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ABSTRACT 

Computer graphics is a fast growing field as it contributes significantly to the 

advancement of modern technology aimed at  empowering human and nation wealth 

creation. Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM) and 

Computer-Aided Geometric Design (CAGD) are commonly used to reconstruct surfaces 

in order to obtain a set of limited and disorganized geometric sample values. The process 

of surface reconstruction consists of two main steps: parameterization and surface fitting. 

Various solutions have been used in previous studies to reconstruct surfaces such as Non 

Uniform Rational B-Spline (NURBS) and B-Spline. However, in recent years, Artificial 

Intelligence (AI) methods such as Advanced Neural Network and Evolutionary Algorithm 

(EA) have emerged and are extensively used to reconstruct and optimize complex 

surfaces. This study aims to optimize NURBS surfaces from unstructured 3D data points 

with feasible control points while preserving the shape of the objects by using Differential 

Evolution Algorithm (DEA). The Growing Grid Network (GGN) is implemented on a 

map structure, while DEA is optimally fit on to the NURBS surfaces. In this study, 

undefined or unstructured data points from several 2D and 3D datasets were used to 

validate the performance of the proposed method. An error analysis was also conducted to 

reconfirm the efficacy of the proposed algorithm. This is done by comparing the generated 

surface with the original surface using other EAs such as: Genetic Algorithm and Particle 

Swarm Optimization. Experimental results indicate that the proposed Growing Grid 

Network Differential Evolution (GGNDE) has successfully generated smoother surfaces 

with lesser number of control points and produced minimum feasible errors while 

preserving the shape of the objects. 



vi 

 

ABSTRAK 

Grafik komputer merupakan suatu bidang yang sedang berkembang pesat 

disebabkan sumbangannya yang ketara dalam kemajuan teknologi moden. Rekabentuk 

Berbantukan Komputer (CAD), Pembuatan Berbantukan Komputer (CAM) dan Reka 

bentuk Geometri Berbantukan Komputer (CAGD) digunakan untuk membina semula 

permukaan bagi mendapatkan set nilai sampel geometri yang terbatas dan tidak tersusun. 

Proses pembinaan semula permukaan melibatkan dua langkah utama, iaitu 

pemparameteran dan pemadanan permukaan. Banyak kaedah penyelesaian telah 

digunakan dalam kajian terdahulu untuk pembinaan semula permukaan seperti Splin-b 

Nisbah Tak Seragam (NURBS) dan Splin-b. Namun demikian pada masa ini kaedah 

kecerdasan buatan seperti Rangkaian Saraf Lanjutan dan Algoritma Evolusi telah 

diperkenalkan dan digunakan dengan meluas bagi membina semula dan mengoptimumkan 

permukaan yang rumit. Kajian ini bertujuan mengoptimumkan permukaan NURBS 

daripada data 3D tak berstruktur dengan bilangan titik kawalan yang tersaur dan 

mengekalkan rupa bentuk objek menggunakan Algoritma Evolusi Pembezaan (DEA). 

Rangkaian Tumbesaran Grid dilaksanakan pada struktur pemetaan manakala DEA 

dimuatkan secara optimum pada permukaan NURBS. Dalam kajian ini beberapa set data 

2D dan 3D yang tidak tertakrif atau tidak berstruktur digunakan untuk mengesahkan 

prestasi kaedah cadangan. Analisis terhadap ralat juga dilakukan dengan 

memperbandingkan permukaan terjana dengan permukaan asal menggunakan kaedah 

Algoritma Evolusi yang lain seperti Algoritma Genetik dan Pengoptimuman Partikel 

Berkelompok. Hasil kajian mendapati bahawa kaedah cadangan, iaitu Rangkaian 

Tumbesaran Grid Evolusi Pembezaan telah berjaya menjana permukaan yang licin dengan 

bilangan titik kawalan yang kurang dan ralat minimum tersaur di samping mengekalkan 

rupa bentuk asal objek berkenaan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Computer graphics is fast growing field due to its significant contributions to the 

advancement of modern technology for human and nation wealth creation. One of the 

major areas in computer graphics is surface reconstruction since it is widely used in 

industries to design the products. Computer-Aided Design (CAD), Computer-Aided 

Manufacturing (CAM) and Computer-Aided Geometric Design (CAGD) are commonly 

used in reconstructing the surfaces to obtain a set of geometric sample values (in most 

cases, points) which is normally limited and unorganized. Conventionally, mathematical 

description represents a shape of physical surface accurately and concisely. Surface 

reconstruction and surface representation has also an important part in the design 

problems such as construction of scanned 3D objects, modeling of car bodies, medical 

imaging and other free-form objects. 

Surface representation illustrates three cases: explicit form, implicit form and 

parametric form. Among these, the parametric representation is the most useful and 

widely applied, since it is axis independent and applicable to complex surfaces 

(Shamsuddin, Ahmed et al. 2006). Several types of parametric curve and surface 

representation include Bezier, B-Spline and NURBS are the most influential methods used 

by the engineers. However, the common problems encountered in surface reconstruction 

from unstructured data is on how to acquire the control points of the surface. This is due to 
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the parametric surface in which to obtain suitable parameterizations of data points are 

crucial. 

Some scientists to overcome the problems of surface reconstruction from 

unstructured data have used variety of methods. Some of these methods used multi-

quadratic functions (Franke, Hagen et al. 1994), range images (Curless 1997), discrete 

fairing and variation subdivision (Kobbelt 2000),  dynamic base surfaces (Azariadis 

2004), approximations of the unsigned distance function (Flöry and Hofer 2010), and 

Artificial Intelligence (AI). 

Recent literatures have shown that the usage of AI in surface reconstruction can 

produce good results (Hoppe, DeRose et al. 1992; Ivrissimtzis, Jeong et al. 2003; Junior, 

Neto et al. 2004; Gálvez, Cobo et al. 2008; Tsai, Huang et al. 2009; Mendona Ernesto 

Rego, Araujo et al. 2010).The common AI methods in surface reconstruction include 

Artificial Neural Network (ANN), Kohonen Self Organizing Map (SOM), and Genetic 

Algorithm (GA).  

1.2 Background of the Study 

Surface reconstruction is view from two perspectives: mathematical aspects and 

Artificial Intelligence (AI). Some recent studies have shown that some AI application 

shave achieved remarkable results (Ivrissimtzis, Jeong et al. 2003; Junior, Neto et al. 

2004; Gálvez, Cobo et al. 2008). The input data obtained from the object can be 

represented into two types: image mesh, and the 3D point from the scanned image with 

have noise and scattered. These types of data, however, yield an enormous amount of 

irregular and scattered digitized point that requires intensive reconstruction processing. 

Surface reconstruction consists of two main steps: parameterization and surface 

approximation. In 3-dimensional surfaces, parameterization represents one-to-one 
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mapping from the surface to a suitable domain. In other words, surface approximation is a 

procedure of determining a control polygon that generates a curve or surface from a set of 

known data points using a set of parameter obtained from the parameterization procedure. 

Previous related studies used data points, which are noisy and scattered. However, 

the issue arises on how to re-arrange the scattered point data to be organized, and to deal 

with the algorithm’s complexity as well as processing time. 

(Barhak and Fischer 2001) use Self Organizing Map (SOM) for creating a 3D 

parametric grid. The main advantage of SOM relies on both the orientation of the grid and 

the position of the sub-boundaries. The neural network grid converges to the sampled 

shape through an adaptive learning process. However, some enhancements need to be 

done to create a complete envelope of a volumetric object and accuracy. 

(Jalba and Roerdink 2007) have done some studies on deploying a fast convection 

algorithm to attract the evolving surface towards the data points. However, this method 

has limitation, that is, surface features are smaller than the size of the smallest grid cells; 

hence the reconstruction is not accurate enough. 

(Gálvez, Iglesias et al. 2007)used GA to reconstruct the surface, and functional 

networks for the functional constraints problems. These methods are integrated with the 

least-squares approximation to yield suitable methods for surface fitting.  However, this 

approach still faces the difficulty to attain global optimum due to the variation of distance 

error function for fitting data for different models. 

(Gálvez, Cobo et al. 2008) has also used PSO to obtain a suitable parameterization 

of the data points on Bezier surface reconstruction. However, the results found that there 

was no correlation between the number of iterations and the quality of the results. In this 

scenario, it means that exploring the space domain of the problem is not yet optimal. 

Hence, adjusting PSO parameters can help solve the above problem.  
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(Kazhdan, Bolitho et al. 2006) has presented surface reconstruction problem as 

Poisson problem that allows a hierarchy of locally supported basis functions. The solution 

has reduced to well-conditioned sparse linear system. However, there are some limitations 

on this approach due to the weaknesses in handling huge data sets. 

(Shamsuddin and Ahmed 2006) proposed hybrid parameterization to solve 

parameterization of data points on the surfaces. The method takes into consideration the 

maximum rational B-spline basis functions as the initial values. The centripetal method 

generates the parameter values of hybrid parameterization. However, some improvements 

are required to refine the reconstructed object to be fairer and smoother. 

(Forkan and Shamsuddin 2008) proposed a method for surface reconstruction 

based on the hybridization of Kohonen Network and Particle Swarm Optimization (PSO). 

In this study, PSO probes the best control points for the data with B-Spline as surface 

representation. However, B-Spline surface representation is still incapable to represent 

accurately most of the analytically defined shape and conic sections such as Circle, 

Ellipse, and Hyperbola. 

(Gálvez and Iglesias) in 2010 has presented recovery of a surface using PSO from 

scattered noisy data points. The process consists of two main phases: parameterization and 

surface fitting. The result is good in terms of accuracy. However, the computational time 

and complexity need to be reduced.  

Table 1.1 shows the summary of recent study in the field of surface reconstruction 

. 
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Table 1.1: Previous Related Study on Surface Reconstruction 

Author/Year Summary Limitation/Future Work

(Kazhdan, 

Bolitho et al. 

2006) 

surface reconstruction problem can 

be expressed as Poisson problem 

Weak on handling huge 

data sets. 

(Jalba and 

Roerdink 2007) 

using a method that employs a fast 

convection algorithm 

Surface features are 

smaller than the size of 

the smallest grid cells. 

Hence the surface are not 

accurately reconstructed 

(Gálvez, Iglesias 

et al. 2007) 

use PSO for obtaining a suitable 

parameterization of the data points 

on Bezier surface reconstruction 

Only limited on bezier 

surface parameterization 

process 

(Kumar et al. 

2003) 

Using Genetic Algorithm to 

optimize the parameter 

Limited to B-Spline 

curve 

(Shamsuddin, 

Ahmed et al. 

2006) 

Using hybrid parameterization, Give 

better accuracy 

Weights value are  

adjusted manually 

(Barhak and 

Fischer 2001) 

use a neural network Self 

Organizing Map (SOM) method for 

creating a 3D parametric grid. 

Cannot envelope the 

volumetric object. 

(Cheng, Wang et 

al. 2004) 

Using Squared Distance 

Minimization (SDM) 

features like edges and 

corners in data sets need 

to be detected first, have 

some problem in 

smoothness and accuracy

(Sarfraz and 

Riyazuddin 2006) 

Using simulated annealing to 

optimalize weight and knot 

parameter of NURBS 

Good only on single 

segment image. Limited 

only on curve 

(Forkan and 

Shamsuddin 

2008) 

Using Kohonen Network for 

mapping the data, B-Spline 

representation  and PSO Algorithm 

Further exploration by 

using NURBS with 

weight and knot vector 
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for surface fitting optimization 

(Delint Ira Setyo 

2010) 

Solve NURBS curve approximation 

problem by using Particle Swarm 

Optimization (PSO). 

Limited only on 2D data

(Gálvez and 

Iglesias 2010) 

Using PSO for parameterization and 

surface fitting 

The results show the 

algorithm can reconstruct 

the surface accurately, 

but the complexity and 

computation time is still 

need to be reduced 

Based on the above issues, a comprehensive study needs to be conducted to 

produce an algorithm that can utilize the application of AI for surface reconstruction 

process. This hybridization could benefit the manufacturing and industry sectors. 

1.3 Problem Statement 

As mentioned previously, to solve the issues on surface reconstruction from 

unstructured data points, these data need to be organized. The procedure involves by 

obtaining suitable parameterization of data points and control point that can approximate 

the original surfaces. Hence, the research questions for this study include: 

1. What is Growing Grid Network (GGN), and how to deal with NURBS surface 

reconstruction? 

2. How GGN organize the unstructured data in NURBS surface reconstruction? 

3. How Differential Evolution Algorithm (DEA) being implemented in 

optimizing the NURBS surface? 

4. How the DEA obtains an optimal control point that can approximate the data 

point in NURBS surface reconstruction? 
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1.4 Research Aim 

The aim of the study is to optimize NURBS surface reconstruction from 

unstructured 3D data points with feasible control points while preserving the shape of the 

objects using Evolutionary Algorithms. 

1.5 Objectives 

The main objectives of this research are as follows:  

1. To develop NURBS surface reconstruction from unstructured data points using 

growing grid network (GGN). 

2. To propose and develop Differential Evolution Algorithm (DEA) to optimize 

NURBS surface reconstruction 

3. To validate and compare the proposed algorithm with the existing related 

methods 

1.6 Research Scope 

The scope of this study includes: 

1. Technique to be used: 

a. The growing grid technique adopted from (Forkan and Shamsuddin 

2008)are used to obtain the initial surface 

b. Differential evolution optimization are used to optimize the initial 

surface generated from growing grid network 
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c. Time consumption is not considered, more focus on the aspects of 

accuracy. And we also we focus on parametric approach, not on the 

typical graphic methods, i.e., non-parametric approach. Which is 

the common issue in non-parametric, such as triangulation, is 

difficulties in dealing with sharp corner (T-Junction). 

2. Datasets  

a. Datasets in this study are open surface which noise level is minimal 

and unorganized. Examples of 2D and 3D data are sine, spiral, 

semi-sphere, ships and free-form shapes. 

3. Tools and environment to be used include: 

a. Java Programming Language 

b. Graphics API and library, OpenGL and GLUT 

c. For rendering purpose, OpenGL API GLUT library will be used. 

4. Experiment will be run on PC with specifications: 

a. Operating System: Windows 7 Professional 

b. Processor: 2GHz CPU 

c. Memory: 2048MB RAM 

1.7 Thesis Organization 

Thesis structure is given as follows: 

Chapter 1: Introduction -explains an overview of the background of the study, 

development of techniques and methods used in surface reconstruction and the common 

problems that are usually encountered in surface reconstruction, also the problem 

statement, the aim, the objective, and the scope of this research. Finally, the thesis 

organization is given below. 
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Chapter 2: Literature review - This chapter states some existing methods of surface 

reconstruction. It also contains the review of the related previous works for solving 

surface reconstruction and approximation methods. 

Chapter 3: Methodology and The Proposed Method- This chapter describes the 

system overview and the framework of proposed methods. It explains the details of every 

steps of growing grid, include the process of generating initial surface using growing grid 

map and differential evolution in optimizing and approximating NURBS surface 

reconstruction.   

Chapter 4: Experimental Results and Analysis - This chapter presents the findings 

of the study, analysis of the results and the comparisons with other works. 

Chapter 5: Conclusions and Future Work - This chapter provides the summary of 

the research, the contribution of the work and recommendation for future study. 
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