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ABSTRACT 

 

 

Presently, the ease of field assembly offered by precast concrete systems is 

weighted against the larger numbers of connections that are required in precast 

concrete systems, which pose a problem. In this regard, grouted splice sleeve 

connections are gaining popularity. However, the existing splice sleeve connectors in 

the market are proprietary and patented by foreign companies resulting in the high 

cost of adaption, particularly in Malaysia. Over the last few years, the use of 

composite materials has become an increasingly popular method of repairing and 

strengthening ageing civil engineering structures. The primary cause of corrosion in 

steel joint connectors is exposure to sodium chloride that is present in marine 

environments or de-icing salts that are applied to bridge decks and parking structures. 

This research aims to use durable and non-corrosive FRP connections as alternatives 

to current steel precast connection methods. The development of an FRP connection 

component will benefit the precast industry, FRP manufacturers, contractors and 

owners. This research follows the method of grouted splice sleeve connectors. This 

new type of connector is an alternative method for connecting precast concrete 

structural members with non-metallic FRP components to provide the continuity 

between two separate steel bars in precast structures. Durable and non-corrosive FRP 

connection is efficient and economical alternatives to current steel precast connection 

methods. Since there is no need to modify the internal surface of the sleeve and to 

use threaded connection between reinforcement bar and sleeve, the newly developed 

FRP connector can be easily produced as a single unit compared to the conventional 

grouted pipe connectors. All it requires is a tapered FRP sleeve to connect 

reinforcement bars. This project summarizes the experimental program and also the 

performance of the newly developed FRP splice connector under axial tension. The 

influence of several parameters of the proposed connector is identified. These 

parameters include the incorporation of the tapered FRP sleeve, internal diameter of 

the mid-length of the FRP connector, and number of wrapping FRP layers. The 
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experiments examined the tensile strength as well as the failure mode of the 

connectors. The results of this research prove successfully that the invention of a 

non-metallic FRP connector used for precast concrete construction is possible by 

using FRP material as the conventional steel pipes. By using the newly developed 

FRP connectors in the precast construction industry, the service life of the 

connections increase due to the FRP material properties and elimination of the steel 

components in structures which reduce the life cost of the structures. 
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ABSTRAK 

 

 

 

 

Saat ini, kemudahan pemasangan lapangan yang ditawarkan oleh sistem 

konkritpracetak adalah tertimbang terhadap sejumlah besar Sambungan yang 

diperlukandalam sistem konkrit pracetak, yang menimbulkan masalah. Dalam hal ini, 

grouting sambungan lengan sambatan yang mendapatkan populariti. Namun, 

penyambung lengan yang ada sambatan di pasaran adalah proprietary dandipatenkan 

oleh syarikat asing yang menyebabkan tingginya biaya adaptasi, terutamadi 

Malaysia. Selama beberapa tahun terakhir, penggunaan material komposit telah 

menjadi kaedahsemakin popular memperbaiki dan menguatkan struktur awam 

penuaan. Punca utama dari korosi pada baja penyambung bersama adalah paparan 

natrium klorida yang ada dalam persekitaran laut atau de-icing garam yang 

diterapkan ke deck jambatan dan struktur parkir. Penyelidikan ini bertujuan untuk 

digunakan tahan lama dan non-mengkakis SambunganFRP sebagai alternatif untuk 

kaedah sambungan baja pracetak saat ini.pembangunan komponen Sambungan FRP 

akan menguntungkan industri pracetak, FRP pengilang, kontraktor dan pemilik. 

Penyelidikan ini mengikuti kaedah grouting penyambung lengan sambatan. Jenis 

baruini penyambung adalah sebuah kaedah alternatif untuk menyambung anggota 

strukturkonkrit pracetak dengan komponen FRP non-logam untuk memberikan 

kesinambunganantara dua batang baja berasingan dalam struktur pracetak. Durable 

dan bukan-mengkakis Sambungan FRP adalah alternatif yang cekap dan ekonomi 

untuk kaedah sambungan baja pracetak saat ini. Kerana tidak ada perlu mengubah 

permukaan dalaman lengan dan menggunakan sambungan threaded antara bar 

penguatan dan lengan, yang baru dibangunkanpenyambung FRP dihasilkan lebih 

mudah sebagai unit tunggal berbanding denganpenyambung konvensional paip 

grout.Yang diperlukan adalah lengan FRP meruncing berhubung Bar penguatan. 

Projek ini meringkaskan program percubaan dan juga prestasi penyambung FRP 
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barudibangunkan sambatan bawah voltan paksi. Pengaruh beberapa parameter dari 

penyambung yang dicadangkan dikenalpasti. Parameter ini meliputi penggabungan 

dari lengan FRP runcing, diameterpanjang-tengah penyambung FRP, dan jumlah 

lapisan pembungkus FRP. Percubaan menguji kekuatan tarik serta mod kegagalan 

penyambung. Keputusan kajian ini berjaya membuktikan bahawa penemuan 

penyambung FRPnon-logam digunakan untuk pembinaan konkrit pracetak ini 

dimungkinkan dengan menggunakan bahan FRP sebagai paip baja konvensional. 

Dengan menggunakan penyambung FRP baru dikembangkan dalam 

industripembinaan pracetak, kehidupan perkhidmatan sambungan meningkat akibat 

sifatmaterial FRP dan penghapusan komponen baja dalam struktur yang 

mengurangkankos hidup dari struktur. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1   Introduction 

 

 

A System which has been prepared, cast, and cured in a location which is not 

its final destination is called precast systems. The most important difference between 

precast systems and conventional methods (cast in situ) is its response to the external 

and internal loads, because in precast systems a member has a finite size and should 

be jointed to the other elements to complete the structure. 

 

 

 FRP materials have been used in building construction for some 40 years. 

Initially introduced in the form of translucent corrugated sheeting intended primarily 

as roof lighting, FRP has since achieved a wider use as an opaque cladding for 

building. The number of designs in which FRP fulfils a structural or semi-structural 

role is increasing, but the rate of increase will be constrained unless the material can 

be used efficiently. This will only come about with the availability of accurate design 

data relating to strength properties (short-term and long-term) and durability. 

 

 



2 

 

  In this experimental research, tapered GFRP sleeves are used instead of 

conventional steel sleeves. Compared to the conventional steel sleeves, FRP 

materials are more advantageous. It is stronger than the steel, it weighs 3.5-4 times 

less than the conventional steel sleeves, and it has the high modulus of elasticity 

when the relative extension coefficient is low. Besides it has strong durability as 

respects to stress loads. FRP component doesn't corrode, changes its mechanical 

properties rather weakly under the influence of acids, salts and alkalis. 

 

 

 Glass Fiber Reinforced Polymer (GFRP) is a composite material, which 

consists of polyester thermosetting resin as matrix and glass fibers as reinforcement. 

GFRP is mainly used a structural section and as structural rehabilitation and repair 

material. This study is conducted experimentally to investigate the engineering 

properties of GFRP material and its performance under axial tension load. Two 

different fiber orientations of GFRP fabrics selected for the test specimens. They 

were fabricated by a local manufacturer according to the commercial quality 

requirements. A total of twelve specimens including 3 control specimens were tested. 

The specimens were tested for mechanical performance. The results of this 

experimental study prove that the newly developed FRP splice sleeve is feasible. 

 

 

Precast constructions can be completed much faster than conventional 

methods such as cast-in-place concrete construction. Prefabricated pieces of precast 

system can be installed rapidly and reduces the construction time by speed of 

assembly. Because of these reasons it is cost effective which can save days on a 

project compared to the cast-in-place concrete. Precast concrete components are cast 

into structural members under factory conditions and they are controlled by off-site 

manufacturers which leads to a high quality. This fact enables precast concrete to 

have a high resistance to heat, water, and moisture. 

 

 

When volumetric changes caused by load shrinkage or thermal, precast 

elements try to move apart. Precast elements movement is resisted by friction 

between internal surfaces of precast elements. This fact emphasizes the importance 
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of the connections in precast concrete structures. Connections alone can dictate the 

type of precast frame, the limitations of that frame, and the erection progress (Elliot, 

2002). The purpose of designing connections is to transfer the forces between 

structural members and provide the stability of the structure by their strength and 

ductility. There are different ways to have a satisfactory connection, e.g. welding, 

bolting, or grouting. The used method should be simple and applicable on the site. 

 

 

As mentioned above, members in precast systems should be jointed to the 

other elements to complete the structure, so one of the possible problems in these 

systems is the structural continuity. There are two different types of connectors: 

conventional method or lapping reinforcement bar and mechanical connectors. 

 

 

Grout filled splices connection is a form of mechanical connector which have 

been used to connect precast members. During the fabrication, sleeves are inserted 

on one side of the connected member. Reinforcing bars received from the other side. 

In the next step, projecting bars are inserted into the sleeves to fit two sides of the 

members. Then, the space between the bars and sleeves is filled with non-shrink 

grout. Figures 1.1 and 1.2 give examples of common grout splice sleeve connections. 

By having a good installation of the connection, the sleeves can withstand applied 

forces and they can develp the full strength of the bars to have a monolithic behavior 

as cast in situ concrete. 

 

 

Figure 1.1: Lenton Interlok 
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Figure 1.2: NMB U-X Splice Sleeve 

 

 

 

 

1.2  Problem Statement 

 

 

The structural behavior of precast elements may differ substantially from that 

of similar members that are monolithically cast in place. The major difference is the 

nature of connections. Connections are designed to transmit forces due to creep, 

temperature change, shrinkage, and elastic deformation. Details of precast concrete 

connections are especially important to ensure equivalent behavior of a 

conventionally designed, cast-in-place, monolithic concrete structure (ACI 

Committee 550R-96). This continuity in cast-in-place systems can be achieved by 

providing lapped bars to have a monolithic system. Components in precast concrete 

systems are prefabricated, so lapping length may not be appropriate for precast 

concrete systems, because it needs to extend for significant length. Therefore several 

new methods have been invented to prevent this. 

 

 

The sleeve connectors available on the market are proprietary products and 

little information has been published about the mechanism of the connection system. 

Also, they could only be purchased from certain companies which belong to foreign 
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countries, therefore designing a new type of sleeve connector which could be cost 

effective and simple to produce is necessary. 

 

 

In order to design a new type of sleeve connector, it is necessary to 

understand the bond mechanism and factors that might affect the bond strength of 

grouted sleeve connector. The effectiveness of the splice sleeve connector largely 

depends on the bond strength between the grout and reinforcing bar. 

 

 

 

 

1.3   Objectives 

 

 

The objectives of the current research presented are: 

 

1. To study the feasibility of the new grouted splice connector 

2. To study the effect of inclination angle (internal diameter at the mid-length) 

of tapered FRP sleeve 

3. To investigate the bond mechanism of the new connector 

4. To study the behavior and failure mode of grouted splice connector subjected 

to axial tension 

 

 

 

 

1.4   Scope of Research 

 

 

The scope of the current research program includes testing a new type of FRP 

grouted splice connector that was developed as parts of this research. Several 

specimens of the new connector were prepared and tested under axial tension load 

only to carry out the objectives of this study. 
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