
47

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

A FASTER EXTERNAL SORTING ALGORITHM USING NO ADDITIONAL DISK
SPACE

Md. Rafiqul Islam+, Mohd. Noor Md. Sap++, Md. Sumon Sarker+, Sk. Razibul Islam+

 +Computer Science and Engineering Discipline, Khulna University, Khulna-9208, Bangladesh.
++Faculty of Computer Science and Information System, University of Technology Malaysia, Skudai,

Johor Bahru, Malaysia
dmri1978@yahoo.com, mohdnoor@fsksm.utm.my, sumonsrkr@yahoo.com,

optimist_2195@yahoo.com

Abstract

The effective performance of the external sorting is analyzed in terms of both time and I/O

complexities. This paper is concerned with a more efficient external sorting algorithm, where

both the time and I/O (read and write) complexities have been reduced. The proposed method

is a hybrid technique that uses quick sort and merge sort in two distinct phases. Both the time

and I/O complexities of the proposed algorithm are analyzed here and compared with the

complexities of the existing similar algorithms. The proposed algorithm uses special in-place

merging technique, which creates no extra backup file for manipulating huge records. For

this, the algorithm saves huge disk space, which is needed to hold the large file. This also

reduces time complexity and makes the algorithm faster.

Keywords: complexity, external sorting, in-place merging, quick sort, runs.

1. INTRODUCTION

Sorting means to arrange records or data in an ascending or descending order. But when the

size of the records become so much larger than the internal memory can hold at a time, then

the situation arise to use external sorting. It is quite different from internal sorting, even

though the problem in both cases is to sort a given file into increasing or decreasing order.

The most common external sorting algorithm still uses the merge sort as described by Knuth

[1]. In balanced two-way merge, runs (sorted records which can fit into the internal memory)

are distributed over two external files and another two external files are used to hold the

merged runs of the previous external files. After each merge the length of runs becomes

double. When all the runs are merged into a single run, the process stops. The key drawback

of this process is that it requires extra disk space. Dufrene and Lin [2] and M. R. Islam et al.

[3] proposed their algorithms in which no external file is needed; only the original file is used.

M. R. Islam et al. [4][5] proposed an algorithm that uses no extra disk space and faster than

both the algorithms proposed by Dufrene and Lin [2] and M. R. Islam et al. [3]. Here we have

proposed an efficient external sorting algorithm with no additional disk space based on the

algorithms proposed by Dufrene and Lin [2], M. R. Islam et al. [4] and M. R. Islam et al.

48

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

[3][6]. The proposed algorithm will reduce both the time and I/O complexities of the

algorithm proposed by M. R. Islam et al. [4][7].

2. ALGORITHM REVIEW

The proposed algorithm is based on the algorithms proposed by Dufrene and Lin [2], M. R.

Islam et al. [4] and M. R. Islam et al. [3][7]. Among these algorithms, the overall

performance of M. R. Islam et al. [4] is better than others. So, we will only review M. R.

Islam et al. [4] algorithm in the next subsection.

2.1 A New External Sorting Algorithm with No Additional Disk Space with Special In-

place Merging Technique

This algorithm proposed by M. R. Islam et al. [4], which works in two phases. In the first

phase the algorithm works same as Dufrene and Lin’s [2] algorithm with the only difference

that at the last iteration of first phase, lower half of main memory is written to the position of

Block_1 of the external file keeping Block_2 in the upper half of main memory. In the second

phase, the records of Block_S are read into lower half of main memory. Then the records of

lower and upper half of memory are merged using special In-place merging technique which

requires no extra space. After sorting in the memory using In-place merging, records of the

upper half of memory are written to Block_S and records of Block_S-1 are read into upper

half of main memory. When the last block Block_3 has been processed, the lower half of

main memory contains lowest sorted data among Block_2 to Block_S. Then the records of

lower half of memory are written in the position of Block_2. This process continues until

Block_S-1 and Block_S are processed. The I/O complexity of the algorithm is less than that

of algorithm proposed by M. R. Islam et al. [3].

3. A FASTER EXTERNAL SORTING ALGORITHM USING NO ADDITIONAL DISK SPACE

The proposed algorithm works in several phases. In the first phase, the external file is divided

into equal sized blocks, where the size of each block is approximately equal to the available

main memory (RAM) of the computer. If the size of the available internal memory is M then

the size of each block is M and if the size of external file is N then the number of block, S =

N/M. Block_1 is read into memory. Then the records of the main memory are sorted using

quick sort and again written to Block_1. The process continues until the last block, Block_S,

has been processed. After this the proposed algorithm switches to its next phase.

Each sorted block is divided into two sub-blocks, B_1 and B_2. The sub block B_1 of

Block_1 and sub block B_1 of Block_2 are read into the lower half and upper half of the

memory array respectively. Then the records of the lower half and the upper half of the main

49

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

memory, which are individually sorted are merged using special In-place merging technique

[4]. After sorting, the records of the upper half of the main memory are written to B_1 of

Block_2 and the records of the sub block B_1 of Block_3 are read into the upper half of the

main memory. Then the records of the main memory are again merged using special In-place

merging technique and the records of the upper half of the main memory are written in the

position of B_1 of Block_3 and read the records of sub block B_1 of Block_4 to the upper

half of the main memory. Repeat this process until the records of sub block B_1 of Block_S

are read into the upper half of the main memory and processed. Now the lower half of the

main memory contains the lowest sorted records among the records from Block_1 to Block_S

and is written in the position of B_1 of Block_1.

Block_1 Block_2 Block_S-1 Block_S

(a)

B_1 B_2 B_1 B_2 B_1 B_2 B_1 B_2

(b)

 B_2 B_1 B_2 B_1 B_2 B_1

(c)

 B_1 B_2 B_1 B_2 B_2 B_1 B_2

(d)
Figure 1. External file after (a) applying quick sort (b) splitting each block into sub blocks,

(c) first iteration (d) renaming the blocks and sub blocks except first and last sub block.

Now sub block B_2 of Block_S and sub block B_2 of Block_S-1 are read into the upper and

lower half of the memory array respectively. Then the records of the lower half and upper half

of the main memory are merged using special In-place merging technique. After merging, the

records of the lower half of the main memory are written to B_2 of Block_S-1 and the records

of the sub block B_2 of Block_S-2 are read into the lower half of the main memory. Then the

records of the main memory are again merged using special In-place merging technique and

External File

Block_1 Block_2 Block_S

Sub Block

Block_1 Block_2 Block_S

Lowest Sorted Records Highest Sorted Records

Block_1 Block_2 Block_S

Sorted Records Sorted Records Sorted Records Sorted Records

50

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

the records of the lower half of the main memory are written in the position of B_2 of

Block_S-2 and read the records of sub block B_2 of Block_S-3 to the lower half of main

memory. Repeat this process until the records of the sub block B_2 of Block_1 are read into

the lower half of the main memory and processed. Now the upper half of the main memory

contains the highest sorted records among the records from Block_1 to Block_S and is written

in the position of B_2 of Block_S.

At this point sub block B_1 of Block_1 and sub block B_2 of Block_S contains the lowest

and highest sorted records respectively. Now, read B_2 of Block_1 and B_1 of Block_2 in the

main memory and after merging, write lower and upper half at the position of B_2 of Block_1

and B_1 of Block_2 respectively. Now rename B_2 of Block_1 as B_1 and B_1 of Block_2

as B_2 and let both B_1 and B_2 are under Block_1. Similarly merge B_2 of Block_2 and

B_1 of Block_3 and after renaming, let they are under Block_2. Repeat this technique until

B_1 of Block_S has been processed. Let the last new Block be Block_S. Then apply the

above procedure for the new blocks, Block_1 to Block_S, to get the next lowest and highest

sorted records.

After each iteration the size of the external file is decreased by one sub block. Completing all

iterations we get the entire file sorted. Algorithm 3.1 in Figure 2 brings out the whole

procedure.

Figure 2. External Sorting Algorithm

1. Declare blocks in the external file to be equal of the available main memory. Let

the blocks be Block_1, Block_2, … , Block_(S-1), Block_S. set P = 1.

2. Read Block_P to the main memory.

3. Sort the data of the main memory using quick sort, write the sorted data to

Block_P and set P = P + 1, if P ≤ S read Block_P to the main memory and repeat

this step.

4. Divide each block into two sub blocks B_1 and B_2. Here each sub block equals

the half of the available main memory.

5. Read sub block B_1 of Block_1 to the lower half of the available main memory.

Set Q = 2.

6. Read sub block B_1 of Block_Q to the upper half of the available main memory.

7. Merge the data of the main memory using special In-place merging [3], write

upper half to B_1 of Block_Q and set Q = Q + 1, if Q ≤ S, read B_1 of Block_Q

to upper half of the available main memory and repeat this step.

8. Write the lower half to B_1 of Block_1.

51

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

Figure 2. External Sorting Algorithm (cont’.)

4. COMPLEXITIES ANALYSIS OF THE PROPOSED ALGORITHM

In this section we will deduce the disk I/Os and the time complexities of the proposed

algorithm.

4.1 Input Complexity

In the first phase N/M blocks will have to be processed by quick sort, so it will take N/M read

(input) operations in the first phase. In the next phase to obtain the first lowest sorted sub

block it will take N/M read operations and to obtain the first highest sorted sub block it will

also take N/M read operations. Next (N/M – 1) blocks will have to be processed by special In-

place merging to generate the new blocks. So it will take (N/M – 1) read operations. Then, to

obtain the next lowest and highest sorted sub blocks it will take (N/M – 1) read operations in

both cases and so on. So total disk input is

 9. Read B_2 of Block_S to the upper half of the available main memory.

 Set Q = S −1.

10. Read B_2 of Block_Q to the lower half of the available main memory.

11. Merge the data of the main memory using special In-place merging [4], write

 lower half to B_2 of Block_Q and set Q = Q −1. If Q ≥ 1 read B_2 of Block_Q to

 lower half of the main memory and repeat this step.

12. Write the upper half to B_2 of Block_S.

13. From B_2 of Block_1 to B_1 of Block_S, declare new blocks in the external file

 to be equal of the available memory and again give the number from Block_1 to

 Block_S. Divide each block into two sub blocks B_1 and B_2. Here each sub

 block equals the half of the available main memory. Set P = 1.

 14. Read B_1 and B_2 of Block_P to the main memory. Merge lower and upper half

 of Block_P. Write the sorted data to Block_P in the external file and set P = P +1.

 If P ≤ S, repeat this step.

 15. If S > 1, go to step 5.

52

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

 (
M
N

 +
M
N

 +
M
N

) + {(
M
N

 −1) + (
M
N

 −1) + (
M
N

 − 1)} + . . . + {2 + 2 + 2} + 1

⇒ 3 (
M
N

) + 3 (
M
N

 −1) + . . . + 3 (2) + 1

⇒ 3{
M
N

 + (
M
N

 −1) + . . . + 2 } + 1

⇒ 1 + 3∑
=

MN

i

i
/

2

 … … … (1)

4.2 Output Complexity

In the first phase the proposed algorithm will take N/M write (output) operations. In the next

phase to obtain the first lowest sorted sub block it will take N/M write operations and to

obtain the first highest sorted sub block it will take N/M write operation. Next (N/M – 1)

blocks will have to be processed to generate the new blocks. So it will require (N/M – 1) write

operations. Then, to obtain the next lowest and highest sorted sub block it will take (N/M – 1)

write operations in both cases and so on. So the total output operation is

 {
M
N

 +
M
N

 +
M
N

} + {(
M
N

 −1) + (
M
N

 −1) + (
M
N

 −1)} + . . . + {2 + 2 + 2} + 1

⇒ 3 (
M
N

) + 3 (
M
N

 −1) + . . . + 3 (2) + 1

⇒ 3{
M
N

 + (
M
N

 −1) + . . . + 2 } + 1

⇒ 1 + 3∑
=

MN

i

i
/

2

 … … … (2)

4.3 Time Complexity

The time complexity of the internal quick sort is O(n loge n) in average case (as given by

Knuth [1]). Here n is the number of records to be sorted. So, the time complexity of the first

phase of the proposed algorithm is (N/M)(n loge n). In the next phase, the algorithm uses

special In-place merging technique. The time complexity of the merging technique depends

on the number of comparison (as given by Knuth [1]). To merge n data using special In-place

merging technique it will need n comparisons. So the time complexity to obtain the first

lowest and highest sorted sub block is (N/M −1) n + (N/M −1) n = 2 (N/M −1) n. As, after

each iteration the file size is decreased by one sub block, so the total time complexity is

53

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

{(
M
N

(n loge n) + 2(
M
N

 −1)n} + [(
M
N

 −1) n + 2{(
M
N

 −1) −1}n] + . . . + [2n + 2 (2 −1) n] + n

⇒ (
M
N

) (n loge n) + 2n ∑
−

=

1/

1

MN

i

i + n ∑
−

=

1/

1

MN

i

i

⇒ (
M
N

) (n loge n) + 3n ∑
−

=

1/

1

MN

i

i … … … (3)

5. COMPARISON AND DISCUSSION

For simplicity of discussion we shall use the following notations for the algorithms (existing

algorithms) to point out in this paper.

 (a) Dufrene and Lin, “An efficient sorting algorithm with no additional disk space”, [2],

 (Algorithm 1)

(b) M. R. Islam et al., “A New External Sorting Algorithm with No Additional Disk

 Space with Special In-place Merging Technique”, [4], (Algorithm 2)

(c) Proposed Algorithm, “A Faster External Sorting Algorithm Using No Additional Disk

Space”, (Algorithm 3)

The I/O and time complexities of the algorithms proposed by Algorithm 1, Algorithm 2 and

Algorithm 3 are shown in Table 1.

Table 1: Complexities of the Algorithms proposed by Algorithm 1, Algorithm 2 and

Algorithm 3

Complexity Algorithm 1 Algorithm 2 Algorithm 3

Input

1 + 3 ∑

=

MN

i
i

/

2

Output

1 + 3 ∑

=

MN

i
i

/

2

Time

(

M
N

) (n loge n) +3n ∑
−

=

1/

1

MN

i
i

Here the I/O and time complexity of Algorithm 2 is better than that of Algorithm 1. So the

overall performance of Algorithm 2 is better than Algorithm 1.

So we shall compare and discuss the complexities of Algorithm 2 and the Algorithm 3.

Moreover, the value of M in the Algorithm 3 equals to 2B in the Algorithm 2. So, while

performing comparison M has been replaced by 2B.

1
22 2

2

−+
B

N
B

N

1
22 2

2

−+
B

N
B

N

∑
−

=

1/

1

log
BN

i
e inn

1
22 2

2
+−

B
N

B
N

1
22 2

2

−−
B

N
B

N

∑
−

=

+−
2/

1
log)1(

BN

i
e innn

B
N

54

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

5.1 Comparison of Input Complexities

Let, the input complexity of Algorithm 2, I1 = 1
22 2

2
+−

B
N

B
N

 and

the Algorithm 3, I2 = 1 + 3 ∑
=

BN

i

i
2/

2

Now, I1 − I2

= 1
22 2

2
+−

B
N

B
N

 − 1 − 3 ∑
=

BN

i

i
2/

2

=
B

N
B

N
22 2

2
− − 3 ∑

=

BN

i

i
2/

2

Here, for N > 6B, (I1 − I2) > 0 or I1 > I2. So, the input complexity of the Algorithm 3 is less

than that of Algorithm 2 for N > 6B.

5.2 Comparison of Output Complexities

Let, the output complexity of Algorithm 2, O1 = 1
22 2

2
−−

B
N

B
N

 and

the Algorithm 3, O2 = 1 + 3 ∑
=

BN

i

i
2/

2

Now, O1 − O2

= 1
22 2

2
−−

B
N

B
N

 − 1 − 3 ∑
=

BN

i

i
2/

2

=
B

N
B

N
22 2

2
− − 2 − 3 ∑

=

BN

i

i
2/

2

Here, for N ≥ 10B, (O1 − O2) > 0 or O1 > O2. So, the output complexity of the Algorithm 3 is

less than that of Algorithm 2 for N ≥ 10B.

55

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

5.3 Comparison of Time Complexities

Let, the time complexity of Algorithm 2, T1 = ∑
−

=

+−
2/

1
log)1(

BN

i
e innn

B
N

 and

the Algorithm 3, T2 = (
B

N
2

) (n loge n) + 3n ∑
−

=

12/

1

BN

i

i

Now, T1 − T2

= ∑
−

=

+−
2/

1

log)1(
BN

i
e innn

B
N

 − (
B

N
2

) (n loge n) − 3n ∑
−

=

12/

1

BN

i

i

= nn
B

N
B
N

elog)
2

1(−− + ∑
−

=

2/

1

BN

i

in − 3n ∑
−

=

12/

1

BN

i

i

= nn
B

N
B
N

elog)
2

1(−− + n { ∑
−

=

2/

1

BN

i

i − 3 ∑
−

=

12/

1

BN

i

i }

= nn
B

BN
elog)

2
2(−

 + n { ∑
−

=

2/

1

BN

i

i − 3 ∑
−

=

12/

1

BN

i

i }

Here, for N > 2B, (T1 − T2) > 0 or T1 > T2. So, the time complexity of the Algorithm 3 is less

than that of Algorithm 2 for N > 2B.

6. THEORETICAL RESULTS:

The theoretical results of Algorithm 1, Algorithm 2 and Algorithm 3 have been shown in

tabular format:

Table 2: Reduction of input Complexity of Algorithm 3 from Algorithm 1 and

Algorithm 2

External

file size

(MB)

RAM

size

(MB)

Ratio

(Algorithm 3 /

Algorithm 1)

Reduction

from

Algorithm 1

(%)

Ratio

(Algorithm 3 /

Algorithm 2)

Reduction from

Algorithm 2

(%)

400 200 0.77778 22.22 1.0000 0.00

600 200 0.80000 20 1.0000 0.00

800 200 0.80000 20 0.9655 3.45

1000 200 0.7963 20.37 0.9348 6.52

1200 200 0.79221 20.78 0.9104 8.96

56

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

Form the Table 2 we see that in case of Algorithm 1 if External File ≥ 200MB and in case of

Algorithm 2 if External File > 600MB, reduction of reading input of Algorithm 3 in

percentage is gradually increasing.

Table 3: Reduction of Output Complexity of Algorithm 3 from Algorithm 1 and

Algorithm 2

External

file size

(MB)

RAM

size

(MB)

Ratio

(Algorithm 3 /

Algorithm 1)

Reduction

from

Algorithm 1

(%)

Ratio

(Algorithm 3 /

Algorithm 2)

Reduction from

Algorithm 2

(%)

400 200 0.77778 22.22 1.4000 - 40.00

600 200 0.80000 20 1.1429 -14.29

800 200 0.80000 20 1.0370 -3.70

1000 200 0.7963 20.37 0.9773 2.27

1200 200 0.79221 20.78 0.9385 6.15

Form the Table 3 we see that in case of Algorithm 1 if External File ≥200MB and in case of

Algorithm 2 if External File ≥1000MB, reduction of writing output of Algorithm 3 in

percentage is gradually increasing.

Table 4: Reduction of Time Complexity of Algorithm 3 from Algorithm 1 and

Algorithm 2

External

file size

(MB)

RAM

size

(MB)

Ratio

(Algorithm 3 /

Algorithm 1)

Reduction from

Algorithm 1 (%)

Ratio

(Algorithm 3 /

Algorithm 2)

Reduction

from

Algorithm 2

(%)

400 200 0.3604 63.96 0.6498 35.02

600 200 0.2378 76.82 0.6000 40.00

800 200 0.1764 82.36 0.5845 41.55

1000 200 0.1455 85.45 0.5783 42.17

1200 200 0.1258 87.42 0.5774 42.25

From Table 4 we see that in case of both Algorithm 1 and Algorithm 2, if External file size

≥ 200MB, reduction of execution time of Algorithm 3 in percentage is gradually increasing.

57

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

7. EXPERIMENTAL RESULTS

The experimental results of Algorithm 1, Algorithm 2 and Algorithm 3 have been shown in

tabular format below:

The configuration of the system where we have performed the experiment:

 Operating System : Microsoft Windows XP Professional, Version 2002, Service Pack 2.

 Processor : Intel (R) Pentium(R) 4 CPU 1.80GHz

 Memory : 256MB RD RAM

 Environment : Visual C++.Net 2003

Table 5: Experimental Results for Input

Externa

l File

size

(MB)

RAM

Size

(MB)

Input for

Algorith

m (1)

Input for

Algorithm

(2)

Input for

Algorith

m (3)

Reduction

from

Algorithm 1

(%)

Reduction

from

Algorithm

2 (%)

400 200 9 7 7 22.22 0.00

600 200 20 16 16 20.00 0.00

800 200 35 29 28 20.00 3.45

1000 200 54 46 43 20.37 6.52

1200 200 77 67 61 20.77 8.96

Table 6: Experimental Results for Output

External

File size

(MB)

RAM

Size

(MB)

Output

for

Algorith

m (1)

Output

for

Algorith

m (2)

Output

for

Algorith

m (3)

Reduction

from

Algorithm

1 (%)

Reduction

from

Algorithm

2 (%)

400 200 9 5 7 22.22 - 40.00

600 200 20 14 16 20.00 - 14.29

800 200 35 27 28 20.00 - 3.70

1000 200 54 44 43 20.37 2.27

1200 200 77 65 61 20.77 6.15

58

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

Table 7: Experimental Results for Execution Time

External

File size

(MB)

RAM

Size

(MB)

Time for

Algorithm

(1)

in minutes

Time for

Algorithm

(2)

in minutes

Time for

Algorithm

(3)

in minutes

Reduction

from

Algorithm

1 (%)

Reduction

from

Algorithm

2 (%)

400 200 15.11 15.31 11.14 26.27 27.24

600 200 33.22 28.52 21.21 36.15 25.63

800 200 55.43 43.23 32.25 41.82 25.40

1000 200 88.39 61.44 47.46 46.31 22.75

1200 200 125.53 88.12 64.37 48.72 26.95

8. CONCLUSIONS

We have improved the performance of the external sorting in the proposed algorithm in terms

of both I/O and time complexities. The algorithm uses quick sort and In-place merging

technique [4] and reduces comparisons to generate minimum and maximum sorted sub blocks

of records and uses no extra file. Moreover, from the discussion in the previous section, we

get the following results:

1. The time complexity of the Algorithm 3 is less than that of Algorithm 2.

2. The input complexity of the Algorithm 3 is less than that of Algorithm 2 for N > 6B.

3. The output complexity of Algorithm 3 is less than that of Algorithm 2 for N ≥ 10B.

So, the overall performance of the Algorithm 3 is better than that of Algorithm 2 in terms of

both I/O and time complexities.

REFERENCES

[1] D. E. Knuth, Sorting and Searching, “The art of computer programming” Vol. 3,

Addison- Wesley, Reading, MA, 2nd edition, 1998.

[2] W. R. Dufrene, F. C. Lin, “An efficient sorting algorithm with no additional space”,

Compute. J. 35(3) (1992).

[3]

M. R. Islam, S. M. R. Uddin, C. Roy, “Computational complexities of the external

sorting algorithm with no additional disk space”, International Journal of Computer,

Internet and Management (IJCIM), Thailand, Vol. 13, Issue 3, September - December,

2005.

59

Jilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat

[4] M. R. Islam, W. Nusrat, M. Hossain, S.M.M. Rana, “A New External Sorting Algorithm

with No Additional Disk Space with Special In-place Merging Technique”, Presented at

International Conference on Computer and Information Technology (ICCIT), 26 - 28

December 2004, (Dhaka, Bangladesh).

[5] M. R. Islam, N. Adnan, N. Islam, S. Hossen, “A new external sorting algorithm with no

additional disk space”, Information Processing Letters 86(2003), 229-233.

[6] N. Adnan, R. Islam, N. Islam, S. Hossen, “A faster hybrid external sorting algorithm

with no additional disk space” published in the proceedings of International Conference

on Computer and Information Technology (ICCIT), 27-28 December 2002 (Dhaka,

Bangladesh)

[7] S. M. Raquib Uddin, Md. Rafiqul Islam, Chinmoy Roy, “Complexities of an efficient

external sorting algorithm with special cases” published in the proceedings of

Conference on Computer and Information Technology (ICCIT), 19-21 December, 2003

(Dhaka, Bangladesh).

