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ABSTRACT

Biosurfactant becomes important nowadays as sustainable bio-derived
surfactants emerged to replace the petroleum based surfactant. In this work, the
fusion peptide biosurfactant (HSG) was successfully expressed when induced with 1
mM Isopropyl-B-D-thiogalactopyranoside (IPTG). The combined process of
chemical extraction and cross-flow microfiltration was conducted to disrupt the cell
membrane and isolate the desired product, HSG. A combination of different
concentration of Triton X-100 and Ethylenediaminetetraacetic Acid (EDTA) was
investigated to obtain maximized protein extraction from the cells. The efficiency of
the chemical extraction was compared with B-PER commercial bacterial extraction
kit. Protein estimation was performed using Bicinchoninic Acid (BCA) Protein
Assay method and Polyacrylamide Gel Electrophoresis (PAGE) analysis. The results
showed that the combination of 1% vv-1 Triton X-100 and 1 mM EDTA released the
highest amount of soluble protein and is comparable to the B-PER commercial
bacterial extraction Kkit.  The extraction broth is then applied to cross-flow
microfiltration process with a 0.2 |im polysulfone hollow fiber membrane. The
effect of rotor speed and transmembrane pressure (TMP) for peptide transmission
were investigated. The rotor speed for the microfiltration test was varied at 150, 200
and 300 rpm which gave rise to the uncontrolled TMP of 2.5, 25 and 4 psig
respectively. The highest overall permeate flux achieved at 300 rpm was selected for
further investigation at two different TMP of 4 and 5 psig. It was found that the
operating conditions at 300 rpm and 5 psig gave 36.33% more protein transmission
as compared to operation at 300 rpm and 4 psig. Backpulsing was applied to the
microfiltration system to minimize the fouling problem. An overall protein
transmission of about 59.6% was achieved with the operating parameter of 300 rpm

at constant transmembrane pressure of 5 psig.
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ABSTRAK

Biosurfaktan menjadi penting pada masa kini kerana surfaktan yang
dihasilkan secara biologi bakal menggantikan surfaktan yang dihasilkan daripada
minyak petrol. Dalam kerja ini, fusi peptida biosurfaktan (HSG) berjaya
dieksperasikan apabila diinduksi dengan 1 mM Isopropyl-B-D-thiogalactopyranoside
(IPTG). Kombinasi proses ekstraksi secara kimia dan penurasan mikro bersilang-
aliran dijalankan untuk memecahkan membran sel dan mengasingkan produk yang
dikehendaki, HSG. Kombinasi pelbagai kepekatan Triton X-100 dan Asid
Ethylenediaminetetraasetik (EDTA) telah diselidik untuk mendapatkan ekstraksi
protein yang optimum. Kecekapan ekstraksi secara kimia ini telah dibandingkan
dengan hasil ekstraksi yang menggunakan kit ekstraksi bakteria protein komersil B-
PER. Anggaran protein dilakukan dengan menggunakan kaedah ujian Protein Asid
Bicinchoninic (BCA) dan dianalisa dengan Polyacrylamide Gel Electrophoresis
(PAGE). Keputusan kajian menunjukkan bahawa kombinasi daripada 1% vv-1 Triton
X-100 dan 1 mM EDTA menghasilkan protein terlarut yang paling tinggi di mana
keputusan ini adalah setanding dengan keputusan daripada Kit ekstraksi bakteria
protein B-PER. Kaldu ekstraksi ini dituraskan secara penurasan mikro bersilang-
aliran dengan menggunakan membran serat polisulfon berongga 0.2 pm. Pengaruh
kelajuan rotor dan tekanan transmembran (TMP) terhadap protein transmisi telah
diselidik. Ujian pengaruh kelajuan rotor dijalankan pada 150, 200 dan 300 rpm di
mana TMP tidak terkawal yang tercapai adalah masing-masing pada 2.5, 2.5 dan 4
psig. Rembasan fluks keseluruhan yang tertinggi pada 300 rpm dipilih untuk ujikaji
selanjutnya pada TMP 4 dan 5 psig. Didapati bahawa operasi pada 300 rpm dan 5
psig memberikan protein transmisi yang lebih tinggi iaitu sebanyak 36.33%
berbanding operasi pada 300 rpm dan 4 psig. Penahan berbalik diaplikasikan pada
sistem penurasan mikro bersilang-aliran untuk mengurangkan masalah membrane
yang tersumbat. Sejumlah 59.6% protein transmisi keseluruhan telah tercapai

dengan operasi parameter pada 300 rpm dan pada tekanan yang malar iaitu 5 psig.
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CHAPTER 1

INTRODUCTION

1.1 General Review

Biosurfactants are surface-active biomolecules which have both defined
hydrophilic and hydrophobic groups. It becomes important nowadays as sustainable
bio-derived surfactants emerged to replace the petroleum based surfactant and has
gained importance in the fields of oil recovery, environmental bioremediation, food
processing and pharmaceuticals owing to their unique properties such as
biodegradability and lower toxicity (Healy et al., 1996; Mukherjee et al., 2006; Kaar
etal., 2008).

Recently, active designed peptide (DP) biosurfactants becomes more popular
as its linear peptide sequences, without conjugated lipid, allowed more simplified
bio-production compared with bacterial lipopeptides. In addition, peptide
biosurfactants can be designed to allow stimuli-responsive control of interfacial
elasticity (Dexter et al., 2006; Dexter and Middelberg, 2007) and interfacial tension
(Middelberg et al., 2008), providing reversible control of emulsions (Dexter et al.,
2006) and foams (Malcolm et al., 2006).

Conventionally, the method for protein processing is time consuming and

labour-intensive because of the repeated cycles of mechanical disruption, enzymatic



and chemical treatment. Thus, scale up of the process can be problematic. However,
the protein processing method can be simplified on scale-up by substituting the
repeated homogenization and centrifugation unit operations with the chemical

extraction and cross-flow microfiltration (Lee et al., 2003).

In this work, the pET 26b system (Novagen) is engineered and designed to
secrete the peptide biosurfactant GAML1 to the periplasm when induced with IPTG.
The designed recombinant peptide surfactants thus produced have the advantages to
enable the generation of improved variants by simple genetic manipulation compared
to the production of naturally occurring biosurfactants which requires multi
component enzymes for synthesis within the cell and are feed sources dependent
during microbial growth rate (Peypoux et al.,, 1999). To produce recombinant
proteins, Escherichia coli were used commonly as its physiology and genetics are
well documented and studied. However, peptides with short sequences of amino
acids are either poorly expressed in E. coli or are rapidly degraded. Therefore,
peptides are strategically produced together with the fusion partner known as fusion
protein or chimeric protein. The reasons of using fusion protein are to facilitate
purification, easy detection of the fusion protein from a complex mixture, and to

avoid proteolytic degradation (Hammarstrom et al., 2002; Yan et al., 2005).

Recovery of the soluble fusion protein is usually done with a centrifuge. As
an alternative, a cross-flow microfiltration unit is proposed to replace centrifugation
for the separation of soluble protein from the complex mixture, after chemical
extraction, since appropriate control of both the cross-flow filtration rate and the
transmission of the solutes in the microfiltration unit (MU) process are of great
interest. In this work, the plasmid construct designated pET-HSG, derived from
modification of pET26b, consists of hexa-histidine affinity tag, fusion protein
comprising SUMO, a protease cleavage site and the peptide GAML. It was
transformed into E. Coli BL21(DE3). After fermentation in the shake flask culture,
the harvested cells undergo a non-solubilising chemical extraction procedure coupled
with cross-flow microfiltration, to recover the soluble fusion peptide biosurfactant.

Combination of EDTA and Triton X-100 has been reported to be capable of releasing



intracellular protein of interest to culture medium (Falconer et al., 1996; Lee et al.,
2003). A commercial bacterial extraction kit, B-PER Bacterial Protein Extraction
Reagent (Pierce), EDTA, Triton X-100 and GE QuixStand microfiltration unit with

0.2 |im pore size polysulfone membranes were used for this purpose.

1.2 Background of Study

Self-assembling peptide is a novel class of functional materials that has a
great potential in superseding the performance of conventional materials like plastics
and metals. Sustainability has become a key driver in achieving quality of life
standards and peptide is expected to be more versatile in functionality and
sustainable than conventional materials like plastic which is over-reliant on
petroleum feed stock. Literature reported that the surfactant peptides are relatively
inexpensive and chemically facile to modify, leading to potential tailoring of new
materials for a broad spectrum of applications like serving as scaffolds to organize
conducting and semiconducting nanocrystals into high-density ordered structures;
incorporating other biomolecules on their surfaces; encapsulating molecules for
molecular deliveries; and forming a scaffold for cell encapsulation (Vauthey et al.,
2002). Depending on the application, the physiochemical properties of such
biomaterial can be designed to serve various applications, notably as biodegradable

surfactant (Fairman and Akerfeldt, 2005).

The production of such novel functional biomaterials can become
economically feasible if the process uses the technology that is approximately scale-
invariant, easily automated for high-throughput processing, generic for a broad range
of proteins, and economical (Middelberg, 2002). However, the conventional protein
processing strategy using E .coli involves a series of processing steps that could
account for 50-70% of production cost. These multiple steps may compromise
production yield and thus economic feasibility. A range of research strategies is

available, including intensification of the downstream processing to improve yield,



molecular manipulation such as fusion technology to simplify downstream

processing and optimization of key unit operations (Wong et al., 1996).

Process intensification by minimizing the number of unit operations without a
loss of product purity is desirable to improve yield and reduce production cost. In
this study, process intensification is employed as a key research strategy to minimize
the number of unit operations for the purification of peptides from the E. coli host
cells. The key is to make use of an innovative chemical extraction method and
microfiltration unit to accomplish cell disruption and initial product recovery in place
of the cumbersome multiple homogenization and centrifugation in the conventional

process flow.

Cross-flow type microfiltration system is chosen as it can be used to
concentrate the solution, clarify fermentation broth, as well as enhance diafiltration
and fractionation. Besides, cross-flow microfiltration is fast, efficient and easy to
scale up (Van Reis and Zydney, 2007). It is aimed that combined method of
chemical extraction and cross-flow microfiltration would produce substantially pure
peptide product in the permeate flow. This substantially pure peptide product (very
low in solid contaminants like cellular debris) can subsequently be processed and
polished to high purity using chromatography columns, in most cases by affinity
capture (Kaar et al.,, 2008) or further concentrate and purify the product with

ultrafiltration.

1.3 Objectives of Study

Based on the background of study, there is a need to come up with an
alternative downstream processing method which needs fewer steps and less
manpower, consume less time and less cost to run. This will hence lead to

substantial processing cost reduction and increase the production efficiency.



To alleviate some of the aforementioned problems, it is proposed to apply
chemical extraction combined with a microfiltration unit. The purpose of this study
is to produce recombinant peptide biosurfactant GAM1, as a fusion protein, using E.
coli as host cell and to release fusion peptide biosurfactant, HSG from the host cells
using non-solubilising chemical extraction method as a possible substitute for
mechanical cell disruption. The extraction broth is then applied to cross-flow
microfiltration process with a 0.2 |im polysulfone hollow fiber membrane. This
research also aims to study the operation parameters of the cross-flow microfiltration
unit such as rotor speed and transmembrane pressure for the purification of fusion

peptide biosurfactant, HSG.

14 Scope of Study

In order to achieve the objectives, the scope of study is limited to the

following.

a) To transform the plasmid containing the designated peptide biosurfactant,
GAML using E. Coli BL21(DE3) host cells by chemical competent method.

b) To release soluble fusion peptide biosurfactant, HSG from the E. Coli
BL21(DE3) host cells based on a combination of Triton X-100 and EDTA

without solubilising the membrane of the host cell.

C) To remove the soluble contaminants with parameters of the cross-flow
microfiltration process using 0.2 |im pore size polysulfone membranes by
manipulating the rotor speed parameter (rpm) at constant transmembrane
pressure (TMP).
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