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ABSTRACT 

 

 

 

In general, heterogeneous catalytic reactions in liquid phase can be enhanced 

by manipulation of relevant local environment conditions. Since the magnetic field 

may affect the molecular processes of catalytic reaction on the catalyst’s surface, it is 

of interest to explore the effect of magnetic field on the liquid phase reaction over a 

heterogeneous catalyst’s surface. Therefore, the ultimate goal of this study is to 

design a new heterogeneous catalytic system based on the idea that the catalytic 

activity can be controlled by applying electricity to induce magnetic field. 

Polypyrrole and titanium dioxide have been used as electrically conducting materials 

and catalytic active site, respectively. The magnetic field effects over electrically 

conducting surface loaded with titanium dioxide to induce the adsorption of organic 

substrate has been confirmed by oxidation of benzhydrol to benzophenone by using 

hydrogen peroxide as an oxidant. The results suggest the occurrence of the 

synergistic effect with the generated magnetic field and titanium dioxide. The study 

was also extended to the removal of methylene blue enhanced by the magnetic field 

effect. One suggests that the magnetic field generated by electric current induced the 

removal of methylene blue over electrically conducting polypyrrole containing 

titanium dioxide. As a global guide for future actions, this work opens new 

perspectives for the use of electrically conducting surface containing titanium 

dioxide for liquid phase magnetic-field-induced oxidation catalysis. 
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ABSTRAK 

 

 

 

Pada amnya, tindak balas pemangkinan heterogen dalam fasa cecair boleh 

dipertingkatkan dengan memanipulasikan keadaan persekitaran tempatan yang 

relevan. Disebabkan medan magnet boleh mempengaruhi proses pemangkinan di 

peringkat molekul pada permukaan mangkin, adalah menarik untuk menyelidiki 

kesan medan magnet terhadap sesuatu tindak balas fasa cecair yang berlaku pada 

permukaan mangkin heterogen. Oleh itu, matlamat utama kajian ini adalah 

merekabentuk satu sistem pemangkinan heterogen yang baru berdasarkan idea 

bahawa aktiviti pemangkinan boleh dikawal dengan menggunakan elektrik untuk 

menghasilkan kesan kemagnetan. Polipirol dan titanium dioksida masing-masing 

telah digunakan sebagai bahan mengkonduksi elektrik dan tapak aktif pemangkinan. 

Kesan kemagnetan ke atas permukaan mengkonduksi elektrik yang mengandungi 

titanium dioksida dalam mengaruhkan penjerapan substrat organik telah dibuktikan 

oleh tindak balas pengoksidaan benzhidrol membentuk benzofenon dengan 

menggunakan hidrogen peroksida sebagai pengoksida. Keputusan menunjukkan 

bahawa terdapat kesan sinergi secara bersama medan magnet yang terjana dan 

titanium dioksida. Kajian tersebut juga telah dilanjutkan dalam meningkatkan 

penyingkiran metilena biru di bawah pengaruh medan magnet. Adalah dicadangkan, 

medan magnet yang dihasilkan oleh arus elektrik tersebut akan mengaruhkan 

penyingkiran metilena biru pada polipirol yang mengandungi titanium dioksida. 

Sebagai satu panduan global untuk tindakan masa depan, kajian ini membuka 

perspektif baru tentang penggunaan permukaan mengkonduksi elektrik yang 

mengandungi titanium dioksida bagi pemangkinan pengoksidaan medan magnet 

teraruh dalam fasa cecair. 
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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background and Problem Statement 

 

In the 21
st
 century, industrial catalyst technologies affect nearly all areas 

particularly chemical and petroleum industries since the vast majority of industrial 

processes and the synthesis of new materials are based on catalytic reactions [1].  

Moreover, catalysts are utilized as a critical component of emerging technologies for 

improving the quality of life and also for environmental protection and alternative 

energy sources.  

 

Basically, catalysts are classified into three subdisciplines according to their 

structure, composition, area of application, or state of aggregation. The three 

subdisciplines of catalysts classes are homogeneous catalysis, biocatalysis and 

heterogeneous catalysis. At present, heterogeneous catalytic reaction system is of 

fundamental importance in the chemical industry and in other technologically 

relevant applications since most of the catalytic chemical reactions are heterogeneous 

and adsorption [2-9]. 

 

Until recently, several attempts have been made to assist the heterogeneous 

catalysis in order to improve and to increase the efficiency of the heterogeneous 

catalytic reaction. For instance, the chemical effects of ultrasound, "sonochemistry", 

have been applied to heterogeneous catalysis during the past decade [10-12]. Another 

method is the application of an external electric field to enhance the heterogeneous 
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catalytic reactions [13-17]. The development of new electrocatalysis holds a place on 

most ―top ten‖ lists for catalysis where electrocatalysis at nanoparticle surface is a 

modern, authoritative treatise that provides comprehensive coverage at recent 

advances in nanoscale catalytic and electrocatalytic reactivity [7]. In recent years, 

magnetic field effect has been applied on chemical reactions like photocatalytic 

reaction [18, 19]. However, there is no report on the effect of magnetic field 

generated by external electric field in heterogeneous catalytic system. 

 

Indeed, it has been a challenge to prepare catalysts with high activity and 

design catalytic systems with high efficiency in organic chemistry, organometallic 

chemistry, inorganic chemistry and catalytic chemistry. However, many fundamental 

atomic-scale and nanoscale understanding of catalysis has been developed. The 

success of both scientists and engineers that involve in these experiments to control 

catalytic chemistry had resulted in deeper insights into catalysis and allowed the 

design of new catalysts and catalytic processes that approach the ultimate goal in the 

studies of catalysts. Moreover, the breakthrough in computational chemistry, 

measurement techniques and imaging had further provided new fundamental 

knowledge for the catalysis research community. 

 

As this study intends to design a new heterogeneous catalytic system to 

enhance the heterogeneous catalytic system by applying electric field to generate 

magnetic field on the catalyst system, more emphasis will be given to the set-up of 

the new heterogeneous catalytic system and the relevant heterogeneous catalytic 

reactions. 

 

 

1.2 Development of New Heterogeneous Catalyst System 

 

Great efforts have been undertaken internationally to understand the 

fundamental processes of the chemisorption at heterogeneous surfaces. These efforts 

also aimed to obtain a basic understanding of the bonding and reaction concepts with 

the aid of surface science techniques and the fast-growing insight into research in 

catalysis. 
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Therefore, the ultimate goal of this study is to design a new heterogeneous 

catalytic system to improve the efficiency of adsorption and desorption in catalytic 

cycle processes. This can be done by applying electric field to generate magnetic 

field on the surface of catalyst. Figure 1.1 shows the proposed design of the desired 

heterogeneous catalytic system. 

 

 

 Figure 1.1 : The conceptual model for the desired heterogeneous catalytic system 

 

One suggests that external electric field does bring forth changes in the 

chemisorption and catalytic properties of semiconductors [13-17]. Hence, this new 

catalytic system design is basically based on the idea that the surface properties of 

the catalyst can be controlled by the presence of magnetic field. Moreover, magnetic 

field will be generated on a conductor when an electric field is switched on. As a 

result, the different physicochemical processes occur and this can stimulate 

adsorption and catalytic reactions on the surface of the catalyst [13-17]. In other 

words, when there is an application of an electric field which bring forth the 

magnetic field effects, the efficiency of adsorption and desorption (interaction 

between the catalyst and reactant) in catalytic cycle processes can be controlled. 

 

Figure 1.2 shows the model of a new integrated catalytic system using 

polypyrrole and titanium dioxide as conducting and catalytic active site, respectively. 

Polypyrrole is a conducting polymer and act as ―solid‖ solvent to control the amount 

of titanium dioxide in catalytic system. Polypyrrole is one of the conducting 

polymers with "back bone" of alternating double and single bonds, along which 

electrons can flow [20]. Polypyrrole with extending π-conjugated electron systems 

 

 
 

 

 
 

 

 Adsorption 
Desorption 

Chemical reaction at 
the ratalyst surface Catalyst Surface 

Direction of  
Current Flow 

Magnetic Field, 
B 
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have been extensively studied due to its good electrical conductivity and thermal 

stability, redox properties, environmental stability and easy preparation by both 

electrochemical and chemical approaches in various organic solvents and aqueous 

solution [17, 21]. It is also efficient electron donor and good hole transporter upon 

visible light excitation [22].  

 

On the other hand, titanium dioxide was used to provide active sites for 

reaction to occur because it is resistant to photo-corrosion and has high oxidative 

power [23]. Due to its electrical conductive properties, it would be of great interest to 

study the adsorption and desorption behaviour of polypyrrole- titanium dioxide 

mixture under magnetic field. 

 

 

 

Figure 1.2 : The model of the polypyrrole and titanium dioxide 

 

 

Figure 1.3 : The chemical structure of polypyrrole polymer chain 

 

 By applying these concepts into the new integrated catalytic system, this 

model will be introduced with the expectation of combining the effects of adsorption 

ability of polypyrrole and the reactivity of titanium dioxide to enhance the overall 

catalytic activity.  

 

N

H

N
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 The effect of magnetic field on catalytic activity was investigated through 

several chemical reactions and adsorption experiments. In this study, epoxidation of 

alkane, oxidation of alcohol and also adsorption of dye were used to demonstrate the 

effect of magnetic field on the catalytic activity. The research questions and 

statement of the problem are shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 : Schematic representation of the research question and statement of the  

problem   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Research Question 
 

 What is the applicable design to demonstrate the effect of magnetic field 

induced by electric current in heterogeneous catalytic system? 

 How the effects of magnetic field generated by electric fields influence the 

catalytic activity in liquid phase oxidation reaction? 

 What chemical reaction is applicable to the magnetic-field-induced catalytic 

system? 

 
 

 
 

Statement of the Problem 
 

Can magnetic field effects generated by electric field increase catalytic activity 

in liquid phase reaction over solid catalyst? 

 
 

 

 

Development of a new integrated catalytic system based 

on electrically conducting surface (polypyrrrole) 

containing titanium dioxide under magnetic field 
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1.3 Objective of Study 

 

Main objectives of this study are: 

 

(a) To develop a new magnetic-field-induced catalytic system based on 

electrically conducting surface containing titanium dioxide.  

 

(b) To study the influence of magnetic field effects generated by external electric 

field on the catalytic activity in liquid phase catalysis over electrically 

conducting surface containing titanium dioxide. 

 

 

1.4 Scope of Study 

 

This study investigated the magnetic field effect generated by external 

electric field in heterogeneous catalysis by using several integrated chemical 

system containing polypyrrole and titanium dioxide as model of new catalytic 

system. The models are tested for several chemical reactions like epoxidation of 1-

octene, photodegradation of methylene blue reaction and the oxidation of benzhydrol 

by using aqueous hydrogen peroxide to clarify the effect of generated magnetic field 

on catalytic activity. The new catalytic system was introduced as a new approach to 

improve the activities of the heterogeneous catalysts by applying the magnetic field. 

Another experiment on dye adsorption was done to prove the effect of generated 

magnetic field on adsorption activity of the catalytic system. 
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