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ABSTRACT 

 
 
 

 
 This study is aimed to prepare polysulfone ultrafiltration (PSF UF) 
membranes with enhanced fouling resistance for humic acid (HA) removal 
separations. The effect of the addition 2 wt. % of titanium dioxide (TiO2) in the dope 
formulation on the membrane performance and membrane morphology has been 
studied. Two types of UF membranes, i.e. PSF membranes with and without addition 
of TiO2 were prepared via a simple dry/wet phase inversion technique. The 
membranes were characterized using contact angle goniometer, x-ray diffractometer 
(XRD), differential scanning calorimeter (DSC), thermal gravitational analysis 
(TGA), field emission scanning electron microscopy (FESEM), ultrafiltration (UF) 
membrane system, molecular weight cut off (MWCO) and anti-fouling measurement. 
The separation performances of these membranes were evaluated using humic acid 
solution. The presence of TiO2 showed significant improvement in the properties of 
membranes such as hydrophilicity, thermal stabilities, mechanical properties, 
permeation and antifouling. Based on these aspects, the PSF membrane with TiO2 

was chosen for further investigation by varying the air gap in the range of 0 – 13 cm. 
Results showed that the membrane prepared from zero air gap during hollow fiber 
spinning displayed the best performance in terms of water permeation and HA 
removal. This membrane was further used to investigate the effect of the 
physicochemical environment (pH and ionic strength) on HA rejection. pH and ionic 
strength of the feed solution played a significant impact on the HA removal since 
both of these factors would influence the solute-solute and solute-membrane 
interactions. A promising result was achieved with the average filtrate flux coupled 
with higher removal of HA around 10.5 x 10 -6 m3/m2.s and 97 %, respectively at pH 
3 with 0.1 M ionic strength. This study indicated that membranes with the presence 
of TiO2 and fabricated from zero air gap exhibited the highest permeability 
coefficient, high humic acid removal, moderate high flux and significant 
enhancement of anti-fouling ability. Thus, this membrane is suitable to be used in 
surface water treatment with the optimal pH and ionic strength was 3 and 0.1 M 
NaCl to obtain the higher HA removal. This research is believed to contribute to the 
advancement in using membrane technology for water treatment. 
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ABSTRAK 

 
 
 

 
 Kajian ini bertujuan untuk menyediakan membran polisulfona (PSF) 
ultraturasan dengan mempertingkatkan daya tahan kotoran untuk penyingkiran asid 
humik. Kesan penambahan 2 % berat titanium oksida (TiO2) dalam formulasi dop 
pada prestasi dan morfologi membran telah dipelajari. Dua jenis membran 
ultraturasan i.e. membran PSF dengan dan tanpa TiO2 telah dihasilkan melalui teknik 
kering/basah fasa terbalik. Membran telah dicirikan menggunakan goniometer sudut 
sentuh, pembelauan x-ray (XRD), kalorimeter pengimbasan pembeza (DSC), analisis 
termogravimetrik (TGA), mikroskopi imbasan electron pandang pemancaran 
(FESEM), sistem membran ultraturasan, nilai pemintasan jisim molekul dan 
pengukuran kotoran. Prestasi pemisahan membran telah dinilai menggunakan larutan 
asid humik. Kehadiran TiO2 menunjukkan peningkatan berkesan dalam ciri membran 
seperti hidrofilik, kestabilan terma, sifat-sifat mekanikal, penelapan dan anti kotoran. 
Berdasarkan aspek ini, membran PSF dengan TiO2 telah dipilih untuk kajian 
seterusnya dengan mempelbagaikan sela udara dalam lingkungan 0 – 13 cm. 
Keputusan menunjukkan membran yang disediakan dengan sela udara sifar pada 
pemintalan gentian geronggang mempamerkan prestasi terbaik dalam penelapan air 
dan penyingkiran asid humik. Membran ini selanjutnya digunakan bagi mengkaji 
kesan sekitaran fizikal-kimia larutan (pH dan kekuatan ion) terhadap pemisahan asid 
humik. pH dan kekuatan ionik larutan suapan memberikan impak yang signifikan 
keatas penyingkiran asid humik kerana kedua-dua faktor ini boleh mempengaruhi 
interaksi antara zat terlarut-zat terlarut dan zat terlarut-membran. Keputusan yang 
memberangsangkan telah dicapai dengan fluks turasan purata menggabungkan 
dengan penyingkiran asid humik yang tertinggi lingkungan 10.5 x 10 -6 m3/m2.s dan 
97 % pada pH 3 dengan kekuatan ionik 0.1 M. Kajian ini menunjukkan bahawa 
membran dengan kehadiran TiO2 dan difabrikasi dari sela udara sifar mempamerkan 
pekali kebolehtelapan yang tertinggi, penyingkiran asid humik yang tinggi, fluks 
sederhana tinggi dan peningkatan kebolehan anti kotoran. Maka, membran ini adalah 
sesuai digunakan dalam rawatan air permukaan dengan pH optimum dan kekuatan 
ionik ialah 3 dan 0.1 M NaCl supaya mendapatkan penyingkiran asid humik yang 
lebih tinggi. Kajian ini dipercayai mampu menyumbang kepada kemajuan teknologi 
membran untuk rawatan air.  
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CHAPTER 1 

 

 

 

 

I�TRODUCTIO� 

 

 
 
 

1.1 Background of the Research 

 
 
In most countries, water is available everywhere. Unfortunately, ninety-seven 

percent of the world’s total water is seawater while the remaining three percent is 

fresh water and two-thirds of this fresh water is locked in glaciers, ice or snow, 

leaving only one percent of the world’s total water available for direct human 

consumption (Ratajczak, 2007). Unfortunately, a large portion of water resources, 

including surface water and groundwater, has been extensively contaminated by 

uncontrolled disposal of hazardous waste. In contrast, the quality of drinking water 

continues to be a major public health concern throughout the world has accelerated 

the legislation of more stringent regulations for drinking water. Thus, a new 

advanced technology processing low quality or saline waters has been in great 

demand for water supplies and complying with stringent regulation such as 

membrane technology. Membrane technology can provide continuos operation and 

stable water quality with the potential to remove targeted contaminants in one stage.  

 
 

Membrane technology is widely accepted as a means of producing various 

qualities of water from surface water, well water, brackish water and seawater. 

Application of membrane filtration for water treatment, which includes 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis 

(RO) receiving more attention since it is an outstanding process for the removal of 

particles, turbidity, microorganisms of natural and waste waters (Mulder, 1991). In 

the United States alone, the growing demand for membrane treatment technology 
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such as reverse osmosis (RO), microfiltration and ultrafiltration, in all water 

treatment applications rose 6.5 percent annually starting in 1994, reaching $305 

million in the year 2001 (Vial and Doussau, 2002), and considerable further growth 

has been seen since. The use of membranes has been somewhat limited due to high 

capital costs, although in recent years the cost of membrane systems has decreased 

substantially. Laine et al. (2000) reported that between 1992 and 2000, a 50 % 

decrease in cost was observed, with further decreases in cost observed since. This 

decrease in cost has been mainly attributed to two factors, namely, an increase in 

membrane surface area per module and an increase in mass production of these 

membrane modules. As a result of the decreased cost, the use of these systems has 

seen increased usage over the past 20 years, to become a very attractive and feasible 

alternative to conventional drinking water treatment.  

  
 

In water and wastewater treatment, membrane treatment technology 

application as an advanced physical process for clarification and disinfection is 

established and rapidly gaining popularity (Gai et al., 2008; Zularisam et al., 2006). 

Microfiltration (MF) and ultrafiltration (UF) membranes widely applied in the field 

of drinking water treatment associated with their advantages including superior water 

quality, easier control of operation, lower cost and maintenance (Fu et al., 2008; Lee 

et al., 2004). MF or UF were employed to remove microparticles and 

macromolecules including inorganic particles, organic colloids and dissolved organic 

matter.  MF and UF systems were particulate filters and unlike nanofiltration (NF) 

and reverse osmosis (RO), they do not remove dissolved constituents. This treatment 

aspect makes them more suitable for use as a replacement to conventional filters. The 

cost of low pressure membranes systems is also a major driver for increased 

membrane application compared with conventional treatment technologies. Every 

year, the capital cost of MF and UF systems has decreased as economies of scale and 

a competitive market force innovative developments. Generally, low pressure 

membrane facilities are one half to one third the cost of an NF or RO facility 

(Farahbakhsh et al., 2004). In addition, the implementation of innovative backwash 

or cleaning strategies has reduced operational cost, by reducing the degree of fouling 

that occurs on the surface and inside the pores of the membranes.    
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Nevertheless, one of the major problems arising in membrane separation is 

membrane fouling. Membrane fouling can cause a significant reduction in 

productivity. Productivity decline is defined as flux decrease with time of operation 

due to an increase of hydraulic resistance. In fact, productivity decline will increase 

operation and maintenance cost, and shortens the membrane life (Fu et al., 2008; 

Zularisam et al., 2006). NOM is often claimed as an important factor for both 

reversible and reversible fouling in water filtration. In particular, NOM is a complex 

mix of particulate and soluble components that presents in natural water, not only 

does it affects the odor, color and taste of water, it forms complexes with heavy 

metals and pesticides and also reacts with chlorine to form carcinogenic disinfection 

by-products (DBPs) (Zularisam et al., 2006, Kim et al., 2008). DBPs are 

carcinogens; direct exposure can lead to cancers, miscarriages and nervous system 

complications.  

 
 

Among hydrophobic polymers, polytetrafluoroethylene (PTFE), 

polivinylideneflouride (PVDF), polypropylene (PP), polysulfone (PSF), and 

polyethersulfone (PES), PSF is so far, the polymer that generally easy to be used for 

the preparation of asymmetric membranes by the phase inversion method using water 

as a coagulant (Ahmad et al., 2005). As PSF can be dissolved in common solvent 

perfectly such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide 

(DMAc), it is an excellent material for the preparation of hollow fiber membranes by 

a phase inversion method (Stropnik et al., 2005). PSF is a well known polymeric 

material due to its commercial availability, ease of processing and favourable 

selectivity-permeability characteristics. It is one of the polymers that are thermally 

stable, possess good chemical resistance, and are resistant to most corrosive 

chemicals and organic compounds. Hence, PSF has been a subject of active research 

in polymer science and has received increasing attention for various membrane 

separation applications mostly for microfiltration and ultrafiltration (Kaiser and 

Stropnik, 2000). The main drawback of a PSF membrane is its hydrophobicity, 

which often resulted in serious fouling when applied to water treatment and 

separation of bio-products (Qin et al., 2003). In order to increase the usefulness of 

the membrane, a hydrophobic polymer has been modified by the addition of 

nanoparticles due to their convenient operations, mild conditions, good and stable 
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performances (Li et al., 2009; Yang et al., 2007). Therefore, it has been applied to a 

variety problem of environmental interest in addition to water and air purification. 

 
 
 
 

1.2 Problem Statement 

 

 

Membrane technology is an attractive option for drinking water production to 

provide better drinking water quality (Jerman et al., 2007). Nevertheless, one of the 

major problems arising in membrane filtration is membrane fouling by natural 

organic matter (NOM). Membrane fouling can cause a reduction in productivity. 

Membrane fouling is usually induced by pore blocking and pore plugging inside the 

membrane pores and cake layer formation on the membrane surface due to the NOM 

adsorption, aggregation and deposition (Fu et al., 2008). A humic substance is the 

predominant species of natural organic matter (NOM) and generally is divided into 

humic acid (HA), fulvic acid (FA) and humin (Hong and Elimelech, 1997; Yuan and 

Zydney, 1999a). Humic acid is a fraction of humic substances composed of a long 

chain molecular molecule, which is high in molecular weight, dark brown in colour 

and soluble in alkaline conditions (Fu et al., 2008). Membrane fouling by humic 

substances is influenced by the characteristics of humic substances, the operation 

conditions, the chemical composition of the feed water and membrane properties 

(Cho et al., 2000). Understanding of these factors is essential for better control of 

membrane fouling by humic acids and other types of natural organic matter. 

 
 
 Based on the membrane characteristics, it is considered that morphology, 

charge and hydrophilicity of membrane surface have a relationship with membrane 

fouling (Yuan and Zydney, 1999b). Nabe et al. (1997) modified the surface of 

polysulfone UF membranes to be hydrophilic using several methods and found out 

that the modified membranes had better performance during protein microfiltration 

and also better recovery after membrane cleaning. Lee et al. (2004) investigated the 

membrane fouling in MF and UF process by four types of membrane. They 

concluded that the shapes and size of molecules and roughness of a membrane are 

presumably important influential factors in affecting flux decline. The MF 
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membranes exhibited greater surface roughness was more prone to fouling than the 

UF membranes. Weis et al. (2005) observed the influence of morphology, 

hydrophilicity and charge upon the long-term performance of UF membranes. They 

found that for membranes of similar hydrophobicity with different surface 

roughnesses, flux decline was found to be more significant for the rougher 

membranes. For the system studied, the rougher hydrophilic regenerated cellulose 

membrane had a greater tendency to resist adhesion than the smoother hydrophilic 

regenerated cellulose membrane. However, hydrophobic PES membrane exhibited 

greater tendency to resist adhesion compared to hydrophilic regenerated cellulose 

membrane. Therefore, both hydrophobicity and roughness were found to be linked to 

fouling tendency over the long term operation. 

 
 
 Since hydrophobicity and the surface roughness of the membrane plays a key 

role in membrane fouling, hydrophilic modification of polymeric membranes surface 

can be one of the fouling improvement methods. The presence of finely dispersed 

inorganic particles in polymeric matrix has proven to be very useful in improving 

membrane performance. Among various metal oxide nanoparticles, TiO2 had 

received the most attention because of it enhancement properties such as high 

permselectivity, good hydrophilicity and excellent fouling resistance (Yang et al., 

2005; Bae and Tak, 2005; Cao et al., 2006: Li et al., 2009). To further improve 

membranes surface modification by finely dispersed TiO2 particles in the polymer 

matrix, selection of the appropriate doping of TiO2 filler or by immobilizing TiO2 on 

surfaces are the most addressed efforts. In this research, the produced hollow fiber 

asymmetric membrane will then be compared between PSF/TiO2 membranes to 

pristine membranes on hydrophilicity effects and fouling behaviour of humic acid 

using UF membrane system. 

   
 
 In order to obtain the hollow fiber asymmetric membrane with various 

characteristics such as pore size, porosity, roughness and nodular structure size, 

membranes were prepared via phase inversion process by varying the spinning 

parameters such as air gap. The air gap length during spinning affects the 

performance of final fibers and this has been studied by a number of researchers. 

Khayet (2003) demonstrated that an increased in the air gap length resulted in tighter 
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fibers with lower permeability and increased retentivity because of an increased in 

the degree of orientation due to the added weight of the fiber below and the extended 

polymer chains. Similarly, Khulbe et al. (2004) observed that the separation of 

polyethylene glycol (PEG) of different molecular weight increased with an increased 

in the air gap. Fu et al. (2008) stated that the air gap influenced the roughness of the 

membrane outer surface. Thus, a study of the effect of air gap length was conducted 

in order to produce PSF/TiO2 asymmetric hollow fiber ultrafiltration membranes for 

higher removal of humic acid and low fouling in surface water.  

  

 

Feed water characteristics were known to have an effect on organic removal 

in UF membrane processes (Brigante et al., 2009; Dong et al., 2006; Yuan and 

Zydney, 1999a). Therefore, it is necessary to study the transport properties of humic 

acid through UF membrane under different physicochemical environment. Since the 

transportation of solute through the membrane does not only depend on size, other 

factors such as solute-solute and solute-membrane interactions, salt concentrations, 

ionic strength, permeate flux and system hydrodynamics were also identified as 

strong factors which influenced the solute transportation through the membranes. 

These physicochemical interactions occur between the membrane and solutes in the 

form of electrostatic charge, hydrophobic or even charge transfer. Thus, 

physicochemical parameters such as pH value and ionic strength need to be further 

investigated to achieve higher throughput of product. 

 
 
 

 

1.3 Objectives of the Research 

 

 

Based on the above-mentioned problem statements, the objectives of the 

research were: 

 

1. To fabricate the ultrafiltration membrane with different dope formulation and 

air gap length for humic acid removal.  

2. To characterize the membranes in terms of structural and physical properties 

and separation performance for humic acid removal in natural waters. 
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3. To investigate the effects of different pH and ionic strength in the humic acid 

removal through fabricated ultrafiltration membrane. 

 

 

 

 

1.4 Scopes of the Research 

 
 
In order to achieve the above-mentioned objectives, the following scopes of 

study were outlined: 

 

1. Preparation of ternary dope solution with two polymer composition which are 

18 wt. % PSF/2 wt. % TiO2/DMAc/PVP (with TiO2) and 18 wt. % 

PSF/DMAc/PVP (without TiO2). 

2. Fabrication of PSF/TiO2 membrane with different air gap which are 0, 5 and 

13 cm. 

3. Characterizing the cross sections and the surfaces of the membranes using 

field emission scanning electron microscopy (FESEM) and atomic force 

microscope (AFM), water permeability and contact angle measurement.  

4. Determination of molecular weight cut off (MWCO) of the fabricated 

membrane using a series of protein with different molecular weight cut off. 

5. Evaluating the performance of UF membrane system was measured through 

permeability of the membranes as a function of time and rejections for the 

humic acid in terms of ultraviolet absorbance (UV254).  

6. Studying the feed solution with different pH and ionic strength. Humic 

rejection using fabricated membrane was carried out at pH 3, 5, 7 and 10. The 

effect of ionic strength was performed at 0.001 M, 0.01 M and 0.1 M sodium 

chloride concentration. 
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