

SOFTWARE WATERMARKING USING FIXED SIZE ENCODING AND

RANDOM DUMMY METHOD INSERTION

AZYAN YUSRA BINTI KAPI @ KAHBI

A dissertation submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia

MAY 2011

 iii

“Dedicated to my beloved family and friends, without their understanding,

supports, and most of all love, the completion of this work would not have been

possible.”

 iv

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah because of His blessings; I

would be able to successfully complete this dissertation. My word of appreciation

goes to Associate Professor Dr. Subariah Ibrahim for her priceless supervision,

inspiring discussion and fruitful collaboration. I am thankful for all her invaluable

hours to provide constructive critics, enthusiasm, immerse knowledge and

continuous feedback. Without her continued support and patience, this dissertation

would not have been the same as presented here.

I am also indebted to Universiti Teknologi MARA for funding my Master

study. It is my sincere hope that the knowledge and experience gained here can be

put to good use and further contribution in the future.

My thanks also extend to my friends, for their enlightening companionship

and encouragement of trudging through all the moments from down to up the hill in

the run to complete this Master program. I would not have done it without the help

and motivation from all of you.

To my family, no words can describe my gratefulness for always being there

despite of the distance. They showered me with love and compassion and enrich my

life like no other. They are the source of comfort and kept me focus the priorities in

life and therefore, this work is dedicated to them.

 v

ABSTRACT

Recently, the rise of software piracy has become rampant and a major

concern among software developers. The global software industry lost about USD 50

billion in 2008. One of the techniques that can be used to discourage piracy is

watermarking, by embedding developer’s watermark into software which can later be

extracted to prove ownership. During the last few years, different algorithms were

produced and developed to hide the watermark inside software. This study analyzes

software watermarking algorithms that exist in the literature and then identified a

dummy method algorithm is suitable for watermarking. In addition, this study

enhances dummy method insertion technique in embedding and recognizing the

watermark in Java class files. The enhancement includes fixed size encoding scheme

and random dummy method insertion. The proposed fixed size encoding scheme

used hash function that can produce a fixed size watermark bit sequences. Random

dummy method insertion selects a dummy method at random from a collection of

dummy methods. Finally, this study analyzes the enhancement of dummy method

insertion technique using two different measures, namely data-rate and resilience of

the watermarking algorithm. In term of data rate, the results show that encoded

watermark for proposed encoding scheme is always fixed even though size of

watermark character is increased. In term of resilience, experimental results show no

similarity between class files and thus survived from collusion attack compared to

previous method.

 vi

ABSTRAK

Kebelakangan ini, peningkatan cetak rompak perisian semakin berleluasa dan

menjadi perhatian utama di kalangan pembangun perisian. Industri perisian global

telah kehilangan sekitar USD 50 bilion pada tahun 2008. Salah satu teknik yang

boleh digunakan untuk mencegah cetak rompak perisian ialah tera air, dengan

membenamkan tera air pembangun perisian yang kemudiannya boleh diekstrak untuk

membuktikan hak milik. Sejak beberapa tahun lalu, algoritma yang berbeza telah

dihasilkan dan dibangunkan untuk menyembunyikan tera air di dalam perisian.

Kajian ini menganalisis algoritma perisian tera air yang telah wujud dalam

kesusasteraan dan mengenalpasti bahawa algoritma kaedah semu sesuai untuk

perisian tera air. Selain itu, kajian ini meningkatkan teknik penyisipan kaedah semu

dalam pembenaman dan pengenalpastian tera air dalam fail Java. Peningkatan yang

dilakukan termasuk skim pengekodan bersaiz tetap dan penyisipan kaedah semu

secara rawak. Skim pengekodan bersaiz tetap yang dicadangkan menggunakan

fungsi cincang yang dapat menghasilkan turutan bit tera air yang tetap. Penyisipan

rawak kaedah semu memilih kaedah semu secara rawak daripada koleksi kaedah

semu. Akhirnya, kajian ini menganalisis peningkatan teknik penyisipan kaedah semu

menggunakan dua ukuran yang berbeza, iaitu kadar data dan ketahanan algoritma

pembenaman tera air. Keputusan menunjukkan kadar data tera air yang dihasilkan

untuk skim pengekodan yang dicadangkan adalah sentiasa tetap walaupun saiz tera

air meningkat. Dalam hal ketahanan, hasil eksperimen bagi beberapa fail Java yang

telah dibenamkan tidak menunjukkan kesamaan dan oleh itu, selamat dari serangan

kolusi berbanding teknik terdahulu.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION

ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

LIST OF TABLES xi

LIST OF FIGURES xii

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Problem Background 3

 1.3 Problem Statement 7

 1.4 Dissertation Aim 8

 1.5 Objectives 8

1.6 Dissertation Scope 8

1.7 Significance of the Dissertation 9

1.8 Organization of Report 10

2 LITERATURE REVIEW 12

 2.1 Introduction 12

 2.2 Overview of Software Protection 13

2.2.1 Tamper Resistance 14

 viii

2.2.2 Multi-block hashing scheme 15

2.2.3 Hardware Based Solutions 15

2.2.4 Checksums 16

2.2.5 Code Obfuscation 16

2.2.6 Guards 17

2.2.7 Software Aging 18

2.2.8 Cryptographic Techniques 18

2.2.9 Watermarking 18

2.3 Classification of Software Watermarking 19

2.3.1 Classification by Functionality 19

2.3.1.1 Authorship Mark 20

2.3.1.2 Fingerprint Mark 20

2.3.1.3 Validation Mark 21

2.3.1.4 Licensing Mark 21

2.3.2 Classification by Subsystem 22

2.3.3 Classification by Technique 22

2.4 Properties of Watermark 23

2.4.1 Credibility 24

2.4.2 Data Rate 25

2.4.3 Stealth 25

2.4.4 Part Protection 25

2.4.5 Overhead 26

2.4.6 Resilience 26

2.5 Types of Attacks against Watermark 27

2.5.1 Additive attack 27

2.5.2 Subtractive attack 27

2.5.3 Distortive attack 28

2.5.4 Recognition attack 28

2.4.5 Collusion attack 28

2.6 Existing Technique for Watermarking 29

2.6.1 Static Watermark 29

2.6.2 Dynamic Watermark 34

2.6 The Dummy Method Insertion Technique 37

2.7 Summary 40

 ix

3 RESEARCH METHODOLOGY 41

3.1 Introduction 41

3.2 Research Framework 41

3.2.1 Phase 1: Analysis of Software Watermarking
Algorithm 43

3.2.2.1 Choosing Java Files 44

3.2.2.2 Watermark Embedding 47

3.2.2.3 Watermark Retrieving 49

3.2.2.4 Comparisons between Watermarked
Files and Original Files 50

3.2.2 Phase 2: Watermark Encoding and Dummy Method
Development 51

3.2.3 Phase 3: Random Dummy Method Insertion
Technique and Recognition 51

 3.3 Summary 54

4 ANALYSIS OF SOFTWARE WATERMARKING

ALGORITHMS 55

4.1 Introduction 55

4.2 Analysis on Existing Algorithm 55

4.2.1 Results on Analysis of Software Watermarking 56

 4.2.1.1 Credibility 57

4.2.1.2 Data Rate 61

4.2.1.3 Stealth 63

4.2.1.4 Resilience 65

 4.3 Problem Identification 67

4.4 Summary 72

5 DESIGN OF FIXED SIZE ENCODING AND DUMMY

METHOD DEVELOPMENT 73

5.1 Introduction 73

5.2 Fixed Size Encoding Scheme 74

5.3 Dummy Method Development 76

5.3.1 Dummy Method Creation 77

 x

5.3.2 Random Dummy Method Insertion 80

5.4 Watermark Embedding and Recognition 81

5.4.1 Embedding Phase 82

5.4.2 Recognition Phase 84

 5.5 Summary 86

6 RESULTS AND DISCUSSION 88

6.1 Introduction 88

6.2 Results on Fixed Size Encoding Scheme 89

6.3 Results on Dummy Method Development 91

6.3.1 Dummy Method Creation 91

 6.3.2 Random Dummy Method Insertion 94

 6.4 Results on Watermark Properties 98

 6.4.1 Credibility 98

 6.4.1.1 Embedding Process 103

6.4.1.2 Recognition Process 104

6.4.2 Data Rate 105

6.4.3 Stealth 119

6.4.4 Resilience 110

6.4.4.1 Collusion Attack 111

 6.5 Summary 114

7 CONCLUSION AND RECOMMENDATION 115

7.1 Introduction 115

7.2 Concluding Remarks 115

7.3 Contributions 117

7.4 Future Works and Recommendation 119

7.5 Summary 120

REFERENCES 121

Appendices A-B 126-131

 xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Example of bit assignment table for encoding procedure 37

2.2 Example of encoded watermark 38

2.3 Hash table used in embedding process by Monden et al.

 (2000) 38

4.1 Results after embedding watermark into test files 57

4.2 Results after recognition process 59

4.3 Size of test files after being watermarked in bytes 61

4.4 Size of watermark embedded in the test files 62

4.5 Results after running the watermarked jar files 64

4.6 Results after second time embedding using the same algorithm 66

4.7 Results of analysis in percentage 68

6.1 Watermark format 89

6.2 Comparison of previous encoding scheme and proposed
method 90

6.3 Corresponding dummy method’s byte code 92

6.4 Comparison of embedded watermark in both methods 97

6.5 Results after embedding process 103

6.6 Results after recognition process 104

6.7 Number of bit needed for embedding process in previous
encoding 106

6.8 Number of bit needed for embedding process in
proposed encoding 107

6.9 Comparison of encoded watermark in bit length 108

 6.10 Results after embedding process and testing each of class file 110

 xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Overview of the use of software protection done by software
developer by Naumovich and Memon (2003) 13

2.2 Example of Code Obfuscation 17

2.3 Sample of dummy method provided by Monden et al. (2000) 30

2.4 Overview of watermarking encoding procedure proposed by
Monden et al. (2000) 30

2.5 Collections of true opaque predicates used in the implementation
of the Arboit Algorithm. 31

2.6 The original QP algorithm proposed by Qu and Potkonjak (1999) 33

2.7 The QPS algorithm implemented by Miles and Collberg (2004) 33

2.8 Overview of embedding and recognition of a watermark
proposed by Collberg et al. (2004) 35

2.9 Overview of Fukushima and Sakurai (2003) Code Obfuscation
 technique 39

3.1 Research Framework 42

3.2 Interface of Sandmark 48

3.3 Example of watermark embedding 48

3.4 Example of watermark retrieving 49

3.5 Overview of encoding procedure 50

3.6 Overview of static watermarking mechanism 52

3.7 Overview of embedding process by Myles et al. (2004) 53

3.8 Overview of recognition process in proposed method 53

4.1 Dummy method in decompiled test file 69

 xiii

4.2 Dummy method in decompiled test file using added length of
 watermark 70

4.3 Dummy Method in “Metalworks” test file 71

4.4 Dummy Method in “FileChooserDemo” test file 71

5.1 Design of watermark encoding procedure 75

5.2 Flowchart of encoding procedure on proposed method 76

5.3 Flowcharts in designing dummy method for proposed method 78

5.4 Pseudo code for calculating total size of encoding space 79

5.5 Sample of dummy method’s code statement 80

5.6 Random insertion of dummy method 81

5.7 Design of embedding process 82

5.8 Step by step in embedding process 83

5.9 Design of recognition phase 85

5.10 Step by step in recognition process 86

6.1 Dummy method coding representation 92

6.2 Decompiled dummy method in previous method for 20 watermark
 characters 94

6.3 Decompiled dummy method in proposed method for 20 watermark
 characters 95

6.4 Decompiled dummy method in previous method for 44 watermark
 characters 96

6.5 Decompiled dummy method in proposed method for 44 watermark
 characters 96

6.6 Printed screen of CCK before embedding process 96

6.7 Printed screen of CCK after embedding process 100

6.8 Parameter and opcode instruction before embedding process 101

6.9 Parameter and opcode instruction after embedding process 102

6.10 Graph show comparison between previous and proposed
encoding 108

6.11 Dummy method on “MetalworksFrame” class file after
decompiling process 112

6.12 Dummy method on “MetalworksDocumentFrame” after
decompiling process 112

6.13 Dummy method on “MetalworksPrefs” class file after
decompiling process 113

CHAPTER 1

INTRODUCTION

1.1 Overview

 Nowadays, software has become a part of human’s daily life to ease many

tasks in the software industries, e-commerce and many more. As the usages of the

software are growing rapidly, the rise of software piracy has become a major concern

for software developers.

 Among the software, Java applications that have been sold to users and

distributed through the internet also suffered from piracy. While Java becomes a

popular language in software industry and education, the advantages of Java which

are platform-independent and its portability has create problem towards Java’s user.

Platform-independent means that once Java source code is written and compiled, it

can be run anywhere in any platform.

 2

The process of reverse-engineering is become easier, thus competitors can

copy other person’s work easily. This could bring benefits to competitors since it is

time consuming and reduce cost without having to create the algorithm themselves.

Furthermore, competitors and other people could claim other developer’s program as

their own products.

In order to make Java application executes in any platform, Java source code

needs to be translated into Java class file. Based on Lim et al. (2009), Java class file

contains Java byte code and understandable by Java Virtual Machine (JVM). An

attack to this class file can easily be made by reverse-engineering or de-compilation

of the class file itself. Thus, extracting the source code from the class file is possible

by many tools that can be found in the internet.

As the technology become rampant, the process of copying other person’s

work become easier and it causes piracy to become crucial issues. According to the

study done by the Business Software Alliance (BSA) in 2009 software piracy has

caused USD 50 billion lost in the global software industry, whereas USD 368 million

lost in Malaysia. In previous literature, there are many techniques to prevent software

piracy. Code obfuscation, hardware based solution, checksums and watermarking are

some of the example of the techniques that exist in the literature mentioned by

Naumovich and Memon (2003). The details on software protection techniques were

discussed in Section 2.2 of Chapter 2.

Software watermarking is one of the techniques that were used to prevent

piracy by hiding the developer’s information inside the software as stated by

Cappaert et al. (2008). They stated that the information then can be retrieved and

used in the future to prove ownership of the original developer.

 3

1.2 Problem Background

Generally, in software industry and education, many people tend to copy

algorithm in the software and to make it worse, they claim it as their works.

Sivadasan and Lal (2007) stated that most of algorithms in software can easily be

stolen by other competitors in the industry using many techniques and available

tools. Zhu et al. (2005) also mentioned the fact that software piracy has become more

and more important issue in today’s business due to loss of million dollars in the

industry.

Since many parties have suffered from software piracy, Pervez et al. (2008)

indicated that many attempts are made to protect copyright in software. Software

watermarking is one of the attempts where the copyright information is embedded in

the software itself.

In software watermarking, developer embeds a unique identifier into software

using specific tool that implements software watermarking algorithm. Watermarked

software which contains the original software and developer’s information will then

be produced and distributed to the users whether for personal or commercial uses.

When the developer noticed that someone is copying his software by claiming it as

theirs, developer could come out with a proof. In this situation, the proof is the

developer’s information hidden inside the software. By entering specific input to the

tool that was used originally in the embedding process, the developer could retrieve

his information from the software. During the recognition process, the tool must have

the ability to recognize the watermark’s value in the software. The developer could

declare that the software is originally developed by him and he is the one that embed

the copyright information inside the software.

 4

As there are many known techniques nowadays to protect software, more and

more attacks have also become viable. This statement supported by Stern et al.

(1999) and they claimed that it is impossible to secure the copy of digital document

but it is possible to discourage the piracy.

In term of Java application, Monden et al. (2000) claimed that even though

the Java application has a watermark embedded in it, it is easy to remove the

watermark and embed a new watermark. This will replace the old watermark with

the attacker’s watermark information. Thus, the copyright of the original author is

not permanently embedded in the application itself and cannot be used to prove

ownership in future.

Many researchers found that even though watermark can prove ownership,

Curran et al., (2003) argued that most of watermark that can prove ownership usually

cannot survive from various attacks. Although removal attack is the criteria that need

to be given more concerned, some other attacks such as additive, subtractive,

collusion and decompile-recompile attack are still vulnerable to the software. Further

descriptions of these attacks were described in Section 2.5 of Chapter 2.

Up until now, many algorithms such as Qu-Potkonjak (QP) algorithm,

opaque predicate algorithm and many others were introduced in the literature and

some of the algorithms were described in Section 2.4 of Chapter 2. Despite all that,

Myles et al. (2004) summarized that unfortunately most of the algorithms on

software watermarking are not well-described, not being implemented and evaluated

yet. Dummy method insertion technique by Monden et al. (2000) is one of the

existing software watermarking algorithms that has several disadvantage. After

several of experiments have been carried out, the disadvantages of dummy method

have been discovered by Myles et al. (2004). In their study, they have tested two

algorithms which are dummy method insertion algorithm and Davidson–Myhrvold

 5

(DM) algorithm (Davidson and Myhrvold, 1996). Both of the algorithms have been

evaluated according to the six different properties mentioned in their study.

In their evaluation, DM algorithm reveals a high credibility, satisfactory in

data-rate and 50% survival rate towards resiliency. In case of dummy method

algorithm, they have pointed several pros and cons in term of part protection, data-

rate and also has 70% survival rate towards resiliency. The following paragraphs

describe in more detail about these three terms.

Generally in the dummy method insertion technique, all the developer’s

information is hidden inside the dummy method. In term of part protection, the

technique or algorithm must be able to fully protect the watermark so that the whole

watermark is spread throughout the entire class file. Both of DM algorithm and

dummy method insertion algorithm hide the watermark in a single method. Thus,

Myles et al. (2004) concluded that DM algorithm and dummy method insertion

algorithm can be considered as poor, since any alteration involved in the statement of

the method will destroy the watermark.

High data rate represents a good point in the algorithm as it can hide a large

portion of watermark within the class file. In term of the data rate, dummy method

insertion algorithm does not have any difficulties compared to DM algorithm. This is

because DM algorithm embeds the watermark in the largest control-flow graph

(CFG) in application and depends on its size. As for dummy method algorithm, since

the algorithm prepared the space for dummy method according to the size of the

watermark, it has no difficulties in embedding large size of watermark. Thus, no

matter how large the watermark’s size, the dummy method could provide spaces for

the watermark. But, in contrast, the larger the watermark’s size, the longer dummy

method’s instruction will be produced. In this situation, instructions in the dummy

method become longer than expected and hence will create suspicions from the

attacker. Thus, the dummy method algorithm has a disadvantage in term of data rate,

 6

since it has the ability to hide various sizes of watermark, but then it leads to the

weakness of the dummy method.

Resilience can be defined as the capability of the technique in securing the

watermark, resist and resilient to the attack imposed upon them. There are four types

of attacks that have been highlighted by Myles et al. (2004) which are additive,

subtractive, collusion and distortive attack. In addition to classify the attack, Gupta

and Pieprzykalso (2007) have come out with seven different attacks towards the

watermark in class file. However, Myles et al. (2004) highlight the disadvantage in

term of resilience which is collusion attack towards dummy method. The collusion

attack consists of performing different watermark in the same class file. After

decompiling and comparing both of the watermarked class file, several instructions

in the class file can be seen noticeably by the attacker. The only difference in the

class file can be considered as the watermark. This caused dummy method to be

discovered by the attacker and still need to be improved in term of collusion attack.

In this study, in formulating a research problem, a series of analysis has been

done, but using a different test file from what Myles et al. (2004) have been used.

After the analysis, the same problems were found in the three aspects mentioned by

them which are part protection, data-rate and resilience. The discussion and analysis

of this study can be referred in Section 2.6 of Chapter 2 and the results of the

analysis were presented in Section 4.22 Chapter 4.

In this study, there are two criteria in the dummy method insertion technique

that need to be improved. The criteria are in term of data rate and the collusion attack

that are needed to be tested towards the watermarked class file.

 7

1.3 Problem Statement

Java application has suffered from piracy and many algorithms have been

introduced especially in the area of software watermarking to discourage piracy. One

of the existing techniques which have been described in previous section is dummy

method insertion algorithm. The dummy method insertion algorithm is then

enhanced by Arboit (2002) by inserting opaque predicate to the calling method.

Then, the credibility of dummy method technique also has been improved by Akbar

(2010). However, the technique also has some flaws in other criteria that need to be

improved. Problem with the dummy method insertion algorithm has been described

in previous section.

In this study, after conducting an analysis and several backgrounds study in

the literature, several questions have been formulated. Followed by this problem, the

following questions have to be satisfied in conducting this study:

i. How to discover potential values of software watermarking

algorithms that are going to be enhanced?

ii. How to make embedded watermark in the Java class file become not

easily seen or less noticeable to the attacker?

iii. How to avoid increasing instructions in a dummy method during the

embedding process?

iv. How to produce a fixed size of watermark bit sequences?

v. How to compare the proposed method with the previous technique in

term of data-rate and resilience?

 8

1.4 Dissertation Aim

This study is aim to discourage piracy by helping the Java developers to

prove ownership towards their code on the future and enhance the dummy method

insertion technique so that it become less noticeable to the attacker.

1.5 Objectives

In completing this study, there are three objectives that need to be achieved. The

objectives are as follows:

i. To analyze existing technique in software watermarking.

ii. To design and implement an encoding scheme for watermark to be

embedded in software.

iii. To enhance a watermarking technique that is less noticeable to

attacker.

1.6 Dissertation Scope

The scope of the dissertation includes the following areas:

i. The dissertation is focus on placing watermark in Java class file.

 9

ii. The performance of the technique is evaluated using a set of

watermark properties which are credibility, data rate, stealth and

resilience.

iii. Only five dummy methods were created in this study.

iv. Test files are taken from sample code provided in Java Development

Kit (JDK) version 6.

1.7 Significance of the Dissertation

Generally, this study proposed a technique in embedding and recognizing a

watermark in Java class file. The advantages and benefits in embedding and

extracting the watermark in the application will contribute to original developer of

the Java class file. Besides that, by placing the watermark in the program, the

developer’s information will remain embedded in the class file and other person

cannot claim the program as their works. This is because if a person tries to copy the

program, the original developer can prove his/her ownership by extracting the

watermark from the program and prove that it is his/her. This scenario will help in

reducing the number of software piracy.

In more details in term of significance, this study aims to enhance the

technique in software watermarking which is dummy method insertion technique. By

enhancing the algorithm according to both of data rate and resilience criteria, the

dummy method can disguise as part of the methods in the class file, instead of its

unused function. By all means, the dummy method or watermark that is embedded in

Java class file will be less noticeable to attacker that performs decompile-recompile

attack. In term of data-rate, by using the proposed method, the size of instructions in

dummy method will be in a fixed number.

 10

Thus, the proposed method can be used in proving copyright of the Java class

file’s developer. In this case, it is hope that the enhanced dummy method algorithm

can be used in recognizing the original developer in future demand.

1.8 Organization of Report

This study consists of seven chapters. The chapters are organized according

to different works that involved in this study. The detailed organization of this report

is described in following paragraphs.

 This section presents how this report is organize in different chapters.

Chapter 1 of this report consists of overview of the study, problem background,

problem statement, objectives, scope and significance of this study.

 Chapter 2 of this report presents a review of the literature related to the

area of software watermarking. It discusses software protection technique in details

that includes software watermarking, type of watermark and several attacks towards

them, functionality, several problems in the previous literature regarding the

technique and current solution in software watermarking.

 Chapter 3 is consists of wide description on research methodology, which

provides a rich discussion about the flow of this research. This includes how the

operational and experimental work has been carried out for the study.

 11

 Chapter 4 is the discussion on analysis conducted in early phase of this

study. This includes the results of experimental process and the comparisons of

different technique in software watermarking. The results discussed in this chapter

are used to formulate a problem in existing technique in software watermarking.

 After that, Chapter 5 discussed designs of proposed method in detail.

Designs include two processes which are fixed encoding scheme and dummy method

development.

 Results on the proposed method will be compared with previous method in

Chapter 6. A watermark property on credibility, data rate, stealth and resilience is

tested on dataset defined in Chapter 3.

 Chapter 7 is the conclusion of overall chapter and future works in the

related area of software watermarking will be discussed in order to provide a better

quality in future study. This includes recommendations for further study.

 121

REFERENCES

Akbar, Z. (2010). Watermarking Java Programs using Dummy Methods with

Dynamically Opaque Predicates, Computing Research Repository (CoRR)

2010 informal publication.

Arboit, G. (2002). A method for watermarking java programs via opaque predicates,

Procedding of the Fifth International Conference on Electronic Commerce

Research (ICECR-5). October 23- 27, 2002. Montreal, Canada.

Business Software Alliance. Sixth Annual BSA Global Software Piracy Study PC

Software Piracy Rates and Losses 2004–2008. United States, 2009.

Cappaert, J., Preneel, B., Anckaert, B., Madou, M., and Bosschere. K. D. (2008).

Towards Tamper Resistant Code Encryption: Practice and Experience.

Proceedings of the 4th international conference on Information security

practice and experience (ISPEC'08), Liqun Chen, Yi Mu, and Willy Susilo

(Eds.). Springer-Verlag, Berlin, Heidelberg, 86-100.

Curran, D., Hurley, N. J., and Cinnéide, M. Ó. (2003). Securing Java through

Software Watermarking. Proceedings of the 2nd international conference on

Principles and practice of programming in Java, 2003. (PPPJ '03). Computer

Science Press, Inc., New York, NY, USA, 145-148.

Collberg, C. (2003). Sandmark algorithms. University of Arizona, Department of

Computer Science, Tech. Rep., Jul. 2003.

Collberg, C., Myles, G. and Huntwork, A. (2003). Sandmark—A Tool for Software

Protection Research. IEEE Security and Privacy 1, 4 (July 2003), 40-49.

Collberg, C., Carter, E., Debray, S., Huntwork, A., Kececioglu, J., Linn, C. and

Stepp. M. (2004). Dynamic Path-Based Software Watermarking. Proceedings

of the ACM SIGPLAN 2004 conference on Programming language design

and implementation (PLDI '04). ACM, New York, NY, USA, 107-118.

 122

Collberg, C., Huntwork, A. and Carter, E., (2004). Graph Theoretic Software

Watermarks: Implementation, Analysis, and Attacks. Proceeding of the 6th

International Information Hiding Workshop, 2004. May 23-25, 2004.

Toronto, Canada.

Collberg, C. and Thomborson, C. (1999). Software Watermarking: Models and

Dynamic Embedding. Proceeding of ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Language (POPL99). January 20-22, 1999. San

Antonio Texas, USA. 311-324.

Collberg, C. and Thomborson, C. (2002). Watermarking, Tamper-Proofing, and

Obfuscation-Tools for Software Protection. IEEE Transactions on Software

Engineering, 735-746, August, 2002.

Cousot, P. and Cousot, R. (2004). An Abstract Interpretation-Based Framework for

Software Watermarking. In Conference Record of the 31st ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Programming Languages,

Venice, Italy, January 14-16, 2004. ACM Press, New York, U.S.A.

2004.173-185.

Davidson, R. and Myhrvold, N. (1996). Method and system for generating and

auditing a signature for a computer program, US Patent 5, 559, 884.1996.

Drape, S. (2009). Intellectual Property Protection using Obfuscation. Research

Project sponsored by Siemens AG, Munich. 2009.

Fukushima, K. and Sakurai, K. (2004). A Software Fingerprinting Scheme for Java

Using Class files Obfuscation. In: Fukushima, K. and Sakurai, K.

Information Security Applications Lecture Notes in Computer Science.

Berlin/Heidelberg Springer. 1991-2009; 2004.

Gupta, G. and Pieprzyk, J. (2007). Software Watermarking Resilient to Debugging

Attacks (2007). Journal of Multimedia, 2, 10-16, Apr 2007.

Hamilton, J. (2008). Static Source Code Analysis Tools and their Application to the

Detection of Plagiarism in Java Programs. Department of Computing at

Goldsmiths University of London (2008).

Hamilton, J. and Danicic, S. (2010). An Evaluation of Static Java Bytecode

Watermarking. Proceedings of the World Congress on Engineering and

Computer Science 2010 WCECS 2010, October 20-22, 2010, San Francisco,

USA

 123

Jamal, Z. and Wang, H. (2009). On the Analysis of Dynamic Software

Watermarking. Proceeding of 2nd International Conference on Software

Technology and Engineering (ICSTE). October 3- 5, 2010. San Juan, Puerto

Rico. 26-30.

Lim, H., Park, H., Choi, S. and Han, T. (2009). A Method for Detecting the Theft of

Java Programs through Analysis of the Control Flow Information. Journal of

Information and Software Technology 51, September 9, 2009. 1338-1350.

Malik, S., H., K., Khan, A., Khalil, S. and Amjad, S., (2009). Evaluating

Effectiveness of Tamper-proofing on Dynamic Graph Software Watermarks.

International Journal of Computer Science and Information Security IJCSIS

2009. 6(3).

Memon, J., M., Khan, A., Baig, A., Shah, A. (2007). A Study of Software Protection

Techniques. Innovations and Advanced Techniques in Computer and

Information Sciences and Engineering. 249-253.

Monden, A., Iida H., Matsumoto K., Inoue K., and Torii K. (2000). A Practical

Method for Watermarking Java Programs. Proceeding of The 24th

Computer Software and Applications Conference (compsac2000), Taipei,

Taiwan.

Myles, G., and Collberg, C. (2004). Software Watermarking Through Register

Allocation: Implementation, Analysis, and Attacks. Department of Computer

Science University of Arizona, Tucson, AZ, 85721, USA.

Myles, G., Collberg, C., Heidepriem, Z. and Navabi, A. (2005). The Evaluation of

Two Software Watermarking Algorithms. Journal of Software – Practice and

Experience. 35, 923–938

Myles, G., and Collberg, C. (2006). Software Watermarking Via Opaque Predicates:

Implementation, Analysis, and Attacks. 6, 2 April, 2006. 155-171.

Nagra, J. (2006). Collusive Attacks against Software Watermarks. Annual

International Technical Conference of IEEE TENCON Region 10

Conference. 14-17 November, 2006. Wan Chai, Hong Kong.

Nagra, J. and Thomborson, C. (2004). Threading Software Watermarks. Proceedings

of 6
th

 International Workshop on Information Hiding, LNCS Volume 3200,

Springer-Verlag.

Nagra, J., Thomborson, C. and Collberg, C. (2002). A Functional Taxonomy for

Software Watermarking. Proceeding Twenty-Fifth Australasian Computer

 124

Science Conference (ACSC2002), Melbourne, Australia. CRPIT, 4.

Oudshoorn, M. J., Ed. ACS. 177-186.

Naumovich, G. and Memon, N. (2003). Preventing Piracy, Reverse Engineering,

And Tampering. Computer , 36(7), 64- 71, July 2003.

Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q. and Zhang, Y. (2000).

Experience with Software Watermarking. Proceedings of the 16th Annual

Computer Security Applications Conference (ACSAC '00). IEEE Computer

Society, Washington, DC, USA, 308.

Pastuszak, J., Michalek, D. and Pieprzyk J. (2001). Copyright Protection of Object-

Oriented Software. Lecture Notes in Computer Science, Proceedings of the

4th International Conference Seoul on Information Security and Cryptology

table of contents. 2288. 186 – 199,

Pervez, Z., Noor-ul-Qayyum, Mahmood, Y. and Ahmad, H.F. (2008). Semblance

Based Disseminated Software Watermarking Algorithm. 23rd International

Symposium on Computer and Information Sciences, 2008. ISCIS '08. 27-29

October, 2008. 1-4.

Sivadasan, P. and Lal, S. P. (2007). JConstHide: A Framework for Java Source Code

Constant Hiding. Computing Research Repository CoRR(2009) informal

publication.

Stern, J. P., Hachez, G., Koeune, F. and Jacques, J. (1999). Robust Object

Watermarking Application to code. In Information Hiding, Springer-Verlag,

1999.

Sun, G. and Sun X. (2010). Software Watermarking Based On Condensed Co-

Change Graph Cluster. Journal of Information Technology. 9, 949-955.

Venkatesan, R., Vazirani, V. V. and Sinha, S., (2001). A Graph Theoretic Approach

to Software Watermarking. Proceedings of the 4th International Workshop

on Information Hiding, Springer-Verlag.

Zhao, H. (2002) Watermark Attacks [PowerPoint slides]. Retrieved from ENEE739M

Multimedia Comm. & Info. Security(S’02).

Zhu, J. Q., Liu Y. H. and Ke, Y. (2009). A Robust Dynamic Watermarking Scheme

Based on STBDW. WRI World Congress on Computer Science and

Information Engineering. 7, 602-606.

 125

Zhu, W. F. (2007). Concepts and Techniques in Software Watermarking and

Obfuscation. Thesis of Doctor of Philosophy in Computer Science. The

Department of Computer Sciences, University of Auckland, New Zealand.

Zhu, W., Thomborson, C. and Wang, F.Y. (2005). A Survey of Software

Watermarking. Conference of Intelligence and Security Informatics IEEE ISI-

2005, May 2005. Atlanta, Georgia. 454-458.

Zhu, W. and Thomborson, C. (2006). Algorithms to Watermark Software through

Register Allocation. Digital Rights Management: Technologies, Issues,

Challenges and Systems, First International Conference DRMTICS 2005. 31th

October – 2nd November, 2005. Sydney, Australia. 180–191.

