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ABSTRACT 

Backpropagation algorithm is used to solve many real world problems using 

the concept of Multilayer Perceptron. However, main disadvantages of 

Backpropagation are its convergence rate is relatively slow, and it is often trapped at 

the local minima. To solve this problem, in literatures, evolutionary algorithms such 

as Particle Swarm Optimization algorithm has been applied in feedforward neural 

network to optimize the learning process in terms of convergence rate and 

classification accuracy but this process needs longer training time. To provide 

alternative solution, in this study, Bacteria Foraging Optimization Algorithm has 

been selected and applied in feedforward neural network to enhance the learning 

process in terms of convergence rate and classification accuracy. One of the main 

processes in Bacteria Foraging Optimization algorithm is the chemotactic movement 

of a virtual bacterium that makes a trial solution of the optimization problem. This 

process of chemotactic movement is guided to make the learning process of Artificial 

Neural Network faster.  The developed Bacteria Foraging Optimization Algorithm 

Feedforward Neural Network (BFOANN) is compared against Particle Swarm 

Optimization Feedforward Neural Network (PSONN). The results show that 

BFOANN gave better performance in terms of convergence rate and classification 

accuracy compared to PSONN. 
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ABSTRAK 

Algoritma Rambatan Balik (BP) digunakan untuk menyelesaikan banyak 

masalah dunia nyata menggunakan konsep Perseptron Pelbagai lapisan. Namun, 

kelemahan utama algoritma BP adalah kadar penumpuan yang lambat, dan sering 

terperangkap di lokasi minimum tempatan.  Untuk mengatasi masalah ini, dalam 

literatur, algoritma evolusi seperti Pengoptimuman Partikel Berkelompok (PSO) 

telah dilaksanakan dalam rangkaian saraf tiruan suapan depan untuk 

mengoptimumkan proses pembelajaran dari sudut kadar penumpuan dan ketepatan 

klasifikasi namun proses ini memerlukan masa latihan yang lama. Untuk 

memberikan penyelesaian alternatif, dalam kajian ini, algoritma pengoptimuman 

bakteria carian (BFO) telah dipilih dan diterapkan pada jaringan saraf tiruan suapan 

depan untuk meningkatkan proses belajar dari segi kadar penumpuan dan ketepatan 

klasifikasi. Salah satu proses utama dalam algoritma BFO adalah gerakan 

chemotactic dari bakteria maya yang membuat percubaan penyelesaian bagi masalah 

pengoptimuman. Proses gerakan chemotactic dipandu untuk menyelesaikan masalah 

Jaringan Neural buatan (ANN) dengan lebih cepat. Gabungan algoritma BFO dan 

ANN (BFOANN) yang dibangunkan dibandingkan dengan PSO dan ANN 

(PSONN). Keputusan kajian menunjukkan bahawa BFOANN memberikan hasil 

yang lebih baik dari sudut konvergensi dan ketepatan klasifikasi dibandingkan 

dengan PSONN. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Artificial Neural Network (ANN) is a model of information processing 

simulated by the biological nervous system. Feedforward Neural Network (FFNN) 

has been commonly used in several fields such as control applications (Vemuri, 

1993), dynamic problems (Massimo, 2007) and power systems (Haque and 

Kashtiban, 2005). This is because ANN has the ability to closely approximate 

unknown function to each degree of desired accuracy (Zhang  and Wu, 2008). There 

are many calculations, which are very complex, nonlinear and parallel that could be 

solved by ANN. However, many applications have been improved by the neural 

network algorithm and many of them are on predicting future events based on 

historical data. ANN is a power face that consists of network that processes many 

things like learning and adaptation. Furthermore, ANN can be very efficient for 

solving problems in pattern recognition, scientific classification, function 

approximation, the analysis of time series data, and control (Long and Gupta, 2005) 
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The main purpose of ANN is the capacity of the network on learning from its 

surroundings and improves the performance of this model during the process of 

learning (Haza, 2006). Learning is an operation of the optimization of the neuron’s 

weights and biases values of ANN until a certain criterion is met. The classification 

of fixed input data patterns to certain outputs is the main objective of training 

method. There are many algorithms that are used for training a neural network such 

as the back propagation algorithm (BP) (Alsamdi et al., 2009), Genetic Algorithm 

(GA) (Khan et al., 2008) and Particle Swarm Optimization (PSO) (Haza, 2006). BP 

algorithm is applied to train the neural network for associative learning or 

supervised. Supervised learning algorithm requires direct and complete desired 

answers like a feedback; that mean the value of target or the planned outputs. During 

training, weights of the network and biases are optimized to new weights that are 

used to get the target value of this network. Some disadvantages of this algorithm are 

poor local optimal convergence and poor performance even on simple problems 

(Zhang and Wu, 2008). 

There are Evolutionary Algorithms (EAs) that relate to learning enhancement 

of ANN such as Genetic Algorithm (GA) (Khan et al., 2008), Particle Swarm 

Optimization (PSO) (Kennedy and Eberhart, 1995a), and Artificial Fish Swarm 

Algorithm (Zhang et al., 2006). These algorithms are used to optimize the weights 

and biases of ANN to obtain the optimal performance of ANN with higher accuracy. 

   Recent development shows that Bacterial Foraging Algorithm is utilized to 

solve optimization-related problems (Passino, 2002). To perform social foraging, 

animals request communication capabilities and over a period of time it increases 

advantages that can develop the sensing capabilities of the bacteria. This helps the 

bacteria to get priority to obtain a larger prey or food. Furthermore, each bacterium 

could obtain good protection from predators (Kim and Abraham, 2007). Bacteria 

Foraging Optimization Algorithm (BFOA) has been widely used for global 

optimization (Shen et al., 2009). BFOA is used to solve many optimization problems 
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such as Adaptive Tuning of PID Controllers by BFOA for Multivariable System 

(Kim and Cho, 2005). This technique can also potentially produce effective solutions 

to very large scale problems. However, BFOA is used to solve a highly non-linear 

and non-convex problem which includes Optimal Power Flow solution (Tripathy et 

al., 2006). Based on this, BFOA is selected to be used in optimizing neural network 

learning. 

1.2 Problem Background 

Artificial Neural Network (ANN) is a resultant of a biological brain neuron 

that is a method to obtain patterns of data. The primary benefit of ANN is its ability 

to identify patterns in data, while ANN consists of interconnected nodes whose 

operation as a total is based on the parallel processing power of the nodes gained 

through their connection strengths. The main disadvantages of ANN classifier are its 

slow convergence, and it is often trapped at the local minima (Mashinchi, 2007). 

The artificial neurons are organized in layers, and send their signals 

“forward”, and then the errors are propagated backwards. To improve the 

performance of Neural Network, the optimization algorithms, such as GA (Khan et 

al., 2008), PSO (Gudise et al., 2003), and BP (Aal-Yhia and Sharieh, 2007) are used. 

These algorithms train the neural network to obtain a good error convergence,            

a convergence time, and the classification accuracy. 
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The main goal of training ANN is to obtain a set of weights that will be 

optimized by an optimization algorithm. The process of training remains until an 

acceptable error is achieved by the best one (a particle, a chromosome, a bacterium) 

or computational limits are exceeded. When a process is finished, the weights are 

used to calculate the classification for the training patterns. The same set of weights 

is used to test the network by using the test patterns in order to get the test error (Al-

kazemi and Mohan, 2002). 

Backpropogation algorithm (BP) is the most common technique in Neural 

Network learning. It is used to solve many real world problems as a consequence of 

using the concept of Multilayer Perceptron (MLP) training and testing. The main 

disadvantages of BP are its relatively slow convergence rate, and it is being trapped 

at the local minima (Haza, 2006).  

Throughout the years, there are many studies in optimizing ANN using 

different kinds of methods (Ileană et al., 2004). Particle Swarm Optimization 

Feedforward Neural Network (PSONN) and Genetic Algorithm Backpropagation 

Neural Network (GANN are two of the well-known Neural Networks optimizing 

techniques. GA has attracted a great attention in the ANN where it is used to train 

FFNN through identifying unimportant neuron and delete those neurons to produce a 

compact structure. However, GA works with a population of solutions to seek many 

local minima that increase the likelihood of finding global minimum (Er and Liu, 

2009). There are many strengths and weaknesses of BP algorithm and the 

optimization algorithms such as PSO, GA and BFOA.  Table 1.1 defines the 

strengths and weaknesses of these algorithms. 
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Table 1.1: A Comparison of PSO, GA, BFOA, and BP 
 

Algorithm Strengths Weaknesses 

BP 

1. The gradient-based method 

has the advantage of being 

computationally very efficient. 

 

2. BP is designed to reduce an 

error between the actual output 

and the desired output of the 

network in a gradient descent 

manner (Alsamdi et al., 2009). 

1. BP has many disadvantages 

such as easily falling into the 

local minimum point,  low 

rate of convergence and weak 

global search capability (Li et 

al., 2010) 

2. BP has many weaknesses in 

training ANN when dealing 

with huge dataset. BP could 

not avoid the local minima. 

PSO 

 

 

 

1. PSO is Implemented easily on 

ANN and there are few 

parameters to change.  

 

2.  PSO is implemented in many 

areas efficiently (AbdulSttar, 

2008).   

1. PSO implemented using many 

iterations cannot recognize the 

nonlinear system with higher 

accuracy with other 

algorithms.  

2. The PSO algorithm required 

too much training time. The 

training process is often not 

efficient enough. 

GA 

1. GA basically is a parallel 

scheme. It can explore the 

whole dimensional space at 

once.  

2. GA is suited to solve the 

problems where the space of all 

possible solutions is huge and 

search in the suited amount of 

time.  

3. GA has a good performance to 

solve the problems where its 

1. GA sometimes unable to find 

a solution to the problem, or 

may solve the problem 

incorrectly.  

 

2. GA may not be exploring the 

solution space to find the 

suited solutions. 

 

3. The GA convergences early.  
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Algorithm Strengths Weaknesses 

fitness function is continuous, 

and it changes over time 

(AbdulSttar, 2008). 

BFOA 

1. BFOA explores the whole 

dimensional space of the 

problem, and it has strong 

connections between cell and 

cell by using the signals. 

2. BFOA is easily implemented in 

many complex areas.  

3. BFOA may be able to deal with 

huge data and find the best 

solution within a short time. 

4. BFOA may be able to solve the 

problem of local minima and 

global minima efficiently. 

5. BFOA may be able to obtain 

the optimum solution with high 

accuracy at the short time and 

little iteration. 

1. If the number of bacteria is big 

then it results to more delay 

and complexity.   

                 

2. The reproduction phase of 

bacteria aims at fast 

convergence suitable in the 

static environment but it is 

unsuitable in the dynamic 

environment (Bakwad et al., 

2010). 

There are some problems in ANN learning such as the difference between the 

target output of ANN learning and the actual output. Many researchers worked to 

optimize the performance of ANN learning to obtain the optimal performance. Many 

optimization algorithms are used to optimize ANN for enhancing the error 

convergence and obtaining the good accuracy of ANN. BP algorithm represents the 

main weakness of ANN this research looks into utilizing BFOA to optimize ANN 

structure to obtain better performance. 
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1.3 Problem Statement 

There are many elements to be considered in Artificial Neural Network 

(ANN), such as the number of input, hidden and output nodes, bias, minimum error 

and the type of activation/transfer function. All these elements will influence the 

convergence of ANN learning. There are some algorithms such as PSO and GA that 

have been used to determine some parameters and supply the best pattern of weight 

in order to enhance the ANN learning.  

 

In this study, the Swarm Intelligence technique called Bacteria Foraging 

Optimization Algorithm (BFOA) is applied to enhance the Feedforward Neural 

Network learning and evaluate the performance of BFOA on the convergence rate 

and the convergence speed. 

 

The hypothesis of this research can be stated as: 

How efficient is the BFOA for neural network learning enhancement 

compared to other optimization techniques such as PSO? 

1.4 Research Aim 

This research aims to investigate the efficiency of the BFOA in optimizing 

the weights of the neural network so that the learning is further enhanced to improve 

the accuracy and convergence of neural networks with minimal error. 
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1.5 Objectives of the Research 

In this study, there are three objectives identified:  

 

1. To explore and implement BFOA and adapt it with neural network. 

2. To propose and apply BFOA to optimize the weights and bias in neural 

network to enhance ANN learning.  

3. To compare the results between BFOANN and PSONN in terms of 

convergence rate and classification accuracy percentage. 

1.6 Scopes of the Research 

1.  The datasets used to analyze the performance of proposed method are XOR, 

Balloon, Cancer, Heart and Ionosphere. 

2.  The performance is measured in terms of network convergence and classification 

percentage by using BFOANN program. 

 



9 

 

1.7 Contribution of Research 

The performance of BFOA-based neural network and PSO-based neural 

network is analyzed; as a result we can decide which method is better for neural 

network learning. This is important to identify the best technique to be used in real 

world application.  

1.8 Organization of Report 

 This report consists of six chapters. In Chapter one, the introduction of the 

study, problem background, problem statement, research aim, objectives, scope and 

contribution of this research are presented. Chapter two offers literature reviews on 

ANN, BP, GA, PSO and BFOA and related work. In chapter three, the methodology 

of BFOANN is offered. It discusses the main process of BFOANN model. Chapter 

four shows the architecture of ANN by using five datasets. It explains the flowchart 

of BFOANN model and shows how BFOA implements with ANN. Chapter five 

shows the results of implementing BFOA with ANN and PSO with ANN using five 

datasets. The results are explained and compared with both algorithms. Furthermore, 

it validates the performance of both algorithms using N-Cross-Validation. Finally, 

chapter six presents the conclusion and suggestions for the future work. 
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