POLYSULFONE-TITANIUM DIOXIDE ULTRAFILTRATION MEMBRANE WITH ENHANCED FOULING RESISTANCE FOR HUMIC ACID REMOVAL

NUR ATIQAH BINTI ABD HAMID

UNIVERSITI TEKNOLOGI MALAYSIA

POLYSULFONE-TITANIUM DIOXIDE ULTRAFILTRATION MEMBRANE WITH ENHANCED FOULING RESISTANCE FOR HUMIC ACID REMOVAL

NUR ATIQAH BINTI ABD HAMID

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical Engineering Universiti Teknologi Malaysia

FEBRUARY 2011

Dedicated to my beloved parents (Abd Hamid bin Saad and Nurain binti Badri), Brothers and sister (Abdullah, Nur Asyikin, Abdul Aziz, Abdul Rasid, Abdul Halim and Abdul Rahman) who gave me inspiration, encouragement and endless support throughout the success of my study. May this thesis be an inspiration and guidance in the future.

ACKNOWLEDGEMENT

In the name of Allah, most benevolent, ever-merciful, All praises be to Allah, Lord of all the worlds. First and foremost, I would like to deeply express my deepest gratitude to both of my supervisors, Prof. Ahmad Fauzi bin Ismail and Dr. Zularisam bin Abd Wahid for their support and endless discussion towards the completion of my master studies.

My special sincere thanks is extended to the rest of the previous and current Advanced Membrane Technology Research Center (AMTEC) members i.e., Mrs. Erna Yuliwati, Mrs. Hatijah Basri, Mr. Lau Woei Jye, Ms. Norhaniza Yusof, Mrs. Juhana Jaafar, Mrs Farhana Aziz, Ms Nurul Saadah, Ms Dayang Salyani, Mr. Mohd. Noorul Anam, Mrs. Suhaila Sanip, Ms. Pei Sean, Ms. Safia Syazana Mokhtar, Ms. Wan Norharyati Wan Salleh, Ms. Nurul Hanan Ab Rahim, Mr. Abdul Razis Saidin, Mr. Muhammad Azwar Azhari and Mr. Agung Mataram for all the joyous and great moments during my studies period. Thank you all for creating a stimulating working atmosphere for me to carry out my research work. I would also like to give my sincerely thanks to Emeritus Prof. Takeshi Matsuura (University of Ottawa, Canada) who given his encouragement during the period of my study. Many thank goes to all the Environmental Engineering Department's staffs for their assistance and cooperation, especially Dr. Fadhil B. Md. Din for providing TOC-VCSH/CSN analyzer for TOC analysis. Thanks also to Mr. Jeffrey (Faculty of Mechanical Engineering, UTM), Mr. Mohammad (Ibnu Sina Institute, UTM), Mr. Ng Bee Cheer and Mr. Mohd Sohaimi Abdullah (AMTEC, UTM) who helped me in instrumental analysis for the samples and fabrication of hollow fiber membranes.

Last but not least, I would like to thank my parents, Abd Hamid bin Saad and Nurain binti Badri as well as my lovely sister and brothers, for their love and endless support. You all have given me inspiration and energy to go through all the hard times. I really appreciate what you all have done for me.

ABSTRACT

This study is aimed to prepare polysulfone ultrafiltration (PSF UF) membranes with enhanced fouling resistance for humic acid (HA) removal separations. The effect of the addition 2 wt. % of titanium dioxide (TiO₂) in the dope formulation on the membrane performance and membrane morphology has been studied. Two types of UF membranes, i.e. PSF membranes with and without addition of TiO_2 were prepared via a simple dry/wet phase inversion technique. The membranes were characterized using contact angle goniometer, x-ray diffractometer (XRD), differential scanning calorimeter (DSC), thermal gravitational analysis (TGA), field emission scanning electron microscopy (FESEM), ultrafiltration (UF) membrane system, molecular weight cut off (MWCO) and anti-fouling measurement. The separation performances of these membranes were evaluated using humic acid solution. The presence of TiO₂ showed significant improvement in the properties of membranes such as hydrophilicity, thermal stabilities, mechanical properties, permeation and antifouling. Based on these aspects, the PSF membrane with TiO₂ was chosen for further investigation by varying the air gap in the range of 0 - 13 cm. Results showed that the membrane prepared from zero air gap during hollow fiber spinning displayed the best performance in terms of water permeation and HA removal. This membrane was further used to investigate the effect of the physicochemical environment (pH and ionic strength) on HA rejection. pH and ionic strength of the feed solution played a significant impact on the HA removal since both of these factors would influence the solute-solute and solute-membrane interactions. A promising result was achieved with the average filtrate flux coupled with higher removal of HA around 10.5 x 10⁻⁶ m³/m².s and 97 %, respectively at pH 3 with 0.1 M ionic strength. This study indicated that membranes with the presence of TiO₂ and fabricated from zero air gap exhibited the highest permeability coefficient, high humic acid removal, moderate high flux and significant enhancement of anti-fouling ability. Thus, this membrane is suitable to be used in surface water treatment with the optimal pH and ionic strength was 3 and 0.1 M NaCl to obtain the higher HA removal. This research is believed to contribute to the advancement in using membrane technology for water treatment.

ABSTRAK

Kajian ini bertujuan untuk menyediakan membran polisulfona (PSF) ultraturasan dengan mempertingkatkan daya tahan kotoran untuk penyingkiran asid humik. Kesan penambahan 2 % berat titanium oksida (TiO₂) dalam formulasi dop pada prestasi dan morfologi membran telah dipelajari. Dua jenis membran ultraturasan i.e. membran PSF dengan dan tanpa TiO₂ telah dihasilkan melalui teknik kering/basah fasa terbalik. Membran telah dicirikan menggunakan goniometer sudut sentuh, pembelauan x-ray (XRD), kalorimeter pengimbasan pembeza (DSC), analisis termogravimetrik (TGA), mikroskopi imbasan electron pandang pemancaran (FESEM), sistem membran ultraturasan, nilai pemintasan jisim molekul dan pengukuran kotoran. Prestasi pemisahan membran telah dinilai menggunakan larutan asid humik. Kehadiran TiO₂ menunjukkan peningkatan berkesan dalam ciri membran seperti hidrofilik, kestabilan terma, sifat-sifat mekanikal, penelapan dan anti kotoran. Berdasarkan aspek ini, membran PSF dengan TiO₂ telah dipilih untuk kajian seterusnya dengan mempelbagaikan sela udara dalam lingkungan 0 - 13 cm. Keputusan menunjukkan membran yang disediakan dengan sela udara sifar pada pemintalan gentian geronggang mempamerkan prestasi terbaik dalam penelapan air dan penyingkiran asid humik. Membran ini selanjutnya digunakan bagi mengkaji kesan sekitaran fizikal-kimia larutan (pH dan kekuatan ion) terhadap pemisahan asid humik. pH dan kekuatan ionik larutan suapan memberikan impak yang signifikan keatas penyingkiran asid humik kerana kedua-dua faktor ini boleh mempengaruhi interaksi antara zat terlarut-zat terlarut dan zat terlarut-membran. Keputusan yang memberangsangkan telah dicapai dengan fluks turasan purata menggabungkan dengan penyingkiran asid humik yang tertinggi lingkungan 10.5 x 10⁻⁶ m³/m².s dan 97 % pada pH 3 dengan kekuatan ionik 0.1 M. Kajian ini menunjukkan bahawa membran dengan kehadiran TiO₂ dan difabrikasi dari sela udara sifar mempamerkan pekali kebolehtelapan yang tertinggi, penyingkiran asid humik yang tinggi, fluks sederhana tinggi dan peningkatan kebolehan anti kotoran. Maka, membran ini adalah sesuai digunakan dalam rawatan air permukaan dengan pH optimum dan kekuatan ionik ialah 3 dan 0.1 M NaCl supaya mendapatkan penyingkiran asid humik yang lebih tinggi. Kajian ini dipercayai mampu menyumbang kepada kemajuan teknologi membran untuk rawatan air.

TABLE OF CONTENT

CHAPTER	TITL	E	PAGE
	TITL	E PAGE	i
	DECI	LARATION	ii
	DEDI	CATION	iii
	ACKN	NOWLEDGEMENT	iv
	ABST	RACT	V
	ABST	vi	
	TABL	vii	
	LIST	xii	
	LIST	OF FIGURES	xiii
	LIST OF ABBREVIATIONS		
	LIST	xix	
	LIST	OF APPENDICES	xxi
CHAPTER I	INTR	ODUCTION	
	1.1	Background of the Research	1
	1.2	Problem Statement	4
	1.3	Objectives of the Research	6
	1.4	Scopes of the Research	7

2.1	Natura	al Organic Matter (NOM)	8			
	2.1.1	Characteristics NOM	9			
	2.1.2	The Adverse Effects of NOM in Surface	11			
		Water				
	2.1.3	Method for NOM Characterization	13			
		2.1.3.1Total Organic Carbon and				
		Dissolved Organic Carbon	13			
		2.1.3.2Ultraviolet (UV) Absorbance	13			
		2.1.3.3Specific UV Absorbance (SUVA)	14			
		2.1.3.4 Molecular Weight and Molecular				
		Size	14			
		2.1.3.5 Fourier Transform Infrared	15			
		Spectroscopy (FTIR)	15			
2.2	Remo	val Efficiencies of NOM from Surface Water	19			
2.3	Memb	orane Technology	19			
	2.3.1	Membrane Separation Process				
2.4	Appli	cation of Ultrafiltration Membrane in NOM	21			
	Remo	val for Surface Water Treatment	24			
	2.4.1	Mechanism for NOM Removal	24			
		2.4.1.1Physical Sieving	25			
		2.4.1.2Electrostatic Repulsion	25			
		2.4.1.3Adsorption Mechanism	26			
	2.4.2	Effects of NOM on Membrane Fouling	30			
		2.4.2.1 Membrane Properties	32			
		2.4.2.2Solution Environment	34			
		2.4.4.3Hydrodynamic Conditions	35			
	2.4.3	Fouling Models and Mechanism	37			
	2.4.4	Fouling Preventation and Reduction				
2.5	Fabric	ation of Ultrafiltration Membrane for NOM	38			
	Remo	Removal				
	2.5.1	Membrane Morphologies and	38			

			Configuration	42
		2.5.2	Membrane Synthesis and Formation	44
		2.5.3	Phase Inversion Processes	44
			2.5.3.1 Wet Phase Inversion Pocess	47
			2.5.3.2 Dry/Wet Phase Inversion Process	
		2.5.4	Parameters Dependencies in Membrane	49
			Formation	50
			2.5.4.1 Effect of Air Gap	
CHAPTER 3	MET	[HODO]	LOGY	52
	3.1	Experi	imental Design	52
	3.2	Mater	als Selection	53
		3.2.1	Polymer Solution	53
		3.2.2	Solvents Selection	55
		3.2.3	Polymeric Additives	56
		3.2.4	Inorganic additives	57
	3.3	Memb	rane Preparation	57
	3.4	Ultrafi	ltration (UF) Hollow Fiber Membranes	
		Fabric	ation	59
		3.4.1	Hollow Fiber Spinning System	59
		3.4.2	Post-treatment	63
		3.4.3	Preparation of Hollow Fiber Membrane	
			Module	63
	3.5	Ultrafi	ltration (UF) Hollow Fiber Membranes	
		Charac	eterization	65
		3.5.1	Molecular Weight Cut Off	
			(MWCO) Measurement	65
		3.5.2	Field Emission Scanning Electron	
			Microscopy (FESEM) and Atomic Force	
			Microscope (AFM) Analysis	67
		3.5.3	Contact Angle Measurement	68
		3.5.4	Thermal Stability Analysis	68
		3.5.5	XRD Analysis	69
		3.5.6	Porosity and Pore Size	68

		3.5.7	Mechanical Stability	69
	3.6	Separ	ation Performance of Humic Acid Solution	
		and A	nalytical Methods for Humic Acid	
		Quant	tification	70
		3.6.1	Preparation of Humic Acid Solution	70
		3.6.2	Measurement of Membrane Flux and	
			Rejection	71
		3.6.3	Membrane Flux Decline Test for Hydraulic	
			Resistances	72
		3.6.4	Ultra Violet Absorbance at 254 nm	
			(UV _{254nm})	73
		3.6.5	pH	74
		3.6.6	Fourier Transform Infrared Spectroscopy	74
			(FTIR)	
CHAPTER 4	RESULTS AND DISCUSSION			
	4.1	Effec	t of Titanium Dioxide (TiO ₂) on the	
		Meml	prane Morphology and Performance	75
		4.1.1	Membrane Characteristics	76
		4.1.2	Structural and Morphologies of Membranes	81
		4.1.3	Flux and Separation Performances of	
			Humic Acid Solution	84
	4.2	Effect	t of Air Gap on Membrane Morphology and	
		Perfor	rmances	90
		4.2.1	Structural and Morphologies of Membranes	91
		4.2.2	Flux and Separation Performances of	
			Humic Acid Solution	97
	4.3	Effect	of Humic Acid Solution Environment on the	
		Memt	orane Performance	102
		4.3.1	Effect of pH on Flux Performances	102
		4.3.2	Effect of pH on Humic Acid Removal	105
		4.3.3	Effect of pH on Various Resistances with	
			Raw Water	108

		4.3.4	Effect of Ionic Strength on Flux	
			Performances	109
		4.3.5	Effect of Ionic Strength on Humic Acid	
			Removal	111
		4.3.6	Effect of Ionic Strength on Various	
			Resistances with Raw Water	113
CHAPTER 5	CONC	CLUSI	ONS AND RECOMMENDATIONS	115
	5.1	Conc	clusions	115
	5.2 Recommendations LIST OF PUBLICATIONS		117	
			119	
	REFE	RENC	CES	120
	APPENDICES A-E			136

LIST OF TABLES

TABLE NO	D. TITLE	PAGE
2.1	Physical and chemical characteristics of humic	
	substances	10
2.2	Membrane characteristics for water treatment	22
3.1	Physical, mechanical and chemical properties of PSF	
	polymer	55
3.2	Physical properties of N, N-dimethylacetamide	56
3.3	PVP-K30 characteristics	57
3.4	Experimental parameters of spinning process for	
	hollow fiber membrane preparation	60
3.5	Dope compositions	60
4.1	Characteristics of the experimental membranes	76
4.2	Humic Acid Filtration Fluxes of the Membrane	87
4.3	Effect of air gap on inner diameter and outer diameter	
	of PSF-T hollow fiber membranes	91
4.4	MWCO of hollow fiber membranes spun under	
	different air gap	98

LIST OF FIGURES

FIGURE N	O. TITLE	PAGE
2.1	Fraction of NOM in surface water based on Dissolved	
	Organic Carbon	9
2.2	Schematic of humic acid model structure	11
2.3	Schematic of fulvic acid model structure	11
2.4	Membrane process as a new alternative to the conventional	
	process	18
2.5	Basic of membrane separation process	19
2.6	Pressure driven membrane and its filtration spectrum	20
2.7	Factors governing membrane fouling	29
2.8	Flow regimes in membranes: (a) cross-flow filtration (b)	
	dead-end filtration.	34
2.9	The overall resistance mechanism	37
2.10	Membrane classification based on morphologies	39
2.11	Asymmetric membrane consists of a very thin skin layer	
	overlaying on a thick and highly porous sublayer	39
2.12	Hand-cast flat sheet membrane casting technique	40
2.13	Schematic of (a) Plate and frame module (b) Spiral wound	
	module	40
2.14	Module system for hollow fiber membrane: (a) Tubular	
	Membrane Module (b) capillary membrane modules (c)	
	Hollow fiber module	41
2.15	Schematic depiction of the immersion precipitation process:	
	P,polymer, S, solvent, NS, nonsolvent	43
2.16	Schematic diagram of an isothermal ternary phase diagram	
	showing the equilibrium tie-lines connecting equilibrium	

	compositions on the binodal curve having polymer rich and	
	polymer poor compositions indicated as PR and PP	
	respectively	46
2.17	Precipitation paths in instantaneous (a) and delayed (b)	
	demixing	46
2.18	Schematic representation of diffusion paths initiating near	
	the binodal boundary and potentially penetrating to the	
	metastable (nucleation and growth) region (A'), the unstable	
	(spinodal decomposition) region (A") or the 'solidus tie-line'	
	(A"') where the morphology is vitrified immediately upon	
	phase separation and unable to evolve	48
3.1	Research Design Flow Sheet	54
3.2	Molecular structure of polysulfone polymer	55
3.3	Molecular structure of N,N-dimethylacetamide (DMAc)	56
3.4	Apparatus for preparation of dope solution	58
3.5	Typical dry/wet spinning process	59
3.6	Schematic diagram of hollow fiber spinning rig: (1) nitrogen	
	cylinder (2) dope reservoir (3) gear pump (4) on-line filter 7	
	mm (5) syringe pump (6) spinneret (7) forced convective	
	tube (8) roller (9) wind-up drum (10) refrigeration (11)	
	coagulation bath (12) washing/treatment bath (13) wind-up	
	bath (14) schematic spinneret	61
3.7	Schematic diagram of fiber spin line	62
3.8	Experimental works Ultrafiltration Hollow fiber Module	64
3.9	Schematic diagram shows steps involved in developing the	
	hollow fiber module	64
3.10	UF Hollow fiber membrane filtration systems	65
4.1	X-ray diffraction patterns of TiO ₂ powders, PSF membrane	
	and PSF/TiO ₂ membrane	78
4.2	Differential scanning calorimetry (DSC) thermograms of	
	PSF membrane and PSF/TiO ₂ composite membrane	79
4.3	Thermogravimetry curves of PSF membrane and PSF/TiO_2	
	composite membrane	80

4.4	FESEM micrograph of the cross section and top surface of	
	the membranes PSF and PSF-T.	82
4.5	Three-dimensional AFM surface images of the membrane:	
	(a) PSF (b) PSF-T	83
4.6	Relative permeability (a) and rejection (b) as a function of	
	time for the pristine membrane and PSF-T composite	
	membrane.	86
4.7	Filtration resistances of PSF-T and PSF membranes	88
4.8	Subtraction FTIR spectra on (a) PSF membrane and (b) PSF-T membrane fouled with humic acid	90
4.9	Cross section and outer surface FESEM micrograph of the PSF-T hollow fiber membranes prepared at different air gap lengths. (1) inner edge layer, (2) inner-middle layer, (3) outer-middle layer and (4) outer-edge layer	20
		94
4.10	3D AFM images of outer surfaces of the PSF-T hollow	
	fibers prepared air gap length (a) 0 cm (b) 5 cm (c) 13 cm	96
4.11	Relative permeability (a) and rejection (b) as a function of	
	time for the membranes with the different air gap	100
4.12	Filtration resistances for the membranes with the different air	
	gap	100
4.13	Effect of solution pH on the normalized flux during filtration	
	500 mg/L humic acid solutions through PSF-TiO ₂ hollow	
	fibers	104
4.14	FESEM micrograph of PSF-T0 membranes: (a) clean	
	membranes (b) fouled membranes.	104
4.15	Effect of solution pH on the rejection coefficient during	
	filtration 500 mg/L humic acid solutions through PSF-TiO $_2$	
	hollow fibers	106
4.16	Changes in total filtration resistances at different pHs using	
	humic acid solution	108
4.17	Total filtration resistances at different pHs with humic acid	
	solution	109
4.18	Effect of solution ionic strength on the normalized flux	

	during filtration of 500 mg/L humic acid solutions at pH 3	110
4.19	Effect of solution ionic strength on the normalized rejection	
	coefficient during filtration of 500 mg/L humic acid	
	solutions at pH 3	112
4.20	Total filtration resistances at different ionic strength with	
	humic acid solution	113

LIST OF ABBREVIATIONS

ABS	-	Absorbance
AFM	-	Atomic force microscope
CFV	-	Cross-flow velocity
COD	-	Chemical oxygen demand
Da	-	Dalton
DBPs	-	Disinfection By Products
DER	-	Dope extrusion rate
DOC	-	Dissolved Organic Carbon
DOM	-	Dissolved Organic Matter
DSC	-	Differential scanning calorimeter
FESEM	-	Field emission scanning electron microscope
FTIR	-	Fourier transform infrared
GAC	-	Granular Activated Carbon
GFC	-	Gel Filtration Chromatography
HAAs	-	Haloacetic Acids
HPO	-	Hydrophobic
HPI	-	Hydrophilic
HPSEC	-	High Pressure Size Exclusion Chromatography
HS	-	Humic Substances
IC	-	Inorganic carbon
NOM	-	Natural Organic Matter
MCL	-	Maximum contaminant level
MF	-	Microfiltration
MW	-	Molecular Weight
MWCO	-	Molecular weight cut off
NF	-	Nanofiltration
NTU	-	Nefelometric Turbidity Unit

ΡΔΟ	_	Powdered Activated Carbon
DEI	-	Polyatharimida
	-	Polyetheraulfono
PES	-	Polyethersulfone
POC	-	Particulate Organic Carbon
PSF	-	Polysulfone
PEG	-	Polyethylene glycol
PES	-	Polyethersulfone
PP	-	Polypropylene
PVDF	-	Polyvinylidenefluoride
PVP	-	Polyvinylpyrrolidone
PWF	-	Pure water flux
RC	-	Regenerated Cellulose
RO	-	Reverse Osmosis
SOCs	-	Synthetic Organic Compounds
SS	-	Suspended solid
SUVA	-	Specific UV Absorbance
ТС	-	Total carbon
TDS	-	Total dissolved solid
TGA	-	Thermal gravitational analysis
THMs	-	Trihalomethanes
THMFP	-	Trihalomethanes Formation Potential
TiO ₂	-	Titanium Dioxide
TMP	-	Trans-membrane pressure
TPI	-	Transphilic
TOC	-	Total organic carbon
TDS	-	Total dissolved solid
UF	-	Ultrafiltration
USEPA	-	US Environment Protection Agency
UV ₂₅₄	-	Ultraviolet Absorbance at 254 nm

LIST OF SYMBOLS

A	-	Membrane surface area (m ²)
A_{sp}	-	The spinneret cross section (m^2)
Cf	-	Concentration of solute in the fluid at the feed (mol.m ⁻³)
Ср	-	Concentration of solute in the permeate solution (mol.m ⁻
		³)
d_i	-	Inside diameter of the hollow fiber membrane (m)
d_o	-	Outside diameter of the hollow fiber membrane (m)
d_p	-	Diameter of the particle deposited (m)
J	-	Flux, or flow rate through the membrane $(m^3 m^{-2} s^{-1})$
Jpwp	-	Pure water permeability $(m3.m^{-2}.s^{-1} \text{ or } m.s^{-1})$
l	-	Membrane effective length (m)
M	-	Molecular weight (g.mol ⁻¹)
ρ	-	Density of liquid (kg.m ⁻³)
$\varDelta P$	-	Transmembrane pressure (Pa)
P_f	-	Feed pressure (bar)
<i>r</i> _m	-	Mean pore radius (nm)
R	-	Solute rejection (%)
R_c	-	Cake Specific Resistances (m ⁻¹)
R_m	-	Hydraulic Resistances of the clean membrane (m ⁻¹)
R_{cp}	-	Resistances by concentration polarization (m ⁻¹)
R_{cl}	-	Resistances by cake layer (m ⁻¹)
R_a	-	Resistances by adsorbed layer (m ⁻¹)
Т	-	Temperature (°C)
Δx	-	Membrane effective thickness (m)
V_f	-	Spin line final velocity (ms ⁻¹)
V_o	-	Spin line initial velocity (ms ⁻¹)
V	-	Permeate volume (m ³)

w_l	-	Weight of the wet membrane (g)
<i>w</i> ₂	-	Weight of the dry membrane (g)

Greek letters

η	-	Solution viscosity (N.s.m ⁻²)
μ	-	Solvent viscosity (water viscosity at 25° C, 0.894×10^{-3}
		$kg.m^{-1}.s^{-1}$)
π	-	Osmotic pressure by concentration polarization

LIST OF APPENDICES

K. TITLE	PAGE
The pure water flux of the hollow fiber membrane at	
various feed pressure	134
Molecular Weight Cut Off of UF Membrane	135
Flux, Rejections and Resistances Profiles of Humic	137
Acid through UF membrane filtration	
Effect of pH on Flux, Rejections and Resistances	
Profiles of Humic Acid through PSF-T0 membrane	
filtration	145
Effect of ionic strength on Flux, Rejections and	
Resistances Profiles of Humic Acid through PSF-T0	
membrane filtration at pH 7	153
	X. TITLE The pure water flux of the hollow fiber membrane at various feed pressure Molecular Weight Cut Off of UF Membrane Flux, Rejections and Resistances Profiles of Humic Acid through UF membrane filtration Effect of pH on Flux, Rejections and Resistances Profiles of Humic Acid through PSF-T0 membrane filtration Effect of ionic strength on Flux, Rejections and Resistances Profiles of Humic Acid through PSF-T0 membrane filtration at pH 7

CHAPTER 1

INTRODUCTION

1.1 Background of the Research

In most countries, water is available everywhere. Unfortunately, ninety-seven percent of the world's total water is seawater while the remaining three percent is fresh water and two-thirds of this fresh water is locked in glaciers, ice or snow, leaving only one percent of the world's total water available for direct human consumption (Ratajczak, 2007). Unfortunately, a large portion of water resources, including surface water and groundwater, has been extensively contaminated by uncontrolled disposal of hazardous waste. In contrast, the quality of drinking water continues to be a major public health concern throughout the world has accelerated the legislation of more stringent regulations for drinking water. Thus, a new advanced technology processing low quality or saline waters has been in great demand for water supplies and complying with stringent regulation such as membrane technology. Membrane technology can provide continuos operation and stable water quality with the potential to remove targeted contaminants in one stage.

Membrane technology is widely accepted as a means of producing various qualities of water from surface water, well water, brackish water and seawater. Application of membrane filtration for water treatment, which includes microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) receiving more attention since it is an outstanding process for the removal of particles, turbidity, microorganisms of natural and waste waters (Mulder, 1991). In the United States alone, the growing demand for membrane treatment technology such as reverse osmosis (RO), microfiltration and ultrafiltration, in all water treatment applications rose 6.5 percent annually starting in 1994, reaching \$305 million in the year 2001 (Vial and Doussau, 2002), and considerable further growth has been seen since. The use of membranes has been somewhat limited due to high capital costs, although in recent years the cost of membrane systems has decreased substantially. Laine *et al.* (2000) reported that between 1992 and 2000, a 50 % decrease in cost was observed, with further decreases in cost observed since. This decrease in cost has been mainly attributed to two factors, namely, an increase in membrane surface area per module and an increase in mass production of these membrane modules. As a result of the decreased cost, the use of these systems has seen increased usage over the past 20 years, to become a very attractive and feasible alternative to conventional drinking water treatment.

In water and wastewater treatment, membrane treatment technology application as an advanced physical process for clarification and disinfection is established and rapidly gaining popularity (Gai et al., 2008; Zularisam et al., 2006). Microfiltration (MF) and ultrafiltration (UF) membranes widely applied in the field of drinking water treatment associated with their advantages including superior water quality, easier control of operation, lower cost and maintenance (Fu et al., 2008; Lee et al., 2004). MF or UF were employed to remove microparticles and macromolecules including inorganic particles, organic colloids and dissolved organic matter. MF and UF systems were particulate filters and unlike nanofiltration (NF) and reverse osmosis (RO), they do not remove dissolved constituents. This treatment aspect makes them more suitable for use as a replacement to conventional filters. The cost of low pressure membranes systems is also a major driver for increased membrane application compared with conventional treatment technologies. Every year, the capital cost of MF and UF systems has decreased as economies of scale and a competitive market force innovative developments. Generally, low pressure membrane facilities are one half to one third the cost of an NF or RO facility (Farahbakhsh et al., 2004). In addition, the implementation of innovative backwash or cleaning strategies has reduced operational cost, by reducing the degree of fouling that occurs on the surface and inside the pores of the membranes.

Nevertheless, one of the major problems arising in membrane separation is membrane fouling. Membrane fouling can cause a significant reduction in productivity. Productivity decline is defined as flux decrease with time of operation due to an increase of hydraulic resistance. In fact, productivity decline will increase operation and maintenance cost, and shortens the membrane life (Fu *et al.*, 2008; Zularisam *et al.*, 2006). NOM is often claimed as an important factor for both reversible and reversible fouling in water filtration. In particular, NOM is a complex mix of particulate and soluble components that presents in natural water, not only does it affects the odor, color and taste of water, it forms complexes with heavy metals and pesticides and also reacts with chlorine to form carcinogenic disinfection by-products (DBPs) (Zularisam *et al.*, 2006, Kim *et al.*, 2008). DBPs are carcinogens; direct exposure can lead to cancers, miscarriages and nervous system complications.

Among hydrophobic polymers, polytetrafluoroethylene (PTFE), polivinylideneflouride (PVDF), polypropylene (PP), polysulfone (PSF), and polyethersulfone (PES), PSF is so far, the polymer that generally easy to be used for the preparation of asymmetric membranes by the phase inversion method using water as a coagulant (Ahmad et al., 2005). As PSF can be dissolved in common solvent perfectly such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc), it is an excellent material for the preparation of hollow fiber membranes by a phase inversion method (Stropnik et al., 2005). PSF is a well known polymeric material due to its commercial availability, ease of processing and favourable selectivity-permeability characteristics. It is one of the polymers that are thermally stable, possess good chemical resistance, and are resistant to most corrosive chemicals and organic compounds. Hence, PSF has been a subject of active research in polymer science and has received increasing attention for various membrane separation applications mostly for microfiltration and ultrafiltration (Kaiser and Stropnik, 2000). The main drawback of a PSF membrane is its hydrophobicity, which often resulted in serious fouling when applied to water treatment and separation of bio-products (Qin et al., 2003). In order to increase the usefulness of the membrane, a hydrophobic polymer has been modified by the addition of nanoparticles due to their convenient operations, mild conditions, good and stable performances (Li *et al.*, 2009; Yang *et al.*, 2007). Therefore, it has been applied to a variety problem of environmental interest in addition to water and air purification.

1.2 Problem Statement

Membrane technology is an attractive option for drinking water production to provide better drinking water quality (Jerman et al., 2007). Nevertheless, one of the major problems arising in membrane filtration is membrane fouling by natural organic matter (NOM). Membrane fouling can cause a reduction in productivity. Membrane fouling is usually induced by pore blocking and pore plugging inside the membrane pores and cake layer formation on the membrane surface due to the NOM adsorption, aggregation and deposition (Fu et al., 2008). A humic substance is the predominant species of natural organic matter (NOM) and generally is divided into humic acid (HA), fulvic acid (FA) and humin (Hong and Elimelech, 1997; Yuan and Zydney, 1999a). Humic acid is a fraction of humic substances composed of a long chain molecular molecule, which is high in molecular weight, dark brown in colour and soluble in alkaline conditions (Fu et al., 2008). Membrane fouling by humic substances is influenced by the characteristics of humic substances, the operation conditions, the chemical composition of the feed water and membrane properties (Cho et al., 2000). Understanding of these factors is essential for better control of membrane fouling by humic acids and other types of natural organic matter.

Based on the membrane characteristics, it is considered that morphology, charge and hydrophilicity of membrane surface have a relationship with membrane fouling (Yuan and Zydney, 1999b). Nabe *et al.* (1997) modified the surface of polysulfone UF membranes to be hydrophilic using several methods and found out that the modified membranes had better performance during protein microfiltration and also better recovery after membrane cleaning. Lee *et al.* (2004) investigated the membrane fouling in MF and UF process by four types of membrane. They concluded that the shapes and size of molecules and roughness of a membrane are presumably important influential factors in affecting flux decline. The MF

membranes exhibited greater surface roughness was more prone to fouling than the UF membranes. Weis *et al.* (2005) observed the influence of morphology, hydrophilicity and charge upon the long-term performance of UF membranes. They found that for membranes of similar hydrophobicity with different surface roughnesses, flux decline was found to be more significant for the rougher membranes. For the system studied, the rougher hydrophilic regenerated cellulose membrane had a greater tendency to resist adhesion than the smoother hydrophilic regenerated cellulose membrane. However, hydrophobic PES membrane exhibited greater tendency to resist adhesion compared to hydrophilic regenerated cellulose membrane. Therefore, both hydrophobicity and roughness were found to be linked to fouling tendency over the long term operation.

Since hydrophobicity and the surface roughness of the membrane plays a key role in membrane fouling, hydrophilic modification of polymeric membranes surface can be one of the fouling improvement methods. The presence of finely dispersed inorganic particles in polymeric matrix has proven to be very useful in improving membrane performance. Among various metal oxide nanoparticles, TiO₂ had received the most attention because of it enhancement properties such as high permselectivity, good hydrophilicity and excellent fouling resistance (Yang *et al.*, 2005; Bae and Tak, 2005; Cao *et al.*, 2006: Li *et al.*, 2009). To further improve membranes surface modification by finely dispersed TiO₂ particles in the polymer matrix, selection of the appropriate doping of TiO₂ filler or by immobilizing TiO₂ on surfaces are the most addressed efforts. In this research, the produced hollow fiber asymmetric membrane will then be compared between PSF/TiO₂ membranes to pristine membranes on hydrophilicity effects and fouling behaviour of humic acid using UF membrane system.

In order to obtain the hollow fiber asymmetric membrane with various characteristics such as pore size, porosity, roughness and nodular structure size, membranes were prepared via phase inversion process by varying the spinning parameters such as air gap. The air gap length during spinning affects the performance of final fibers and this has been studied by a number of researchers. Khayet (2003) demonstrated that an increased in the air gap length resulted in tighter

fibers with lower permeability and increased retentivity because of an increased in the degree of orientation due to the added weight of the fiber below and the extended polymer chains. Similarly, Khulbe *et al.* (2004) observed that the separation of polyethylene glycol (PEG) of different molecular weight increased with an increased in the air gap. Fu *et al.* (2008) stated that the air gap influenced the roughness of the membrane outer surface. Thus, a study of the effect of air gap length was conducted in order to produce PSF/TiO₂ asymmetric hollow fiber ultrafiltration membranes for higher removal of humic acid and low fouling in surface water.

Feed water characteristics were known to have an effect on organic removal in UF membrane processes (Brigante *et al.*, 2009; Dong *et al.*, 2006; Yuan and Zydney, 1999a). Therefore, it is necessary to study the transport properties of humic acid through UF membrane under different physicochemical environment. Since the transportation of solute through the membrane does not only depend on size, other factors such as solute-solute and solute-membrane interactions, salt concentrations, ionic strength, permeate flux and system hydrodynamics were also identified as strong factors which influenced the solute transportation through the membranes. These physicochemical interactions occur between the membrane and solutes in the form of electrostatic charge, hydrophobic or even charge transfer. Thus, physicochemical parameters such as pH value and ionic strength need to be further investigated to achieve higher throughput of product.

1.3 Objectives of the Research

Based on the above-mentioned problem statements, the objectives of the research were:

- 1. To fabricate the ultrafiltration membrane with different dope formulation and air gap length for humic acid removal.
- 2. To characterize the membranes in terms of structural and physical properties and separation performance for humic acid removal in natural waters.

3. To investigate the effects of different pH and ionic strength in the humic acid removal through fabricated ultrafiltration membrane.

1.4 Scopes of the Research

In order to achieve the above-mentioned objectives, the following scopes of study were outlined:

- Preparation of ternary dope solution with two polymer composition which are 18 wt. % PSF/2 wt. % TiO₂/DMAc/PVP (with TiO₂) and 18 wt. % PSF/DMAc/PVP (without TiO₂).
- Fabrication of PSF/TiO₂ membrane with different air gap which are 0, 5 and 13 cm.
- 3. Characterizing the cross sections and the surfaces of the membranes using field emission scanning electron microscopy (FESEM) and atomic force microscope (AFM), water permeability and contact angle measurement.
- 4. Determination of molecular weight cut off (MWCO) of the fabricated membrane using a series of protein with different molecular weight cut off.
- 5. Evaluating the performance of UF membrane system was measured through permeability of the membranes as a function of time and rejections for the humic acid in terms of ultraviolet absorbance (UV_{254}).
- 6. Studying the feed solution with different pH and ionic strength. Humic rejection using fabricated membrane was carried out at pH 3, 5, 7 and 10. The effect of ionic strength was performed at 0.001 M, 0.01 M and 0.1 M sodium chloride concentration.

REFERENCES

- Ahn, W., Kalinichev, A.G., Clark, M.M. (2008). Effects of Background Cations on the Fouling of Polyethersulfone Membranes by Natural Organic Matter: Experimental and Molecular Modeling Study. J. Membr. Sci. 309: 128-140.
- Ahmad, A.L., Sarif, M. and Ismail, S. (2005). Development of an Integrally Skinned Ultrafiltration Membrane for Wastewater Treatment: Effect of Different Formulations of PSf/NMP/PVP on Flux and Rejection. *Desalination*. 179: 257-263.
- Aiken, G.R., McKnight, D.M., Thorn, K.A. and Thurman, E.M. (1992). Isolation of hydrophilic organic acids from water using non-ionic macroporous resin. Org. Geochem. 18(4): 567-573.
- Aptel, P., Abidine, N., Ivaldi, F. and Lafaille, J.P. (1985). Polysulfone Hollow Fibers-Effect of Spinning Conditions on Ultrafiltration Properties. J. Membr. Sci. 22: 199.
- AWWA. (2005) *Microfiltration and Ultrafiltration Membranes for Drinking Water*, (1st Edition). American Water Works Association, Denver, Colorado.
- Bae, T. and Tak, T. (2005). Effect of TiO₂ Nanoparticles on Fouling Mitigation of Ultrafiltration Membranes for Activated Sludge Filtration. *J.Membr.Sci* 249: 1-8.
- Baker, R. W. (2000). Membrane Technology and Applications. (1st Edition). John Wiley & Sons Ltd, England.

- Barančíková, G., Senesi, N. and Brunetti, G. (1997). Chemical and Spectroscopics Characterization of Humic Acids Isolated from different Slovak soil types. *Geoderma*. 78: 251-266.
- Bodzek, M. and Konieczny, K. (1998). Comparison of Various Membrane Types and Module Configurations in The Treatment of Natural Waters by means of Low-Pressure Membrane Methods. Sep. Purif. Tech. 14: 69-78.
- Bowen, W.R. and Yin, H.B. (2001). Polysulfone Sulfonated Poly(ether ether) ketone Blend Membranes: Systematic Synthesis and Characterization. J. Membr. Sci. 181: 253-263.
- Braghetta, A.H. (1995). The Influence of Solution Chemistry and Operating Conditions on Nanofiltration of Charged and Uncharged Organic Macromolecules. PhD Tesis. Univ. of North Carolina, Chapel Hill, N.C.
- Braghetta, A., DiGiano, F.A., and Ball, W.P. (1997). Nanofiltration of Natural Organic Matter: pH and Ionic Strength Effects. J. Env. Eng. ASCE. 123(7): 628-641.
- Brigante, M., Zanini, G. and Avena, M. (2009). Effects of pH, Anions and Cations on the Dissolution Kinetics of Humic Acid Particles. J. of Colloids and Surfaces A: Physicochemical and Engineering Aspects. 347: 180-186.
- Bruggen, B., Manttari, M. and Nystrom, M. (2008). Drawbacks of Applying Nanofiltration and How to Avoid Them: A review. Sep. Purif. Tech. 63: 251– 263.
- Cabasso, I., Klein, E. and Smith, J.K. (1976). Polysulfone Hollow Fibers. I. Spinning and Properties. J. Appl. Poly. Sci. 20: 2377-2394.
- Cao, X., Ma, J., Shi, X. and Ren, Z. (2006). Effect of TiO₂ Nanoparticle Size on the Performance of PVDF Membrane. *Journal of Applied Science*. 253: 2003-2010.

- Carroll, T., King, S., Gray, S.R., Bolto, B.A. and Booker, N.A. (2000). The Fouling of Microfiltration Membranes by NOM after Coagulation Treatment. *Water Res.* 34 (11): 2861-2868.
- Chen, J., Gu, B.H., LeBoeuf, E.J., Pan, H.J. and Dai, S. (2002). Spectroscopic characterization of the structural and functional properties of natural organic fractions. *Chemosphere*. 48: 59–68.
- Cho, J., Amy, G., Pellegrino, J. and Yoon, Y. (1998). Characterization of Clean and Natural Organic Matter (NOM) Fouled NF and UF Membranes, and Foulant Characterization. *Desalination*. 118: 101-108.
- Cho, J., Amy, G. and Pellegrino, J. (2000).Membrane Filtration of Natural Organic Matter: Factors and Mechanisms Affecting Rejection and Flux Decline with Charged Ultrafiltration (UF) Membrane. J. Membr. Sci. 164: 89–110.
- Choi, Y. (2003). Critical Flux, Resistance, and Removal of Contaminants in Ultrafiltration (UF) of Natural Organic Materials. PhD thesis. University of Pennsylvania State.
- Christopher, R. (2009). *Characterization of Natural Organic Matter in the Catskill Watershed*. Msc thesis . The Albert Nerken School of Engineering.
- Costa, A.R. and de Pinho Maria Norberto (2005). Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. *J. Membr. Sci.* 255: 49-56.
- Chung, T., Qin, J. and Gu, J. (2000). Effect of Shear Rate within the spinneret on Morphology, Separation Performance and Mechanical Properties of Ultrafiltration Polyethersulfones Hollow Fiber Membranes. J. Chem. Eng. Sci. 55: 1077-1091.

- Chung, T.S., Qin, J.J., Huan, A., and Toh, K.C. (2002). Visualization of the effect of die shear rate on the outer surface morphology of ultrafiltration membranes by AFM. J. Membr. Sci. 196: 251-266.
- Dong, B.Z., Chen, Y., Gao, N.Y. and Fan, J.C. (2006). Effect of pH on UF Membrane Fouling. *Desalination*. 195: 201- 208.
- Edzwald, J.K., Becker, W.C., and Wattier, K.L. (1985). Surrogate Parameters for Monitoring Organic Matter and THM Precursors. J. Am. Water Works Assoc. 77: 122-132.
- Fan, L., Harris, J.L., Roddick, F.A. and Booker, N.A. (2001). Influence of the Characteristics of Natural Organic Matter on the Fouling of Microfiltration Membranes. *Water Res.* 18: 4455-4468.
- Farahbakhsh, K., Svrcek, C., Guest, R.K. and Smith, D.W. (2004). A Review of the Impact of Chemical Pre-treatment on Low-Pressure Water Treatment Membranes. *Environ. Sci. Technol.* 3: 237-253.
- Fong, S.S. and Mohamed, M. (2007). Chemical Characterizationof Humic Substances occurring in the Peats of Sarawak, Malaysia. Organic Geochemistry. 38: 967–976
- Fu, X., Maruyama, T., Sotani, T., Matsuyama, H. (2008). Effect of Surface Morphology on Membrane Fouling by Humic Acid with the Use of Cellulose Acetate Butyrate Hollow Fiber Membranes. J. Membr. Sci. 320: 433-491.
- Gai, X. and Kim, H. (2008). The Role of Powdered Activated Carbon in Enhancing the Performance of Membrane Systems for Water Treatment. *Desalination*. 225: 288-300.
- Gonza'lez Pe'rez, M., Martin-Neto, L., Saab, S.C., Novotny, E.H., Milori, D.M.B.P., Bagnato, V.S., Colnago, L.A., Melo, W.J. and Knicker, H. (2004). Charaterization of humic acids from a Brazilian Oxisol under different

systems by EPR, ¹³C NMR, FTIR and fluorescence spectroscopy. *Geoderma*. 118: 181–190

- Gora, S.L (2008). An Analysis of Organic Removal and its Use as an Integrity Monitoring Method in Ultrafiltration Membrane systems. MSc thesis. University of Dalhousie, Canada.
- Han, M. and Bhattacharya, D. (1995). Changes in morphology and transport characteristics of polysulfone membranes prepared by different demixing conditions. J. Membr. Sci. 98: 191-200.
- Hong, S. And Elimelech, M. (1997). Chemical and Physical Aspects of Natural Organic Matter (NOM) Fouling of Nanofiltration Membranes. J. Membr. Sci.. 132: 159-181.
- Howe, K.J., Ishida, K.P. and Clark, M.M. (2002). Use of ATR/FTIR Spectrometry to Study Fouling of Microfiltration Membranes by Natural Waters. *Desalination*. 147 : 251-255.
- Ismail, A.F. (1997). Novel Studies of Molecular Orientation in Synthetic Polymeric Membranes for Gas Separations. PhD Thesis. University of Strathclyde, Glasgow.
- Ismail, A.F., Mustaffar, M.I., Illias, R.M. and Abdullah, M.S. (2006). Effect of Dope Extrusion Rate on Morphology and Performance of Hollow Fibers Membrane for Ultrafiltration. *Sep. Purif. Technol.* 49:10-19.
- Jacangelo, J.G. and Buckley, C.A. (1996). *Microfiltration: Water treatment Membrane Process*. Chapter 11. McGraw Hill, New York.
- Jacangelo, J.G., Aieta, E.M, Cams, K.E., Cummings, E.W. and Mallevialle, J. (1989) Assessing Hollow-Fiber Ultrafiltration for Particulate Removal. *Journal* AWWA .68-75.

- Jermann, D., Pronk, W., Meylan, S. and Boller, M. (2007). Interplay of Different NOM Fouling Mechanisms during Ultrafiltration for Drinking Water Production. *Water Res.* 41:1713-172.
- Jung, B., Yoon, J.K., Kim, B. and Rhee, H.W. (2004). Effect of Molecular Weight of Polymeric Additives on Formation, Permeation Properties and Hypochlorite Treatment of Asymmetric Polyacrylonitrile Membranes. J. Membr. Sci. 243: 45-57.
- Jucker, C. and Clark, M.M. (1994). Adsorption of Aquatic Humic Substances on Hydrophobic Ultrafiltration Membranes. *J. Membr. Sci.* 97: 37-52.
- Kaiser, V. and Stropnik, C. (2000). Membranes from Polysulfone/N,N-Dimetylacetamide/Water System: Structure and Water Flux. *Acta Chim. Slov.* 47: 205-213.
- Kesting, R.E. (1985). *Synthetic polymeric membranes a structural perspective*. John Wiley and Sons, New York, 31-33.
- Kim, J., Cai, Z. And Benjamin, M.M. (2008). Effect of adsorbents on membrane fouling by natural organic matter. J. Membr. Sci. 310: 356-364.
- Kim, H.C., Hong, J.H. and Lee, S. (2006). Fouling of Microfiltration Membranes by Natural Organic Matter after Coagulation Treatment: A Comparison of Different Initial Mixing Conditions. J. Membr. Sci. 283: 266-272.
- Kim, S., Kwak, S., Sohn, B. and Park, T. (2003). Design of TiO₂ Nanoparticles selfassembled Aromatic Polyamide Thin-Film Composite (TFC) Membranes as an Approach to solve Biofouling problem. *J.Membr.Sci.* 211: 157-165.
- Kim, I.C., Lee, K.H. and Tak, T.M (2001). Preparation and Characterization of Integrally Skin Uncharged Polyetherimide Asymmetric Nanofiltration Membrane. J.Membr.Sci. 183: 235-247.

- Khulbe, K.C., Yeng, C.Y., Hamad, F., Matsuura, T. and Khayet, M. (2004). Structural and Performance Study of Microporous Polyetherimide Hollow Fiber Membranes Prepared at Different Air Gap. *J.Membr.Sci.* 245: 191-198.
- Khayet, M., Yeng, C.Y., Khulbe, K.C. and Matsuura, T. (2002). Preparation and Characterization of Polivinylidene Fluoride Hollow Fiber Membranes for Ultrafiltration. *Polymer*. 43: 3879-3890.
- Khayet, M. (2003). The Effects of Air Gap Length on the Internal and External Morphology of Hollow Fiber Membranes. *Chem. Eng. Sci.* 58: 3091-3104
- Khayet, M., Garcia-Payo, M.C., Qusay, F.A. and Zubaidy, M.A. (2009). Structural and Performance Studies of poly(vinyl chloride) Hollow Fiber Membranes are Prepared at Different Air Gap Lengths. *J.Membr.Sci.* 330: 30-39.
- Koh, L.C., Ahn, W. and Clark, M.M. (2006). Selective Adsorption of Natural Organic Foulants by Polysulfone Colloids: Effect on Ultrafiltration Fouling. *J.Membr.Sci.* 281: 472-479.
- Kurdi, J. and Tremblay, Y. (1999). Preparation of Defect-free Asymmetric Membranes for Gas Separations. J. Appl. Poly. Sci. 73: 1471-1482.
- Kroschwitz, J. I., Mark, H. F., Bikales, N. M., Overberger, C. G. and Menges, G. (1988). *Encyclopedia of Polymer Science and Engineering*. 2nd. ed. USA: John Wiley & Sons, Inc. Vol. 13. 196-211.
- Lahoussine-Turcaud, V., Wiesner, M.R. and Bottero, J.-Y. (1990). Fouling in Tangential-flow Ultrafiltration: The Effect of Colloid Size and Coagulation Pretreatment. J.Membr.Sci. 52: 173-190.
- Laine, J.M., Hagstrom, J.P., Clark, M.M. and Mallevialle, J. (1990). Effect of Ultrafiltration Membrane Composition. *Journal Of The American Water Works Assoc.* 81(11): 61-67.

- Laine, J.M, Vial, D. and Moulart, P. (2000). Status after 10 years of Operation Overview of UF Technology Today. Proceedings of the Conference on Membranes in Drinking and Industrial Water Production, Volume 1, Desalination Publications, L'Aquila, Italy. Paris, France: 17-25.
- Lebeau, T., Leviere, C., Buisson, H., Cleret, D., de Venter, L.W.V. and Cote, P. (1998). Immersed Membrane Filtration for the Production of Drinking Water: Combination with PAC for NOM and SOCs removal. *Desalination*. 117: 219-231.
- Lee, N. (2003). Natural Organic Matter (NOM) Fouling of Low-pressure (MF and UF) membranes: Identification of Foulants, Fouling Mechanisms, and Evaluation of Pretreatment. Ph.D thesis. University of Colorado, Boulder, United States.
- Lee, E.K., Chen, V. and Fane, A.G. (2008). Natural Organic Matter (NOM) Fouling in Low Pressure Membrane Filtration — Effect of Membranes and Operation Modes. *Desalination*. 218: 257-270.
- Lee, N., Amy, G., Crouse, J. and Buison, H. (2004). Identification and Understanding of Fouling in Low-Pressure Membrane (MF/UF) Filtration by Natural Organic Matter (NOM). *Water Res.* 38: 4511-4523.
- Lee, H., Amy, G., Cho, J., Yoon, Y., Moon, S.H. and Kim, S.I. (2001). Cleaning Strategies for Flux Recovery of an Ultrafiltration Membrane Fouled by Natural Organic Matter. *Wat. Res.* 35: 3301-3308.
- Leiknes, T., Odegaard, H. and Myklebust, H.(2004). Removal of Natural Organic Matter (NOM) in Drinking Water Treatment by Coagulation–Microfiltration using Metal Membranes. J. Membr. Sci. 242: 47–55.

- Li, J., Xu, Z., Yang, H., Yu, L. and Liu, M. (2009). Effect of TiO₂ Nanoparticles on the Surface Morphology and Performance of Microporous PES membrane. *Journal of Applied Science*. 255: 4725–4732.
- Liang, S., Zhao, Y., Liu, C and Song, L. (2008). Effects of Solution Chemistry on the Fouling Potential of Dissolved Organic Matter in Membrane Bioreactor Systems. J. Membr. Sci. 310: 503-511.
- Lin, C., Huang, Y., and Hao, O. J. (1998). Ultrafiltration Process for Removing Humic Substances: Effect of Molecular Weight Fractions and PAC Treatment. *Wat. Res.* 33: 1252-1264.
- Lin, C., Lin, T. and Hao, O.H. (2000). Effects of Humic Substances Characteristics on UF Performance. *Water Res.* 34 : 1097-1106.
- Luo, M., Zhao, J., Tang, W. and Pu, C. (2005). Hydrophilic Modification of Poly (ether sulfone) Ultrafiltration Membrane Surface by Self-Assembly of TiO₂ Nanoparticles. *Journal of Applied Surface Science*. 249: 76-84.
- Machado, P.S.T, Habert, A.C. and Borges, C.P. (1999). Membrane Formation Mechanism based on Precipitation Kinetics and Membrane Morphology: Flat and Hollow Fiber Polysulfone Membranes. J. Membr. Sci. 155: 171-183.
- Manttari, M., Puro, L., Nuortila-Jokinen, J. and Nyström, M. (2000). Fouling Effects of Polysaccharides and Humic Acid in Nanofiltration. *J. Membr. Sci.* 165: 1–17.
- Mallevialle, J., Odendaal, P.E. and Wiesner, M.R. (1996). Water Treatment Membrane Process. American water works association research foundation, Lyonnaise des eaux, Water research commission of South Africa. Mc-Graw Hill.

- Martin, D., Srivastava, P.C., Ghosh, D. and Zech, W. (1998). Characteristics of Humic Substances in Cultivated and Natural Forest Soils of Sikkim. *Geoderma*. 84: 345–362.
- McKelvey, S.A., Clausi, D.T. and Koros, W. (1997). A Guide to Establishing Hollow Fiber Macroscopic Properties for Membrane Applications. *J. Membr. Sci.* 124: 223-232.
- Mimi Sakinah, A.M., Ismail, A.F., Illias, R.M. and Hassan, O. (2007). Fouling Characteristics and Autopsy of a PES Ultrafiltration Membrane in Cyclodextrins Separation. *Desalination*. 207: 227-242.
- Mo, L. and Huang, X. (2003). Fouling Characteristics and Cleaning Strategies in a Coagulation-Microfiltration Combination Process for Water Purification. *Desalination*. 159 : 1-9.
- Moon, E.J., Kim, J.W. and Kim, C.K. (2006). Fabrication of Membranes for the Liquid Separation Part 2: Microfiltration Membranes prepared from Immiscible Blends containing Polysulfone and poly (1-vinylpyrrolidone-coacrylonitrile) copolymers. J. Membr. Sci. 274: 244-251.
- Mozia, S. and Tomaszewska, M. (2004). Treatment of Surface Water using Hybrid Process-Adsorption on PAC and Ultrafiltration. *Desalination*. 162: 23-31.
- Mulder, M. (1991). *Basic Principles of Membrane Technology*. 2nd ed. Kluwer Academic Publishers, Dordrecht.
- Nabe, A., Staude, E., and Belfort, G. (1997). Surface Modification of Polysulfone Ultrafiltration Membranes and Fouling by BSA Solutions. *J.Membr.Sci.* 133: 57-72.
- Nicolaisen, B. (2002). Developments in Membrane Technology for Water Treatment. *Desalination*. 153: 355-360.

- Nilson, J. and Digiano, F.A. (1996). Influence of NOM Composition on Nanofiltration. *Journal Am. Water. Water Works Association*. 88: 53-66.
- Norwood, D.L., Johnson, J.D., Christman, R.F., Haas, J.R., and Bobenrieth, M.J. (1980). Reactions of Chlorine with Selected Aromatic Models of Aquatic Humic Material. *Environmental Science and Technology*. 14(2): 187-190.
- Nystrom, M., Ruohomaki, K. and Kaipia, L. (1996). Humic acid as a fouling agent in filtration. *Desalination*. 106: 79-87.
- Ng, B.C. (2003). Development of Polysulfone Asymmetric Membrane Using Pneumatically-Controlled Membrane Casting System and the Study of the Effects of Shear Rate and Forced Convection Residence Time on Gas Separation Membrane Performance. Msc Thesis. Universiti Teknologi Malaysia
- Osmonics Inc, The Filtration Spectrum (2002), Osmonic Inc, Minnetonka, Minnesota, USA.
- Pesek, S. C. and Koros, W. J. (1994). Aqueous Quenched Asymmetric Polysulfone Hollow Fibers Prepared by Dry/Wet Phase Separation. J. Membr. Sci. 88: 1-19.
- Pinnau, I. (1991). Skin Formation of Integral-asymmetric Gas Separation Membranes made by dry/wet phase inversion. PhD thesis. University of Texas, Austin.
- Pinnau, I. and Koros, W.J. (1993). A Qualitative Skin Layer Formation Mechanism for Membranes Made by dry/wet phase inversion. *Journal of Polymer Science*. 31: 419-427.
- Qin, J., Gu, J. and Chung, T. (2000). Investigation of Shear Stress Effect within a Spinneret on Flux, Separation and Thermomechanical Properties of Hollow Fiber Ultrafiltration Membranes. J. Membr. Sci. 175: 197-213.

- Qin, J., Gu, J. and Chung, T. (2001). Effect of Wet and Dry-jet Wet Spinning on the Shear-Induced Orientation during the Formation of Ultrafiltration Hollow Fiber Membranes. J. Membr. Sci. 182: 57-75.
- Qin, J., Wong, F., Li, Y. and Liu, Y. (2003). A High Flux Ultrafiltration Membrane Spun from PSU/PVP (K90)/DMF/1,2-propanediol. J. Membr. Sci. 211: 139-147.
- Qin, J.J, Oo, M.H and Li, Y. (2005). Hollow Fiber Ultrafiltration Membranes with Enhanced Flux for Humic Acid Removal. *J. Membr. Sci.* 247: 119-125.
- Ratajczak, M. (2007). *The Use of Coagulation as a Pre-treatment to Ultra-filtration Membranes.* MSc thesis. University of Waterloo, Canada.
- Rook, J. (1974). Formation of Haloforms during Chlorination of Natural Waters. *Water Treatment and Examination.* 23 (234).
- Robert, A. and Bergman, P.E. (2005). *Water Treatment Plant Design*, Chapter 13: Membrane Process. McGraw Hill, 4th Edition, 13.1-13.49.
- Ruohomäki K., Väisänen P., Metsämuuronen, S., Kulovaara, M. and Nyström, M. (1998). Characterization and Removal of Humic Substances in Ultra- and Nanofiltration. *Desalination*. 118: 273-283.
- Schafer, A.I., Schwicker, U., Fisher, M.M., Fane, A.G. and Waite, T.D. (2000a). Microfiltration of Colloids and Natural Organic Matter. J. Membr. Sci. 171: 151-172.
- Schafer, A.I., Fane, A.G. and Waite, T.D. (2000b). Fouling Effects on Rejection in the Membrane Filtration of Natural Waters. *Desalination*. 131 (1-3): 215-224.
- Shieh, J. and Chung, T.S. (1998). Effect of Liquid-Liquid Demixing on the Membrane Morphology, Gas Permeation, Thermal and Mechanical Properties of Cellulose Acetate Hollow Fibers. J. Membr. Sci.140: 67-69.

Stevenson, F.J. (1982). Humus Chemistry. Wiley, New York, 1982.

- Stropnik, C., Kaiser, V., Musii, V. and Brumen, M. (2005). Wet-Phase-Separation Membranes from the Polysulfone/ N,N-Dimethylacetamide/Water ternary System: The Formation and Elements of Their Structure and Properties. *Journal of Applied Polymer Science*. 96: 1667-1674.
- Syafei, A.D., Lin, C., Wu, C. (2008). Removal of Natural Organic Matter by Ultrafiltration with TiO₂-coated Membrane under UV irradiation. *Journal of Colloid and Interface Science*. 323: 112-119.
- Tang, C.Y., Kwon, Y. and Leckie, J.O. (2007). Fouling of Reverse Osmosis and Nanofiltration Membranes by Humic Acid- Effects of Solution Composition and Hydrodynamic Conditions. J. Membr. Sci. 290: 86-94
- Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L. and Tarabara, V.V. (2008). Effect of Filler incorporation Route on the Properties of Polysulfone-silver Nanocomposite Membrane of Different Porosities. J. Membr. Sci. 325: 58-68.
- Thurman, E.M. (1985). Organic Geochemistry of Natural Waters, Martinus Nijhoff/ Dr W. Junk Publishers, Boston, MA.
- Tsai, N.H.A., Huang, D.H., Fan, S.C., Yang, Y.C., Li, C.L., Lee, K.R. and Lai, J.Y. (2002). Investigation of Surfactant Addition Effect on the Vapor Permeation of Aqueous Ethanol Mixtures through Polysulfone Hollow Fiber Membranes. *J. Membr. Sci.* 198: 245-258.
- Van de Witte, P., Dijsktra, P.J., Van Den Berg, J.W.A. and Feijen, J. (1996). Phase Separation Processes in Polymer Solutions in relation to Membrane Formation: Review J. Membr. Sci. 117 (1996): 1-31.

- Vial, D. and Doussau, G. (2002). The Use of Microfiltration Membranes for Seawater Pre-treatment Prior to Reverse Osmosis Membranes. *Desalination*. 153: 141-147.
- Wang, D., Teo, W.K. and Li, K. (2002). Preparation and Charcterization of High Flux Polysulfone Hollow Fibre Gas Separations Membranes. J. Membr. Sci. 204: 247-256
- Weis, A., Bird, M.R., Nystrom, M. and Wright, C. (2005). The Influence of Morphology, Hydrophobocity and Charge upon the Long-term Performance of Ultrafiltration Membranes Fouled with Spent Sulphite Liquor. *Desalination* 175: 73-85.
- Wiesner, M.R. and Aptel, P. (1996). In *Water Treatment Membrane Process* .eds Mallevialle, J., Odendaal, P.E. and Wiesner, M.R. (1996). Mc-Graw Hill. Pages 4.1-4.3.
- Winston Ho, W. S. and Sirkar, K. K. (1992). *Membrane Handbook*. New York: Van Nostrand Reinhold.
- Xiuli, Y., Hongbin, C., Xiu, W. and Yongxin, Y. (1998). Morphology and Properties of Hollow-fiber Membrane made by PAN mixing with small amount of PVDF. J. Membr. Sci.146: 179-184.
- Xu, Z.L. and Alsalhy Qusay, F. (2004). Polyethetsulfone (PES) Hollow Fiber Ultrafiltration Membranes prepared by PES/non-solvent/ NMP solution. J. Membr. Sci. 233: 101-111.
- Yang, Y., Zhang, H. Wang, P., Zheng, Q. and Li, J. (2007). The Influence of Nanosized TiO₂ Fillers on the Morphologies and Properties of PSF UF Membrane. *J. Membr. Sci.* 288: 231-238.
- Yang, Y., Wang, P. and Zheng, Q. (2006). Preparation and Properties of Polysulfone/

TiO₂ Composite Ultrafiltration Membrane. *Journal of Polymer Science*. 44: 879-887.

- Yang, Y., Wang, P. and Zheng, Q. (2005). Preparation and Properties of Polysulfone/ TiO₂ Composite Ultrafiltration Membrane. *Journal of Polymer Science*. 44: 879-887.
- Yu, L. Shen, H. and Xu, Z. (2009). PVDF-TiO₂ Composite Hollow Fiber Ultrafiltration Membranes Prepared by TiO₂ sol-gel Method and Blending method. *Journal of Applied Polymer Science*. 113: 1763-1772.
- Yuan, W. and Zydney, A.L. (1999a). Effects of Solution Environment on Humic Acid Fouling during Microfiltration. *Desalination*. 122: 63-76.
- Yuan, W. And Zydney, A.L. (1999b). Humic acid fouling during microfiltration. J. Membr. Sci. 157 : 1-12.
- Yuan, W. (2001). Fouling by Humic Acids during Ultrafiltration and Microfiltration for water treatment. Phd Thesis. University of Delaware.
- Yuan, Z. and Dan-Li, X. (2008). Porous PVDF/TPU blends Asymmetric Hollow Fiber membranes prepared with the use of Hydrophilic Additive PVP (K30). *Desalination*. 223: 438-447.
- Zhang, W., Wahlgren, M. and Sivik, B. (1989). Membrane Characterization by the Contact Angle Technique: II. Characterization of UF Membranes and Comparison between the Captive Bubble and Sessile Drop as methods to obtain Water Contact Angles. *Desalination*. 72 (3): 263-273.
- Zhao, Y., Zhang, Y., Xing, W. and Xu, N. (2005). Influences of pH and ionic strength on Ceramic Microfiltration of TiO₂ suspensions. *Desalination*. 177: 59-68

- Zularisam, A.W., Ismail, A.F. and Salim, R. (2006). Behaviours of Natural Organic Matter in Membrane Filtration for Surface Water Treatment-A Review. *Desalination*. 194: 211-231.
- Zularisam, A.W., Ismail, A.F., Salim, M.R., Mimi Sakinah, Hiroaki, O. (2007).
 Fabrication, Fouling, and Foulant Analyses of Asymmetric Polysulfone (PSF)
 Ultrafiltration Membrane Fouled with Natural Organic Matter (NOM) Source
 Waters. J. Membr. Sci., 299: 97-113.