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ABSTRACT 

 

 

 

 

 

Fuzzy modeling refers to the process of identifying the fuzzy parameters by 

defining fuzzy rules and fuzzy sets. The process of identifying the fuzzy parameters 

becomes complicated and difficult to evaluate particularly when it involves complex 

problems in engineering and medical applications. This is due to the fact that there are 

many fuzzy parameters to be identified such as the characteristics of the fuzzy rules 

and fuzzy sets. Besides that, the accuracy and the ability to interpret the fuzzy rules 

and the fuzzy sets would also need to be considered. This study proposes an improved 

method of fuzzy modeling called the Fuzzy Cooperative Genetic Algorithm (FCoGA) 

which integrates the Genetic Algorithm (GA) and Cooperative Coevolution Algorithm 

(CooCEA) that automatically generate and refine the fuzzy rules and the fuzzy sets. 

The GA is used to exploit the chromosomes that represent the fuzzy parameters 

whereas the CooCEA is applied to reduce the complexity of the fuzzy parameters 

representation which is carried out by subdividing chromosomes into three sub-

chromosomes known as species. The FCoGA comprises of three phases which are 

simplification, tuning and evaluation. Simplification phase involves decomposition of 

the chromosomes into three species of chromosomes that represent the fuzzy 

parameters consisting of  fuzzy rules, membership functions and length of the 

overlapping membership functions. The tuning phase involves the process of altering 

and tuning all the species. Lastly, the evaluation phase validates the performance of 

the FCoGA. Three benchmark datasets; breast cancer, diabetes and Iris have been 

used to evaluate the performance of the FCoGA. The experimental results showed that 

the FCoGA obtained the highest percentage of accuracy classification compared to 

other techniques such as conventional GA, multi-objective CooCEA, rule extraction 

and decision tree. The results also indicated that the FCoGA produced higher 

interpretability of a fuzzy model.  
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ABSTRAK 

 

 

 

 

 

Permodelan kabur merujuk kepada proses mengenal pasti parameter kabur 

dengan memberi definisi terhadap peraturan-peraturan kabur dan set-set kabur. 

Terdapat beberapa masalah di dalam permodelan kabur apabila ia digunakan pada 

masalah yang kompleks di mana ia menyebabkan proses mengenal pasti parameter 

kabur menjadi rumit dan sukar untuk dinilai. Ini disebabkan proses mengenal pasti 

parameter kabur yang terlalu banyak seperti ciri-ciri peraturan-peraturan kabur dan set-

set kabur. Selain itu, ketepatan dan kemampuan untuk mentafsir model kabur juga perlu 

diambil kira. Kajian ini mencadangkan satu kaedah automatik bagi permodelan kabur 

yang diberi nama Algoritma Genetik Kerjasama Kabur (FCoGA) yang menggabungkan 

Algoritma Genetik (GA) dan Algoritma Evolusi yang Bekerjasama (CooCEA) di mana 

ia dapat menjana dan memperbaiki peraturan-peraturan kabur dan set-set kabur secara 

automatik. GA menggunakan kromosom untuk mewakilkan parameter kabur manakala 

CooCEA digunakan untuk meringkaskan perwakilan penyelesaian yang terlalu 

kompleks dengan memecahkan kromosom kepada tiga sub-kromosom yang dikenali 

sebagai spesies. Terdapat tiga fasa utama di dalam FCoGA iaitu memudahkan, 

mengubah, dan menilai. Fasa memudahkan adalah proses pemecahan kromosom 

kepada tiga spesies yang mewakili parameter kabur; peraturan kabur, fungsi keahlian 

dan panjang pertindihan fungsi keahlian. Fasa mengubah melibatkan proses mengubah 

dan memperbaiki semua spesies. Akhir sekali, fasa menilai pula ialah proses penilaian 

prestasi FCoGA. Di dalam proses menilai, tiga piawaian set data iaitu barah payudara, 

diabetis dan bunga telah digunakan. Hasil analisis menunjukkan bahawa FCoGA dapat 

mencapai ketepatan pengelasan yang tinggi berbanding dengan kaedah-kaedah lain di 

dalam permodelan kabur seperti GA yang biasa, CooCEA yang mempunyai banyak 

objektif, pencabutan peraturan dan pokok keputusan. Di samping itu, FCoGA berupaya 

untuk menjana model kabur yang mudah untuk difahami.              
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Background   

 

 

In many decision-making environments, there are several factors that need to 

be considered in order to ensure the optimum solution can be achieved. Sometimes, 

the factors that are to be taken into consideration are unknown and uncertain. This 

situation happened due to the lack of expert knowledge or the absence of expertise 

(Stephanou and Sage, 1987; Negnevitsky, 2002). In acquiring the expert knowledge, 

it involves many knowledge-processing procedures. The knowledge from many 

different experts needs to be collected and organized. In addition, it is vital to 

formalize the knowledge before applying it to the problem. However, acquiring the 

expert knowledge is costly and the process of collecting the knowledge is time 

consuming. Dealing with this situation, using an expert system is a good choice. An 

expert system is a computer program that is built with the expert knowledge in order 

to solve a specific problem. There are two approaches in obtaining the knowledge 

which are the knowledge derived from the experts or by extracting the knowledge 

from available data. As the process of acquiring the experts’ knowledge is time 

consuming and costly, to obtain the expertise’s knowledge also involves many 
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procedures. On the other hand, the process of extracting the knowledge from the data 

is more efficient in terms of the lesser cost and shortens the time of performing it. 

Through data collection, a scientist can extract and interpret knowledge in the data in 

order to determine the pattern of the data, to find out the parameter that contains in 

the data and their relationship, to predict the physical and environment of the nature, 

and also to make a better decision based on the knowledge contained in the data. It 

works through the process of learning, extracting and presenting the knowledge in 

the form that is acceptable by human. However, several issues will arise when the 

data is inaccurate and incomplete which can result the knowledge to be imprecise, 

uncertain, or unreliable. Due to that, the fuzzy system is seen as a good choice to deal 

with these issues where it is used to represent and highlight the knowledge that is 

imprecise, uncertain and unreliable (Tsipouras et al., 2008; Gadaras and Mikhailov, 

2009). 

 

 

Fuzzy system works by implementing the fuzzy logic and approximate 

reasoning, as well as incorporating the expert knowledge in the inference system in 

order to obtain the desired output from the system input values (Wang, 1997). In 

developing the fuzzy system, fuzzy parameters are needed to be identified in order to 

obtain the desired behavior of the system. This process is known as the fuzzy 

modeling (Reyes and Sipper, 2002; Cordon et al., 2004). Fuzzy system works well 

on simple problems, but when applied on complex problems like engineering 

(Pulkkinen et al., 2008; Mendonca et al., 2009; Wang et al., 2009) or medical 

problems (Ghazavi and Liao, 2008; Stylios et al., 2008; Gadaras and Mikhailov, 

2009), the construction of the fuzzy system becomes complicated. This might be due 

to the identification of many fuzzy parameters. Due to that, a method is needed for 

identifying the fuzzy parameters where an automatic process to identifying the fuzzy 

parameters is performed. 

 

 

The following section will describe the challenges that arise in the fuzzy 

modeling in details followed by a review about the statement of the problems of this 

study. Next, the objectives of this study are presented. Lastly, the significance and 

scope of the study are discussed. 
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1.2 Challenges in Fuzzy Modeling 

 

 

The process of building the fuzzy system is a hard process, especially for 

real-problems. This is because of the identifying process of the parameters that is 

crucial where it has influences on the performance of the system (Chen et al., 2007; 

Zong-Yi et al., 2008; Gadaras and Mikhailov, 2009). Generally, the fuzzy parameter 

that needs to be identified is the fuzzy model which refers to a collection of fuzzy 

rules and fuzzy sets. Before the fuzzy model is identified, several factors need to be 

considered. For the fuzzy rules, the factors are the number of rules, the antecedent 

and consequence, and the linguistic variable and the linguistic value. For the fuzzy 

set, the factors are the number of membership function, the types of membership 

function and the shape of membership function. These factors need to be considered 

in order to produce the fuzzy rules and fuzzy sets with more accurate and more 

interpretable. Furthermore, it turns out to be difficult because of the computation 

grows exponentially together with the increase of the number of variables in the 

system especially for the real world problems. This problem is known as the curse of 

dimensionality which is a major problem in the development of the fuzzy system 

(Reyes and Sipper, 2002). Therefore, this problem becomes the first challenge in this 

study. In dealing with this problem, an automatic approach in the fuzzy modeling is 

proposed.  

 

  

There are many techniques that can be applied to automate the fuzzy 

modeling. Current trend shows that Evolutionary Algorithm (EA) is the most popular 

technique that is being used, especially the Genetic Algorithm (GA: Kim and Ryu, 

2005; Kelesoglu, 2007; Dimitriou et al., 2008; Li et al., 2008; Evsukoff et al., 2009; 

Li and Wang, 2009). Most of the works combine a fuzzy system with GA because of 

the good learning capabilities offered in solving problems. GA can be viewed as a 

search technique where the goal is to find the exact or approximate solution for the 

optimization problems. GA performs well in optimization problems, but when it is 

applied in complex problems such as when many dimensions of data (Luukka, 2009), 

when the value of data in a big range (Hong et al., 2008; Alcala-Fdez et al., 2009), 

when the search space is large (Li and Wang, 2009), involve multi-classification 
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problem (Har-Peledet al., 2002; Brinkeret al., 2006) and involve many parameters 

setting (Lau et al., 2009), it tends to stuck in the local optima and thus performs 

poorly (Wang, 1997). With complex problem, it requires high computation power 

due to the representation of the solution. This happened due to the identification of 

many factors of fuzzy parameter such as the number of fuzzy parameters and their 

characteristics, where it makes the representation of the solution become complex. 

As a result, this might have contributed to the loss of the interpretability of the fuzzy 

model where the fuzzy model maybe becomes unreliable and uncertain. In addition, 

to evaluate the solution, time is very consuming. Therefore, there is a need to 

embody a method to simplify the representation of the solution in the interest of 

avoiding the fuzzy model to lose its interpretability. Derived from this situation, 

another challenge in the fuzzy modeling is to employ a decomposition method, 

which is the Cooperative Coevoutionary Algorithm (CooCEA) into GA (Potter and 

Jong, 2000; Reyes and Sipper, 2002; Xing et al., 2007; Yang et al., 2008; Zhu and 

Guan, 2008; Xing et al., 2009). By implementing this technique, it is hoped that the 

CooCEA can reduce the complexity of the representation of the solution in order to 

improve the interpretability of the model.  

 

 

 

 

 

1.3 Statement of the Problem 

 

 

 In fuzzy modeling, the identification of the parameters in the fuzzy system is 

essential for its operation. These parameters affect the performance of the system. 

Therefore, it is become a problem in fuzzy modeling because several factors must be 

considered in order to develop the fuzzy system. These factors are the accuracy of 

the results and interpretability of the fuzzy model (Xing et al., 2007; Evsukoff et al., 

2009). These factors become important issues in the fuzzy modeling because it needs 

to deal with these factors at the same time. As a consequence, it is a difficult process 

to design a method of the fuzzy modeling in dealing with the accuracy and 

interpretability at the same time. Moreover, the extraction of the knowledge in the 
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data can be difficult if the data is limited, complex, inaccurate and incomplete (Yang 

et al., 2008; Fernandez et al., 2009).This is the second problem in the fuzzy 

modeling which can make the knowledge obtained to be imprecise, wrong or simply 

uncertain (Tsipouras et al., 2008; Gadaras and Mikhailov, 2009). Therefore, there is 

a need for a technique where it can automatically adjust, alter and fine-tune the 

knowledge in order to assure the specific requirement achieved. Besides that, a major 

problem in the fuzzy modeling is the curse of dimensionality. This happened due to 

the demand in the identification process of the many fuzzy parameters when it is 

applied on large search space and complex systems (Reyes and Sipper, 2002). The 

problems in fuzzy modeling can be summarized as follows: 

 

(i) An automated approach in fuzzy modeling is needed to automatically 

alter, adjust and tune the fuzzy parameters. 

(ii) Identification of many factors of fuzzy parameters such as number of 

fuzzy model and its characteristic. 

(iii) Constraint of the data when data is limited, complex, inaccurate and 

incomplete. 

 

 

 

 

 

1.4 Objectives of the Study 

 

 

The main goal of this study is to develop a method that can automatically 

generate the ‘best’ of the fuzzy models that took into account the accuracy and 

interpretability of the model, and can achieve a better result when it is applied on the 

classification data. For that specific purpose, the following objectives need to be 

accomplished: 

 

(i) To develop an algorithm named Fuzzy Cooperative Genetic 

Algorithm (FCoGA) for fuzzy modeling by incorporating GA with the 

CooCEA.  
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(ii) To generate fuzzy model that has a higher interpretability by using the 

CooCEA that decomposed the representation of the solution 

(cooperative chromosome) into sub-solutions (species). 

(iii) To propose fuzzy modeling method that is able to achieve a higher 

accuracy of the classification by introducing two levels of fitness 

evaluation which are at the species level and cooperative chromosome 

level.   

 

 

 

 

 

1.5 Scope of the Study  

 

 

In this study, three datasets are used, particularly the Iris dataset, Pima Indian 

Diabetes (PID) dataset and Wisconsin Breast Cancer Diagnosis (WBCD) dataset. 

These datasets are obtained from the UCI machine learning repository. The scopes of 

the proposed method are as follows: 

 

(i) The scope of the proposed method is focusing on the classification. 

(ii) Use GA and CooCEA to randomly generate the initial population into 

three species that represented the fuzzy parameters where the fuzzy 

parameters are fuzzy rules, fuzzy sets and the length overlap in fuzzy 

sets. 

(iii) In the interest of evaluating the performance of the proposed method, 

k-fold cross validation method is used and the accuracy is calculated 

to measure its performance. 

(iv) Use three benchmark datasets in experiments where these dataset 

obtain from University of California, Irvine (UCI) machine learning 

repository which are the cancer dataset, diabetes dataset and flower 

dataset. 

(v) In order to measure the performance of the proposed method, it will 

be compared with several works in the fuzzy modeling. 
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1.6 Significance of the Study  

 

 

Fuzzy modeling can be viewed as a grey-box modeling because it allows the 

modeler to extract and interpret the knowledge that is contained in the data and also 

to imbue it with a prior knowledge (Babuska and Verbruggen, 1996; Reyes and 

Sipper, 2002). It is difficult to apply the fuzzy system on complex problems due to 

the requirement of the system. This is because the representation of the solution 

becomes more complex and difficult to understand by the human knowledge. 

Because of that, this study applies learning and tuning capabilities of GA, and 

decomposes method that is inspired by the CooCEA. With the learning and tuning 

capabilities of GA, the process of altering and adjusting the fuzzy model can be 

performed automatically. Meanwhile, the CooCEA is able to decompose the 

component in fuzzy model into sub-components thus can reduce the complexity of 

the representation of the solution. Therefore, the significance of this study is to create 

a method that automate the fuzzy modeling where the generation process of the fuzzy 

model can be performed automatically, and produce a fuzzy model that took into 

account the accuracy and interpretability of the model. As a consequence, it can help 

and facilitate computer scientists to produce computer expert systems such as the 

application to detect the breast cancer in patients. 

 

 

 

 

 

1.7 Structure of the Thesis 

 

 

This thesis is organized into six chapters. General content descriptions of 

subsequent chapters in this thesis are given as follows:  

 

(i) Chapter 1 describes the background of the study, challenges in the 

fuzzy modeling, statement of the problem, objectives, significance 

and scope of the study.  
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(ii) Chapter 2 reviews the domain of this study which includes the review 

of the fuzzy system, the fuzzy modeling, approaches of fuzzy 

modeling and the advance methods in the fuzzy modeling.  

(iii) Chapter 3 begins with the review of the research activity. Following 

that is the discussion of the proposed method and the review of the 

benchmark datasets involved. Besides that, the experimental 

environment is also discussed.  

(iv) Chapter 4 describes the steps involved in the proposed method. This 

includes the representation of the cooperative chromosome, fitness 

evaluation and the reproduction process. 

(v) Chapter 5 discusses the experimental result, discussion and analysis of 

the proposed method. First and foremost, the results of the 

experiments are presented. Then it is followed by the discussion 

section which elaborates the contributions of this study and finally the 

analysis of the proposed method.   

(vi) Chapter 6 concludes the study and presents the contributions. The 

future works of the study are also discussed. 
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