2006). dPVS is incremental occlusion
map (IOM) the provide solution to improve HOM by extracting the silhouettes of the
occluders already in objects space. The disadvantage of dPVS is added additional
computation to current algorithm. HOM with software renderer improved the original
and incremental HOM but occluder selection is still needed and in some cases the
virtual occlusion environment usually do by hand. Wonka and Schmalstieg (1999)
use occluder shadows for urban environments to perform occlusion culling.

OpenGL extension for occlusion queries firstly proposed by Bartz et al. (1999)
before it was realized in graphic hardware. The first OpenGL extension for occlusion
queries developed by Hewlett-Packard is HP occlusion test and initially implemented
in VISUALIZE fx graphics hardware (Scott et al., 1998). Two major limitation
in HP occlusion , the queried return only a binary visibility classification value to
indicate the visibility of geometry and only on queries is allowed at a time. Later,
NVIDIA company introduced their extension called NV occlusion query and then is
available as OpenGL standard extension known as ARB extension to be used in multi
platform. The NV query solved the main problem of HP test by allowing multiple
queries to be issued before asking their result and return number of visible pixel to
know how much of the queried geometry′s visibility.

Introduction of hardware occlusion queries received attention among
researchers and developers. Many algorithms started to use hardware occlusion
because of its simplicity. Klosowski and Silva (2001) used hardware occlusion
queries integrated with conservative visibility culling technique based on the
Prioritized-Layered Projection using HP occlusion test extension with two-pass
approach. Hillesland et al. (2002) used NV occlusion query in their framework can
be called hierarchical stop and wait method. Problem with hierarchical stop and
wait method lead to decrease the overall application performance cause by CPU stall
and GPU starvation and overhead of occlusion queries (Wimmer and Bittner, 2005).
Hardware occlusion queries then start to exploit TC concept to reduce number of
queries in OpenSG framework in serial fashion (Staneker et al., 2004). Implementation
of TC in hardware occlusion queries later was improved by (Bittner et al., 2004;



6

Wimmer and Bittner, 2005). The algorithm is called CHC. CHC is an algorithm set
as benchmark among researcher in hardware occlusion queries problem because the
algorithm is started feasible to be used in real-time rendering. Guthe et al. (2006)
recognized problems in CHC and successfully introduced a technique called Near
Optimal Hierarchical Culling (NOHC). NOHC help to reduce the number of queries
based on an intelligent numerical model of occlusion and a hardware calibration (Guthe
et al., 2006). Other researcher introduced asynchronous occlusion queries with
introduction of new concept called occupancy proportion to alleviate latency (Li et al.,
2008). Object occupancy proportion refers to the tightness of bounding box. Newest
research that improved on CHC algorithm is Coherent Hierachical Culling Revisited
(CHC++) by Bittner et al. (2009); Mattausch et al. (2008). CHC++ improves prior
technique efficiently by using of temporal coherent and spatial coherence of visibility.
Also, adaptive visibility prediction and query batching were introduced in CHC++
algorithm to improve previous algorithms. Another disadvantage of online occlusion
culling is that it is rarely used in real engine or games. One of latest games use
hardware occlusion culling in their engine is Alan Wake (Silvennoinen et al., 2011).
In this game, online occlusion culling involves combination between CHC and NOHC.

The potential used of online occlusion culling can be widespread in many type
of virtual reality application such as driving simulator. Driving simulator environment
provide a dynamic scenes where in this environment will contains moving and static
objects. Based on findings, several real-time rendering techniques were implemented
in car simulation. Occlusion horizon introduced for driving in urban scenery, in the
algorithm built in two and half dimension combined with level of detail (Downs
et al., 2001). In this algorithm, only applied to static object in the environment such
as building. Grundhfer et al. (2005) implemented level of detail based on occlusion
culling for dynamic scene of driving environment. The research only focus on efficient
level of detail technique for interactive scenes with arbitrary cars. Hardware occlusion
queries were implemented in this algorithm to perform occlusion culling without
considering the drawbacks of the queries. Based on previous research, hardware
occlusion queries rarely used to handle dynamic scene such as driving environment
in effectively. Implementation of hardware occlusion queries in real-time rendering
must consider characteristic of the scene, the driving simulator is suitable application
to implement the hardware occlusion queries.



7

1.3 Problem Statement

In real-time rendering, at least four goals to be achieved (Moller et al., 2008).
The goals are more frame rates, higher resolution and sampling rates, more realistic
materials and lighting and increased complexity. 60-85 fps is a speed considered as
enough frame rate (Moller et al., 2008). Fast frame rate able to reduce the latency
when interact with a scene. High resolution means that capability of display for
example LCD TV with 1360×768 pixels can have the same achievement by graphic
program in full HD TV with resolution of 1920×1080 pixels. Next, more realistic
material and lighting can be achieved which means that it takes more computing
power to produce the interplay of light and surface. Lastly, the complexity of virtual
environment does not have limit as long as the capability of hardware is able to
manage that complexity. There is no limit to decide the end of complexity. In hope
to produce more realistic real-world representation, three dimensional (3D) objects
are transformed into models having the illusion of depth for display onto a two-
dimensional computer screen. This is accomplished by using a number of polygons
to represent a three-dimensional object. The more detail and large for a 3D object, the
more computation cost is needed to be rendered by one application.

Online and offline visibility culling have clear advantages and disadvan-
tages (Bittner et al., 2004; Bittner and Wonka, 2003). Based work done by Bittner
et al. (2004), offline occlusion culling suffers from four major problems. The online
solution will to help solve the problem but with additional computations for each
frame. He added that to make this extra computation efficient depending on the number
of assumption about the scene structure and it′s characteristics. Emergence of hardware
occlusion queries faces two main problems related to naive usage of it. Overhead
caused by number of issued queries and delay due to latency of the query result caused
rarely used in commercial games engines(Malhotra, 2002). According to Gomez et al.

(2011), online occlusion culling faces three problems; too slow due to latency of query
result, too conservative meaning not enough objects culled and approximate visibility
tend lead to produce popping effects.

Large and complex virtual environment needs better scene management
because bigger scene increase the number of polygon to be rendered. Increased of
polygon number will increase computational cost and will decrease the number of



8

fps. Varying complexity of virtual system causes the algorithm to react to achieve
constant frame rates or interactive frame rates. Constant frame rates in highly varying
complexity are achieved by upper bound of the rendering time (Wimmer and Wonka,
2003). In driving simulator, interactive frame rate is very critical to maintain the
interactivity between user and application (Gruening et al., 1998). Complex of a scene
in driving simulator must be managed to maintain constant frame rate to make response
time between user and the application not interrupted and at the same time maintain
the realism of visual information. Realism images of rendering 3D environment
is important to make sure visual information same with the real world and is very
importance for driving scene.

Implementing hierarchical hardware based occlusion query in driving simulator
must follow the scene structure and it′s characteristics. The problem faced by
hierarchical hardware based occlusion query is that there are no automatic parameters
adaptation during walkthrough as the scene requires (Mattausch et al., 2008). The
suitable automatic parameters adaptation are selected to help in maintaining the
computation cost within time budgeted for one frame. An adaptive algorithm will
be introduced by using these suitable parameters in maintaining image realism and
interactivity frame rates.

1.4 Aims

The aims of this research is to introduce an adaptive algorithm for coherent
hierarchical culling algorithm to be implemented in UTM car driving simulator.



9

1.5 Objectives

In order to arrive to this goal, there are objectives that need to be achieved,
which are:

(i) To study and integrate Coherent Hierarchical Culling algorithm with existing
driving simulator system.

(ii) To produce an adaptive algorithm for Coherent Hierarchical Culling
algorithm based on speed of car movement and varying visibility thresholds
value.

(iii) To evaluate the proposed adaptive algorithms for Coherent Hierarchical
Culling algorithm for dynamics objects in driving simulator system.

1.6 Research Justification

This research is attempting to improve previous acceleration algorithm to allow
it be used in dynamic scene in real-time rendering system. The natural scene of
driving simulator itself which consists of large scenes and arbitrary objects made it
suitable to implemented with online occlusion culling. Integration of online occlusion
culling to driving simulator system requires proper solution to make sure the rendering
performance and realism of the system are maintained. This integration is trying
prove the improvement on online occlusion culling algorithm must figure out the
suitability of the scene and application before efficiently and useful to be used in real-
time rendering application. The research is aim to integrate online occlusion culling
algorithm to manage dynamic objects in driving simulator system by introducing
an adaptive algorithm. This adaptive algorithm is introduced in this research to
provide solution for hardware based occlusion culling algorithms to maintain quality
of rendering and interactivity of an application by adding new requirements based
on flexibility and scalability of the scene. The research will encourage the usage of
hardware based occlusion culling to be implemented in modern engine.



10

1.7 Scope and Research Limitations

The research focuses on managing arbitrary scene in the driving simulator.
Several number of scopes and research limitations need to be considered. The system
will include a non-immersive driving simulator used in this research consist of 1 pc and
1 display. The system manages dynamic and random vehicles during daylight. It does
not include the building, tree, human character and other related objects. The system
only uses car as dynamic and random vehicles that consist of two types of car in large
outdoor scene. Two types of road used in the system as follow; straight road and hilly
and curvy road. 3DS file format is used for the 3D objects. 60 fps is targeted frame
rate or can be called interactive frame rate for the driving simulator application.

1.8 Thesis Organization

This thesis is divided into six chapters. Each chapter has contributed to show
the flow of the research from start till the end. Chapter 1 starts with introduction of the
research, then follows by elaboration of the background of the research and statement
of the research problem that formulate to the idea of the research. The aims, objectives,
scopes and justification for the research are explained in this chapter. Following is a
brief overview of the chapters ahead.

Chapter 2 reviews related works that were previously done by other researcher.
From previous research, the idea of research can be analyzed and strengthen to
make sure this is researchable and contribute to the knowledge. This chapter starts
with introduction to graphic pipeline, hierarchical data structure, visibility culling
techniques and previous close and related research.

Chapter 3 presents the methodology in performing this research. Methodology
is important to make sure all objectives set by the researcher are achieved to fulfill the
aims of the research. Every steps involved in the research is discussed.



11

Chapter 4 discusses on the implementation of coherent hierarchical culling
algorithm with proposed adaptive algorithm solution. In this chapter clearer
explanation on how the development of an algorithm is performed. Step by step
process of the proposed with more detail explanation compared to what has been
discussed in Chapter 3.

Chapter 5 is testing of the proposed algorithm and analyse the result based
on comparison with previous implementation and original CHC. In this chapter,
evaluations are based on two characteristics; rendering performance and realism. The
result then discussed before proceeding to the last chapter.

Chapter 6 is the last chapter which summarize all works done in the research
and re-stating the contributions that have been made through the research. This
chapter provides conclusion on what supposedly the directions for future research to
be referred by other researcher.



REFERENCES

Adams, A. (2005). Trucking: Tractor-Trailer Driver Handbook/Workbook. Thomson
Delmar Learning.

Aila, T. and Miettinen, V. (2004). dPVS: An Occlusion Culling System for Massive
Dynamic Environments. Computer Graphics and Applications, IEEE. 24(2), 86–
97.

Allen, R. W., Rosenthal, T. J. and Cook, M. L. (2010). A Short History of Driving
Simulator. In Handbook of Driving Simulation for Engineering, Medicine, and

Psychology. Taylor and Francis Group.

Assarsson, U. and Moller, T. A. (1999). Optimized View Frustum Culling Algorithms.
Technical report. Department of Computer Engineering, Chalmers University of
Technology.

Assarsson, U. and Moller, T. A. (2000). Optimized View Frustum Algorithms for
Bounding Boxes. Journal of Graphics Tools. 5, 9–22.

Bartz, D., Meibner, M. and Httner, T. (1999). OpenGL-Assisted Occlusion Culling for
Large Polygonal Models. In Computers and Graphics. 667–679.

Bittner, J., Havran, V. and Slavik, P. (1998). Hierarchical Visibility Culling with
Occlusion Trees. In Proceedings of the Computer Graphics International 1998.
IEEE Computer Society, 207.

Bittner, J., Mattausch, O. and Silvennoinen, A. (2011). Shadow Caster Culling for
Efficient Shadow Mapping. In Proceedings of the ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games 2011. ACM.

Bittner, J., Mattausch, O. and Wimmer, M. (2009). Game-Engine-Friendly Occlusion
Culling. In Engel, W. (Ed.) SHADERX7: Advanced Rendering Techniques. (pp.
637–653). vol. 7. Charles River Media.

Bittner, J., Wimmer, M., Piringer, H. and Purgathofer, W. (2004). Coherent
Hierarchical Culling: Hardware Occlusion Queries Made Useful. Computer

Graphics Forum. 23(3), 615–624.



118

Bittner, J. and Wonka, P. (2003). Visibility in Computer Graphics. Environment and

Planning B: Planning and Design. 30(5), 729–755.

Blana, E. (1996). A Survey of Driving Research Simulators Around the World.
Technical report.

Bormann, K. (2000). An Adaptive Occlusion Culling Algorithm for Use in Large VEs.
In Proceedings of the IEEE Virtual Reality 2000 Conference. IEEE Computer
Society, 290.

Burns, A. and Wellings, A. (1997). Real-Time Systems and Programming Languages.
Addison Wesley.

Cheng, H. (2011). Autonomous Intelligent Vehicles: Theory, Algorithms, and

Implementation. Springer.

Clark, J. (1976). Hierarchical Geometric Models for Visible Surface Algorithms.
Communications of the ACM. 19(10), 547–554.

Cohen-Or, D., Chrysanthou, Y. L., Silva, C. T. and Durand, F. (2003). A Survey of
Visibility for Walkthrough Applications. Visualization and Computer Graphics,

IEEE Transactions on. 9(3), 412–431.

Cohen-Or, D., Fibich, G., Halperin, D. and Zadicario, E. (1998). Conservative
Visibility and Strong Occlusion for Viewspace Partitioning of Densely Occluded
Scenes. Computer Graphics Forum. 17(3), 243–253.

Coorg, S. and Teller, S. (1996). Temporally Coherent Conservative Visibility. In
Proceeding of the Twelfth Annual ACM Symposium on Computational Geometry.
78–87.

Cremer, J., Kearney, J. and Papelis, Y. (1996). Driving Simulation: Challenges for VR
Technology. Computer Graphics and Applications, IEEE. 16(5), 16–20.

Downs, L., Mller, T. and Sequin, C. H. (2001). Occlusion Horizons for Driving
through Urban Scenery. In Proceedings of the 2001 Symposium on Interactive

3D graphics. ACM, 121–124.

Durand, F., Drettakis, G., Thollot, J. and Puech, C. (2000). Conservative Visibility
Preprocessing using Extended Projections. In Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive Techniques. ACM
Press/Addison-Wesley Publishing Co., 239–248.

Ferwerda, J. A. (2003). Three varieties of realism in computer graphics, 290–297.
10.1117/12.473899.

Fisher, D. L., Caird, J. K., Rizzo, M. and Lee, J. D. (2010). Handbook of Driving
Simulation : An Interview. In Handbook of Driving Simulation for Engineering,



119

Medicine, and Psychology. Taylor and Francis Group.

Foley, J., Dam, A. V., Feiner, S. and Hughes, J. (1990). Computer Graphics: Principles

and Practice, Second Edition. Addison-Wesley Professional.

Fuchs, H., Kedem, Z. M. and Naylor, B. F. (1980). On Visible Surface Generation by
a Priori Tree Structures. SIGGRAPH Computer Graphics. 14(3), 124–133.

Gettman, D. and Head, L. (2003). Surrogate Safety Measures from Traffic Simulation
Models. Transportation Research Record: Journal of the Transportation

Research Board. 1840(-1), 104–115.

Gilbert, D. A. (1994). Rendering Systems for Virtual Reality Applications. Ph.D.
Thesis. University of Mancester.

Gobbetti, E., Kasik, D. and Yoon, S.-e. (2008). Technical Strategies for Massive Model
Visualization. In Proceedings of the 2008 ACM Symposium on Solid and Physical

Modeling. ACM, 405–415.

Gomez, D., Poulin, P. and Paulin, M. (2011). Occlusion Tiling. In Proceedings of

Graphics Interface 2011. Canadian Human-Computer Communications Society,
71–78.

Govindaraju, N., Sud, A., Yoon, S.-E. and Manocha, D. (2003). Interactive Visibility
Culling in Complex Environments using Occlusion-Switches. In Proceedings of

the 2003 symposium on Interactive 3D Graphics. ACM, 103–112.

Greene, N., Kass, M. and Miller, G. (1993). Hierarchical Z-buffer Visibility.
In Proceedings of the 20th Annual Conference on Computer Graphics and

Interactive Techniques. ACM, 231–238.

Gruening, J., Bernard, J., Clover, C. and Hoffmeister, K. (1998). Driving Simulation.
In SAE Technical Paper 980223.

Grundhfer, A., Brombach, B., Scheibe, R. and Frhlich, B. (2005). Level of Detail based
Occlusion Culling for Dynamic Scenes. In Proceedings of the 3rd International

Conference on Computer graphics and Interactive Techniques in Australasia and

South East Asia. ACM, 37–45.

Guthe, M., Balazs, A. and Klein, R. (2006). Near Optimal Hierarchical Culling:
Performance Driven Use of Hardware Occlusion Queries. In Heidrich, T. A.-
M. and Wolfgang (Eds.) Proceedings of Eurographics Symposium on Rendering

2006. The Eurographics Association, 207–214.

Havran, V. (2000). Heuristic Ray Shooting Algorithms. Ph.D. Thesis. Czech Technical
University.

Hillesland, K., Salamon, B., Lastra, A. and Manocha, D. (2002). Fast and Simple



120

Occlusion Culling using Hardware-Based Depth Queries. Technical report.
University of North Carolina.

Hudson, T. C., Manocha, D., Cohen, J. D., Lin, M. C., Hoff III, K. E. and Zhang, H.
(1997). Accelerated Occlusion Culling using Shadow Frusta. In Proceedings of

the thirteenth annual symposium on Computational geometry. ACM, 1–10.

James, G., James, B., Chris, C. and Kurt, H. (1998). Driving Simulation. In
SAE Special Publications, v 1361, Feb, 1998, 980223, Vehicle Dynamics and

Simulation. (pp. 49–59). CiteSeerX - Scientific Literature Digital Library and
Search Engine [http://citeseerx.ist.psu.edu/oai2] (United States) ER.

Jia, L., Han, S., Wang, L. and Liu, H. (2007). Development and Realization of a Street
Driving Simulator for Virtual Tour. In Proceedings of the 40th Annual Simulation

Symposium. IEEE Computer Society, 133–136.

Kang, H. S., Abdul Jalil, M. K. and Mailah, M. (2004). A PC-based Driving Simulator
using Virtual Reality Technology. In Proceedings of the 2004 ACM SIGGRAPH

International Conference on Virtual Reality Continuum and Its Applications in

Industry. ACM, 273–277.

Klosowski, J. T. and Silva, C. T. (2001). Efficient Conservative Visibility Culling
using the Prioritized-Layered Projection Algorithm. IEEE Transactions on

Visualization and Computer Graphics. 7(4), 365–379.

Koltun, V., Chrysanthou, Y. and Or, D. C. (2000). Virtual Occluders: An Efficient
Intermediate PVS Representation. In Proceedings of the Eurographics Workshop

on Rendering Techniques 2000. Springer, 59–70.

Kovalcik, V. and Sochor, J. (2005). Occlusion Culling with Statistically Optimized
Occlusion Queries. In Proceedings of Winter School of Computer Graphics (Short

Papers). 109–112.

Kumar, S., Manocha, D., Garrett, W. and Lin, M. (1996). Hierarchical Back-Face
Computation. In Proceedings of the Eurographics Workshop on Rendering

Techniques ’96. Springer-Verlag, 235–ff.

Lebram, M., Engstrom, H. and Gustavsso, H. (2006). A Driving Simulator based on
Video Game Technology. In In Proceedings of SIGRAD 2006.

Lengyel, E. (2003). Mathematics for 3D Game Programming and Computer Graphics,

Second Edition. Charles River Media, Inc.

Li, B., Wang, C. and Li, L. (2008). Efficient Occlusion Culling with Occupancy
Proportion. In International Conference on Computer Science and Software

Engineering, 2008, vol. 2. 1058–1061.



121

Liao, D. (2006). A Real-time High-fidelity Driving Simulator System Based on
PC Clusters. In Proceedings of the 11th IEEE International Conference on

Engineering of Complex Computer Systems. IEEE Computer Society, 209–216.

Lloyd, B. and Egbert, P. (2002). Horizon Occlusion Culling for Real-Time Rendering
of Hierarchical Terrains. In Proceedings of the conference on Visualization ’02.
VIS ’02. 403–409.

Luebke, D., Watson, B., Cohen, J. D., Reddy, M. and Varshney, A. (2002). Level of

Detail for 3D Graphics. Elsevier Science Inc.

Malhotra, P. (2002). Issues involved in Real-Time Rendering of Virtual Environments.
Master’s thesis. College of Architecture and Urban Studies.

Mattausch, O. (2010). Visibility Computations for Real-Time Rendering in General 3D

Environments. Dissertation. Vienna University of Technology.

Mattausch, O., Bittner, J. and Wimmer, M. (2008). CHC++: Coherent Hierarchical
Culling Revisited. Computer Graphics Forum (Proceedings Eurographics 2008).
27(2), 221–230.

Moller, T. A., Haines, E. and Hoffman, N. (2008). Real-Time Rendering 3rd Edition.
A. K. Peters, Ltd.

Roberts, L. G. (1963). Machine Perception of Three-Dimensional Solids. Outstanding
Dissertations in the Computer Sciences. Garland Publishing, New York.

Saona-Vazquez, C., Navazo, I. and Brunet, P. (1999). The Visibility Octree. A Data
Structure for 3D Navigation. Computers and Graphics. 23(5), 635–643.

Schaufler, G., Dorsey, J., Decoret, X. and Sillion, F. X. (2000). Conservative
Volumetric Visibility with Occluder Fusion. In Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive Techniques. ACM
Press/Addison-Wesley Publishing Co., 229–238.

Scherzer, D., Yang, L. and Mattausch, O. (2010). Exploiting Temporal Coherence in
Real-Time Rendering. In ACM SIGGRAPH ASIA 2010 Courses. ACM, 1–26.

Scherzer, D., Yang, L., Mattausch, O., Nehab, D., V. Sander, P., Wimmer, M. and
Eisemann, E. (2011). A Survey on Temporal Coherence Methods in Real-Time
Rendering. In State of the Art Reports Eurographics. Eurographics State of the
Art Report.

Scott, N. D., Olsen, D. M. and Gannet, E. W. (1998). An Overview of the Visualize fx
Graphics Accelerator Hardware. Hewlett Packard Journal, 28–34.

Sekulic, D. (2004). Efficient Occlusion Culling. In Pharr, M. and Fernando, R. (Eds.)
GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics.



122

Pearson Higher Education.

Silvennoinen, A., Soininen, T., Mki, M. and Tervo, O. (2011). Occlusion Culling in
Alan Wake. In ACM SIGGRAPH 2011 Talks. ACM, 1–1.

Slob, J. J. (2008). State-of-the-Art Driving Simulators, a Literature Survey. Technical
report. Eindhoven University of Technology.

Smith, R. (2006). Open Dynamics Engine V0.5 User Guide [Online]. Retrievable at
http://www.ode.org/ode-latest-userguide.html.

Staffans, J. (2006). Online Occlusion Culling. Ph.D. Thesis. Abo Akademi.

Staneker, D., Bartz, D. and Straer, W. (2004). Occlusion Culling in OpenSG PLUS.
Computers and Graphics. 28(1), 87–92.

Sun, C., Xie, F., Feng, X., Zhang, M. and Pan, Z. (2007). A Training Oriented Driving
Simulator. In Ma, L., Rauterberg, M. and Nakatsu, R. (Eds.) Entertainment

Computing ICEC 2007. (pp. 1–9). Lecture Notes in Computer Science, vol. 4740.
Springer Berlin / Heidelberg.

Sunar, M. S., Abdullah, M. Z. and Sembok, T. M. T. (2006a). Effective Range
Detection Approach for Ancient Malacca Virtual Walkthrough. The International

Journal of Virtual Reality. 5(4), 31–38.

Sunar, M. S., Azhar, M. A. M., Mokhtar, M. K. and Daman, D. (2009). Crowd
Rendering Optimization for Virtual Heritage System. The International Journal

of Virtual Reality. 8(3), 57–62.

Sunar, M. S., Sembok, T. M. T. and Zin, A. M. (2006b). Accelerating Virtual
Walkthrough with Visual Culling Techniques. In International Conference on

Computing and Informatics, 2006. 1–5.

Sunar, M. S., Zin, A. M. and Sembok, T. M. T. (2006c). Range Detection Approach
in Interactive Virtual Heritage Walkthrough. In Proceedings of the 16th

International Conference on Artificial Reality and Telexistence-Workshops. IEEE
Computer Society, 599–602.

Sung, L. W., Ha, K. J. and Hee, C. J. (1998). A Driving Simulator as a Virtual
Reality Tool. In Proceedings in IEEE International Conference on Robotics and

Automation, vol. 1. 71–76.

Teller, S. J. (1992). Visibility Computations in Densely Occluded Polyhedral

Environments. Technical report. University of California.

Vehicles, F. D. o. H. S. and Motor (2006). Florida CDL Handbook 2006. Florida
Department of Highway Safety and Motor Vehicles.



123

Whyte, J. (2002). Virtual Reality and the Built Environment. Architectural Press.

Wimmer, M. (2001). Representing and Rendering Distant Objects for Real-Time

Visualization. Ph.D. Thesis. Vienna University of Technology.

Wimmer, M. and Bittner, J. (2005). Hardware Occlusion Queries Made Useful. In
Pharr, M. and Fernando, R. (Eds.) GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation. (pp. 91–108).
Addison-Wesley.

Wimmer, M. and Wonka, P. (2003). Rendering Time Estimation for Real-time
Rendering. In Proceedings of the 14th Eurographics Workshop on Rendering.
Eurographics Association, 118–129.

Wonka, P. and Schmalstieg, D. (1999). Occluder Shadows for Fast Walkthroughs of
Urban Environments. Computer Graphics Forum. 18(3), 51–60.

Wonka, P., Wimmer, M. and Schmalstieg, D. (2000). Visibility Preprocessing with
Occluder Fusion for Urban Walkthroughs. In Rendering Techniques 2000

(Proceedings Eurographics Workshop on Rendering). Springer-Verlag Wien New
York, 71–82.

Yoshimoto, K. and Suetomi, T. (2008). The History of Research and Development of
Driving Simulators in Japan. Journal of Mechanical Systems for Transportation

and Logistics. 1(2), 159–169.

Young, V. (2004). Programming a Multiplayer FPS in DirectX. Charles River Media.

Zamri, M. N. (2006). An Efficient Real-Time Terrain Data Organization and

Visualization Algorithm based on Enhanced Triangle-Based Level of Detail

Technique. Master’s thesis. Universiti Teknologi Malaysia.

Zerbst, S. (2004). 3D Game Engine Programming (Game Development Series).
Premier Press.

Zhang, H., Manocha, D., Hudson, T. and Hoff III, K. E. (1997). Visibility Culling using
Hierarchical Occlusion Maps. In Proceedings of the 24th Annual Conference

on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley
Publishing Co., 77–88.


	MohdKhalidMokhtarMFSKSM2013ABS
	MohdKhalidMokhtarMFSKSM2013TOC
	MohdKhalidMokhtarMFSKSM2013CHAP1
	MohdKhalidMokhtarMFSKSM2013REF



