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Abstract

This paper present an approach for developing a consistent student course-advising 

system for undergraduate students using knowledge-based technology. A prototype 

system has been implemented in object-oriented technique using C++. The prototype 

system was designed for undergraduate Computing students. The prototype is able to 

give consultation and advice on some important aspect of student advising problems. 

Knowledgeable behaviour was produced where the ‘expert’ and ‘knowledge’ is stored 

separately from the inference engine. Object-oriented programming technique was found 

to enhance the development of the system.

Keywords : Intelligence Advising system, knowledge based system and object- 

oriented programming

1.0 Introduction

Most academic institutions offers their students a variety of programs from which a 

student can select one and satisfy the school requirements in order to be eligible for a 

degree. This usually consists of choosing the required courses within the student’s major 

and minor, elective courses, and satisfying general university requirements. Typically a 

student has a certain amount of freedom to choose the right course and subjects which 

suit them.
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The problem arise when the students are not sure which course to choose, in 

order to complete her/his degree successfully. This is because the student are not aware 

of the degree requirements, course descriptions and prerequisites. Advising is a very 

important component in retention of students, since good advising detects problems in 

early stages and prevents problems that would otherwise happen at the later stage.

The advisory process must address two areas: degree check requirements and the 

student’s special interests. The role of the advisor is to suggest the offered courses when 

the student is likely to pass the subjects in the course taking into consideration the 

prerequisite requirements and minimizing the time to get a degree. Mature students can 

specify their interest at the advanced level and take courses from the set of elective 

courses.

The advising system often suffers from a number of shortcomings such as:

i. it creates a heavy burden on the academic staffs;

ii. the requirements often change, consequently it is difficult for the advisors to update 

their own knowledge with sufficient frequency;

iii. the existing set of manual or guidance is often incomplete or inconsistent, which may 

lead to misinterpretation of information;

iv. the overall process of advising is time consuming and complex ;

v. transfer student has different academic background and knowledge;

The layout of this paper is as follows. In Section 2 previous works related to student 

advising system are reviewed. Section 3 describes the advantage of applying knowledge- 

based technology to solve student advising problems. Section 4 describes an 

implementation and testing of a student course advising system using object-oriented
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C++ for undergraduate students at the School of Computing, Sheffield Hallam University 

(SCAS).

2.0 Previous Works Related to Student Advising System

In recent years, several automated advising systems have been developed. These systems 

have been developed for both undergraduate and post-graduate education and have a 

wide variety of functionality. These systems have been developed by utilizing various 

technologies including artificial intelligence, spreadsheets, as well as traditional 

programming languages. A summary of these systems and their functionality is illustrated 

in Table 2.1 and Table 2.2. From these works, it was found that the student advising

domain is amenable to the knowledge-based system method.

Graduate Course Advisor - 
(Valtoria, 1984)

A Student Advisor 
(Golumbic, 1986)

A Course Advisor (Crook?, 
1987)

Academic Institution Duke Univ. & Univ. of 
Carolina

Bar llan Univ. Texas Christian Univ.

Department Computer Science - Computer Science
Student Status Post-graduate Undergraduate Undergraduate
Language used C-Prolog Prolog C-Prolog
Main Functions Number of courses to 

enroll
Type of courses to enroll 
“Best courses” for student 
Schedule of appropriate 
length

Check degree requirement 
Suggest courses based on 
course interest and Univ. 
requirement

Recommend possible 
major areas of study to 
undecided majors within 
the university

Checks Required Course? No Yes No
Suggests Courses to Take Yes Yes N/A

A Student Advisor 
(Frank, 1988)

Graduate Student Advisor 
(Chan, 1988 )

Schedule Advisement 
System (Kawalski, 1991)

A Course Advisor - 
(Occena, 1993)

Univ. of Arkansas Arizona State Univ. California State Univ. Univ. of Massouri- 
Columbia

Computer Sciences Industrial Eng. Computer Science Industrial Eng.
Undergraduate Post-graduate Undergraduate Undergraduate
C-Prolog Personal Consultant PC Scheme Expert System Env. Shell
Check degree requirement 
Suggest on the best courses 
for student based on 
interest and progress

Requirement for degree 
Option for major fields of 
study
Available courses and 
faculty

Check degree requirements 
Suggest one term schedule 
based on student’s 
availability

Check degree requirement 
Suggest on the best courses 
for student based on 
interest and progress

Yes N/A N/A Yes
Yes No Yes Yes

Table 2.1 : Published student advisor system s with A1 technology

Jilid 9, Bi'l' 2 ( Disember 1997) Jumal Teknologi Maklumat



47

In this paper a student course advising system using knowledge technique is presented. 

The key feature of the developed system is the separation of ‘expert’ or ‘knowledge’ 

from the inference engine and the reasoning strategy. This paper will demonstrate how 

C++ and character of object oriented programming (OOP) can help in development of 

such system.

The A dv iso r 's  A ssistant - 
(B atchelder, 1989 )

Student Advising 
(M alasri. 1988)

Sem i-A uto A dvising System  
(M alasri, 1990)

Student A dvising system  
(B illo, 1993 )

South Dakota School o f 
M ines & Technology

Univ. M iami, Coral Gables C hristian B rother C ollege Univ. o f  P ittsburgh

Electrical Eng. Civil & A rchitecture Eng. Civil Eng. Industrial Eng.
U ndergraduate U ndergraduate Undergraduate U ndergraduate
T urbo Pascal V5.0 Lotus 1-2-3 Q U A TTR O Q uick Basic
List s tu d en t's  courses 
com pleted and credits 
detail
C heck and list all courses 
to be com pleted before 
g raduation

C heck student credits and 
GPA
C heck transfer and 
prerequisite  courses 
list all core courses which 
the student can take

List all required courses 
Keep all student records 
D isplay student progress 
Recom m end w hat courses the 
student can take for one 
sem ester
Suggest trial schedule

D evelop student long­
term  schedule

Yes Yes Yes No
All R em aining C ourses All R em aining Core N/A No

Table 2,2 : Published student advisor system with other technology

3.0 Intelligence Knowledge-based System

The methods of knowledge-based systems are now being applied in many diverse areas. 

This technology is useful for tasks where the knowledge of highly skilled human experts 

can be represented explicitly and acted upon by inference procedures. The result is 

intended to be a system which exhibits intelligent, knowledgeable behavior (Golumbic, 

1986).

For the student advising problem, the knowledge-based system is preferred over 

a conventional algorithmic system for several reasons :

I. It was desired to manage knowledge and not data. The is system required to advise 

undergraduate students based on some domain expert’s specific rules and heuristics.
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II. The system need to contain explanation facilities available to other faculty members, 

thereby to understand the university advising process for undergraduate computing 

students.

III. The system needed sufficient flexibility to be easily maintained and modified to 

conform more to a particular discipline.

IV. A thorough analysis and understanding of the undergraduate advising process that 

would come about as a by product of the knowledge-based system development.

V. The permanent storage of course-advising information.

4.0 Implementation of Student Course Advising System (SCAS)

There are three groups of peoples involved in the student course advising problem: 

student advisor, student and administration. Figure 4.1 shows the relationship between 

the groups.

Figure 4.1 : The relationship between groups involved in student advising process

There are three main problem areas that need to be solved in SCAS. These areas are:

1) Advise student to select the right course. This involves first year student, second year 

direct entry student and final year direct entry student.
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2) Advise on to change course for student already began their course but decided to 

change their course. It also involves providing information to students who have 

problem in particular units

3) Advise to select the electives subjects for final year student.

4.1 The Design of SCAS

The design of SCAS involves two main areas: the knowledge design and the inference 

engine design. The knowledge obtained through knowledge acquisition process can be 

categorized into three main groups:

1) Course knowledge i.e. information related to the course which includes subjects, 

course and unit prerequisites.

2) Evaluation knowledge i.e. knowledge related to evaluation process which includes 

questions asked by the advisor to identify the student ability, the weighting factors 

and reasoning statements.

3) Rule knowledge i.e. heuristics and decision rules.

For the purpose of flexibility and maintainability these three knowledge are stored in 

three difference data files. Any changes in the information and knowledge will not affect 

other components of the SCAS, especially the inference engine. Changes can be made in 

these data files and therefore avoiding recompiling the whole system when there are 

changes in the knowledge. Figure 4.2 shows how the above knowledge fit with the other 

components in the SCAS.

B tH H saese^ ^ B sssssasB essi^ a
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Knowledge Base

Figure 4.2 : Course, evaluation and rule knowledge as components o f  the SCAS

Course and evaluation knowledge represented in frame, refer table 4.1 and 4.2. Rule 

knowledge represented in procedural rules, example of the rules are:

i. IF the student overall performance is suitable for software engineering course THEN 

check for software engineering detail subject

ii. IF the student have no problem with all detail software engineering subject THEN 

the student really suitable for the course.

Refer to figure 4.3 on how this rules used in SCAS.

Slot Fillers
Unit/subject 205
Title Software Tools and Evironment
Prerequisite 103
Course_taken SE, IT, El

Table 4 .I : Unit Frame fo r  Course Information

Slot Fillers
Question_number 103 1
Question Do you have basic 

understanding of software 
principle?

Weight_Factor 5
Reason Basic understanding of 

software engineering 
principles

Table 4.2 : Evaluation skill represented in frame
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rule -SE0 : if rule_SE0l : if
level=2 and 103=60 andoII 105 = 50

then then
check = rule_SE01 check = done

Figure 4.3 : Rules used in SCAS

The ability of advisor in evaluating a student is presented in evaluation knowledge. 

Within a unit/subject, certain attributes are more important than others in determining 

whether a student understand a particular unit/subject or not. Weighting factor is used to 

give indication or measurement associated with the attributes. The higher the weighting 

factor the more important is the attribute.

Consider an example shown below for a subject named ‘Programming’. This 

subject has four attributes, each attribute has a weighting factor represented by a number 

in the bracket.

I. Unit 103 - Programming

A. Understand software engineering basic principles. (10)

B. Familiar with general idea about programming methods. (5)

C. Familiar with general idea about programming style. (5)

D. Know how to design program. (3)

Considering the unit named ‘Programming’, the attribute A ‘Understand software 

engineering basic principles’ is more important than other attributes B - D in determining 

whether a student understand the programming subject. The higher the weighting factor, 

the greater is the importance. The weighting factor figures were determined by the 

student advisor.
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When an answer to a question is yes, the fact associated with the question also become 

yes. In order to get a total score for each student , the sum of those weighting factors 

initiated to yes is calculated. The score is called the total weighting factor. If all the facts 

are initiated to yes, the total weighting factor is called the maximum sum weighting 

factor. Therefore the suitability level for each student can be calculated using the 

equation

Suitability level -  Total weighting factor  /  total m axim um  sum  weighting factor  

4.1.1 Inference Engine Design

The inference engine was designed using object-oriented approach.

Object-Oriented design

Using the object-oriented design approach as specified by (Booch, 1991), the major steps 

involves are defines as:

Step 1: Identify the object and their attributes

From the problem domain a number of class can be identified:

Figure 4.4 : Objects and attributes
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From Figure 4.4 of SACS, five distinct objects can be found.

1) Student Advising Inference Engine (SAIE). This provide service for building the 

advise process, reasoning process and user interface display.

2) Unit. This gives information about each unit/subject in the programme.

3) Course. This gives information about all courses in the programme.

4) Evaluation. Representing evaluation knowledge.

5) Rule. Representing advice knowledge.

Step 2: Identify the operations suffered by and required of each object 

This stage is concerned with identifying the operation that may be performed on an 

object as listed in Table 4.3.

Object Operation
SAIE Get course and unit relevant for UNIT and COURSE object, Get the right 

evaluation object from EVALUATION, Calculate suitability level, Get the right 
rule from RULE object, Select the right reason from EVALUATION, Get fact or 
input from student and display reason and other display facility

Unit Insert all unit information into working memory, search for specific unit, display 
specific unit

Course Read unit and course data, compare course involve in UNIT object with existing 
course qffered

Evaluation Insert all object frame into working memory, search for specific object, insert 
user/student answer for each question,

Rule Insert rule (include rule condition and action) into working memory, search for 
specific rule

Table 4.3: Operation performed on objects

Step 3 : Establish the visibility of each object in relation of other object 

From Figure 4.15, it is clear that object SAIE establishing relation to other objects in the 

system. Unit object need to refer to course object to identify whether a course is a valid 

course in the system.
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Step 4 : Establish the interface to each object: this step involves writing a structure 

for the object

It can be seen at this point that there is one major object in the system which is the 

inference engine. This object will use all other objects as part of it component, but SAIE 

object cannot change any value in other object (can only use or read the object). This 

provides both data hiding and encapsulation of the whole system.

Step 5 : Implementation of each object

The implementation step involves the use of a pseudo-code approach to design the 

respective procedure for each object.

4.2 Implementation of Knowledge-base and Inference Engine Subsystem

The artificial intelligence (AI) programming language such as prolog provide some 

building facilities for building inference engine, therefore developing an inference engine 

using this type of language is trivial. Writing inference engine in C++ requires more 

afford.

Figure 4.5: Subsystems and their relation in the SCAS
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As can be seen from Figure 4.5, there are five blocks in this subsystem. The blocks 

'R u le 'E v a lu a t io n ’, and ‘Course’ are configuration files which store the information, 

rules and facts about courses and subjects in School of Computing. This three files are 

implemented as plain ASCII files to store the information, facts and rules. Ideally, these 

files should be protected to avoid unauthorised persons from tempering with the 

information in the files. It should only allows the administration or the advisor to change 

the files.

The task of the block named ‘Extract Knowledge’ is to read the three 

configuration files , extract and store the information in the appropriate knowledge-base 

dynamic memory. This feature make the system very flexible, where any changes in the 

knowledge block does not need any changes of system or recompilation of the whole 

inference engine.

In this system the two main tasks of inference engine are giving requested 

information about the courses to students, and advise student on selecting suitable course 

and on changing to another course. In the advising tasks the major steps performed by the 

inference engine are:

1) Ask. questions to get information from student

2) From the answers calculate student suitability level

3) From the suitability level check rules

4) Derive conclusion from rules

5) Give explanation/reasoning for the conclusion

The inference engine is implemented using forward chaning method and object-oriented 

programming technique in C++ is used to write the implementation of the inference 

engine. The knowledge and the information in the application environment of the student
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advising system, can be easily represented as object, attribute and value. The used of 

object-oriented language in this problem can make the representation of objects more 

efficient. Object-oriented language like C++ has features built into the language to 

support objects. An instances of class is a data object that can be manipulated. The code 

fragments shown in Figure 4.6 gives the definition of the class for the unit data structure 

as was implemented in C++. The evaluation information and rules data structures are 

defined similarly to the code fragments in Figure 4.6.

There are various other object-oriented programming languages such as Prolog, 

Smalltalk, Object Pascal, Common Lisp Object system(CLOS) and Ada. However, what 

distinguishes C++ from many other languages is the ability to define new data types in a 

way that their use cannot be distinguished from the built-in types (Hekmatpour 1990). 

Borland C++ was chosen for the development of the SCAS because it offers a good 

development environment and it is widely available and easily accessible at the School of 

Computing.

typedef struct UnitCourse {
int unit; //unit code
char unittitle[SHORTSTR];//unit full title
int nocourseinv;//number course involve might be not necessery 
int prerequisite[MAXPRESUB]; //prerequisite for a particular unit 
int courseinv[MAXCOURSE]; //all course involve for a

particular unit
JUnitStruct; 
struct UnitFrame { UnitStruct unitinfo;

struct UnitFrame *next; //point to the next node
} ;

typedef struct UnitFrame* UnitFramePtr; 
class Unit 
{
public:

Unit();
void sls_insert(UnitStruct ui); //insert a node to the list 
void display!); //Display all info/node
void dispaunit(UnitFramePtr aunit); //display one node 
UnitFramePtr search(int unitcode); //search for particular unit 
int scoursefint coursecode,int* arrcourse); //search all unit

given a course
void testfile(ofstreamt out_stream); //display info to file

private:
UnitFramePtr start,last;

} ;

Figure 4.6: Codefragments showing the class definition o f unit information.
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4.3 System Testing SCAS

The testing process is intended to validate the working of the SCAS and to verify the

SCAS meets its specification. The main goals of the system testing are :

1) To verify the information and knowledge to be supplied to system are correct 

according to the Student Guideline and expert/advisor knowledge. This process done 

by human expert.

2) To check that the system read the knowledge, rules and facts in the configuration 

files correctly and any changes in the configuration files will be registered by the 

system. Figure 4.7 show example of correct facts print by the system.

3) To validate the advising functions of the system according to the SCAS functional 

specification. Refer to example Test 3.

List of units for Software Engineering Unit for Year 1 :
101: SYSTEM
102: BUSINESS ORGANISATION, PLANNING) AND CHANGE
103: PROGRAMMING
104: TECHNOLOGY
105:.BASIC MATHEMATICS
108: HUMAN COMMUNICATIONS AND PSQ A
Unit for Year 2 :
204: DATABASES
205: SOFTWARE TOOLS AND ENVIRONMENTS 206: SOFTWARE ENGINEERING DESIGN 
207: SOFTWARE ENGINEERING METHOD A 
208: MATHEMATICS AND COMPUTING 
Unit for Year 3 :
305: SOFTWARE ENGINEERING MANAGEMENT
306: HUMAN COMPUTER INTERACTION AND KNOWLEDGE BASED SYSTEMS 
310: PROCESS MANAGEMENT
Select the unit coda for more information
or type p(unit code) for list of prerequisites unit e.g.<p201>:

Figure 4.7 : Subject detail screen

Test 3: Test 3 was conducted to test the advising function for the case of a second

year Software Engineering student who want to change her/his course to 

Information Technology. The test data used in this test is shown in table 4.4. The
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result o f the consultation screen is shown in Figure 4.8. The result o f  the 

consultation is than verified by the student advisor.

D ata field D ata value
Current course Software Engineering
New course Information Technology
Student level Second year
Problems in subject Software Engineering Design 

Software Engineering Method A
Academic background 1. Software Engineering

2. Programming
3. Discrete Mathematics
4. Introduction to computer system

Table 4.4 : Test data fo r  use in test 3 in validating advising function

ADVISE SYSTEM - Reasons Cor system conclusion ************************************* *.*-*** * * *

Conclusion : Not suitable for course - Information Technology 
Reasons:
You score 19.84127% and the minimum score required is 50%
You have problem with 210 COMMUNICATION ENGINEERING II

1. Understand the use of digital communication in local and wide
area networks to quantify the description and processing of signals?

2. Ability to describe the limitations imposed upon IAN and WAN 
by noise encoding and the methods of modulation.

You have problem with 211 MICROELECTRONICS
1. Familiar with the various microprocessor technologies.
2. Familiar with the various microprocessor circuits types.
3. Familiar with the various microprocessor levels of integration.
4. Ability to design siiqple integrated circuit systems for amplification

and signal processing.
5. Ability to synthesize combinational logic.
6. Familiar with the architecture and use of typical microprocessors. 
Press any key to continue

ADVISE SYSTEM - Reasons for system conclusion 
*************************-********************
Conclusion : Not suitable for course - Information Technology Reasons:

You score 19.84127% and the minimum score required is 50%
You have problem with 213 SOFTWARE ENGINEERING METHODS B

1. Understand the stages in the software development process.
2. Understand the relationship between the stages in the software development process.

Below are all subjects you need to know for new root(not in current root):
1. 210 : COMMUNICATION ENGINEERING II
2. 211 : MICROELECTRONICS
3. 213 : SOFTWARE ENGINEERING METHODS B
Press any key to continue

Figure 4.8 : The result o f consultation screen fo r  Test 3
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There is a substantial amount of code in the SCAS to be tested and effective strategy is 

needed to make sure it is tested thoroughly. In this system the bottom-up testing strategy 

was adopted across the whole stages of testing process during the jdevelopment period. 

Incremental approach was used in the testing process. Drivers were written in order to 

test the unit, module and subsystems.

4.4 Sample consultation sessions with SCAS

The implemented SCAS provides the user with facilities which includes provide 

information related to courses and giving advice to student for selecting and changing 

course.

Figure 4.9 shows a screen shot of the main menu of SCAS.

• SHEFFIELD HALLAM UNIV. UNDERGRADUATE
* Version 0.78 By Dayang Norhayati Abg.

COMPUTING PROGRAMME ADVICE SYSTEM * 
Jawawi 1996 *

1. Course Advice System
2. Quick Information 
0. EZXT system

Select an option :

Figure 4 .9:  SCAS Main Menu

Option ‘ 1 ’ offers the advising function for both new students and existing students. 

Option ‘2’ lists all the subjects details of a particular courses offered.

Table 4.5 shows an example data fed to the SCAS for a second year direct entry 

software engineering student. Figure 4.10, shows the result of the consultation and this 

result has been verified to be correct by the human expert.

D ata field * D ata  value
Course interested Software Engineering
Student status Second year direct entry
Academic background 1. Software Engineering

2. Programming
3. Discrete Mathematics
4. Introduction to computer system

Table 4.5 : Example data 1
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ADVISE SYSTEM - Reasons for system conclusion 
Conclusion : Suitable for course - Software Engineering

Reason:
You score 80% and the minimum score required is 50%
Advise : But you still have some problem with following subjects 
You have problem with 105 BASIC MATHEMATICS

1. Understand the nature of the binary number system.
2. Ability to describe data using statistical measures and 
distributions.
3. Ability to apply and use a range of statistical distributions i

hypothesis testing.
Figure 4.10 : The result o f consultation screen fo r  data 1

4.0 Conclusion

In this paper the used of knowledge based system in solving student course advising 

problem has been described. An implementation of a Student Course Advising system 

(SCAS) using object-oriented C++ has been discussed. Knowledgeable behaviour was 

produced where the ‘expert’ and ‘knowledge’ is stored separately from the inference 

engine. Object-oriented programming technique was found to enhance the development 

of the system.
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