
44

Intelligence Student Advising System - An Implementation using Object-

Oriented C++

Dyg. Norhayati bte. Abg. Jawawi

Faculty o f Computer Science and Information System, Universiti Teknologi Malaysia,

Locked Bag 791, 80990 Johor Bahru, Johor

Abstract

This paper present an approach for developing a consistent student course-advising

system for undergraduate students using knowledge-based technology. A prototype

system has been implemented in object-oriented technique using C++. The prototype

system was designed for undergraduate Computing students. The prototype is able to

give consultation and advice on some important aspect of student advising problems.

Knowledgeable behaviour was produced where the ‘expert’ and ‘knowledge’ is stored

separately from the inference engine. Object-oriented programming technique was found

to enhance the development of the system.

Keywords : Intelligence Advising system, knowledge based system and object-

oriented programming

1.0 Introduction

Most academic institutions offers their students a variety of programs from which a

student can select one and satisfy the school requirements in order to be eligible for a

degree. This usually consists of choosing the required courses within the student’s major

and minor, elective courses, and satisfying general university requirements. Typically a

student has a certain amount of freedom to choose the right course and subjects which

suit them.

Jilid 9, Bil 2 (Disember 1997) Jurnal Teknologi Maklumat

45

The problem arise when the students are not sure which course to choose, in

order to complete her/his degree successfully. This is because the student are not aware

of the degree requirements, course descriptions and prerequisites. Advising is a very

important component in retention of students, since good advising detects problems in

early stages and prevents problems that would otherwise happen at the later stage.

The advisory process must address two areas: degree check requirements and the

student’s special interests. The role of the advisor is to suggest the offered courses when

the student is likely to pass the subjects in the course taking into consideration the

prerequisite requirements and minimizing the time to get a degree. Mature students can

specify their interest at the advanced level and take courses from the set of elective

courses.

The advising system often suffers from a number of shortcomings such as:

i. it creates a heavy burden on the academic staffs;

ii. the requirements often change, consequently it is difficult for the advisors to update

their own knowledge with sufficient frequency;

iii. the existing set of manual or guidance is often incomplete or inconsistent, which may

lead to misinterpretation of information;

iv. the overall process of advising is time consuming and complex ;

v. transfer student has different academic background and knowledge;

The layout of this paper is as follows. In Section 2 previous works related to student

advising system are reviewed. Section 3 describes the advantage of applying knowledge-

based technology to solve student advising problems. Section 4 describes an

implementation and testing of a student course advising system using object-oriented

JiKd 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

46

C++ for undergraduate students at the School of Computing, Sheffield Hallam University

(SCAS).

2.0 Previous Works Related to Student Advising System

In recent years, several automated advising systems have been developed. These systems

have been developed for both undergraduate and post-graduate education and have a

wide variety of functionality. These systems have been developed by utilizing various

technologies including artificial intelligence, spreadsheets, as well as traditional

programming languages. A summary of these systems and their functionality is illustrated

in Table 2.1 and Table 2.2. From these works, it was found that the student advising

domain is amenable to the knowledge-based system method.

Graduate Course Advisor -
(Valtoria, 1984)

A Student Advisor
(Golumbic, 1986)

A Course Advisor (Crook?,
1987)

Academic Institution Duke Univ. & Univ. of
Carolina

Bar llan Univ. Texas Christian Univ.

Department Computer Science - Computer Science
Student Status Post-graduate Undergraduate Undergraduate
Language used C-Prolog Prolog C-Prolog
Main Functions Number of courses to

enroll
Type of courses to enroll
“Best courses” for student
Schedule of appropriate
length

Check degree requirement
Suggest courses based on
course interest and Univ.
requirement

Recommend possible
major areas of study to
undecided majors within
the university

Checks Required Course? No Yes No
Suggests Courses to Take Yes Yes N/A

A Student Advisor
(Frank, 1988)

Graduate Student Advisor
(Chan, 1988)

Schedule Advisement
System (Kawalski, 1991)

A Course Advisor -
(Occena, 1993)

Univ. of Arkansas Arizona State Univ. California State Univ. Univ. of Massouri-
Columbia

Computer Sciences Industrial Eng. Computer Science Industrial Eng.
Undergraduate Post-graduate Undergraduate Undergraduate
C-Prolog Personal Consultant PC Scheme Expert System Env. Shell
Check degree requirement
Suggest on the best courses
for student based on
interest and progress

Requirement for degree
Option for major fields of
study
Available courses and
faculty

Check degree requirements
Suggest one term schedule
based on student’s
availability

Check degree requirement
Suggest on the best courses
for student based on
interest and progress

Yes N/A N/A Yes
Yes No Yes Yes

Table 2.1 : Published student advisor system s with A1 technology

Jilid 9, Bi'l' 2 (Disember 1997) Jumal Teknologi Maklumat

47

In this paper a student course advising system using knowledge technique is presented.

The key feature of the developed system is the separation of ‘expert’ or ‘knowledge’

from the inference engine and the reasoning strategy. This paper will demonstrate how

C++ and character of object oriented programming (OOP) can help in development of

such system.

The A dv iso r 's A ssistant -
(B atchelder, 1989)

Student Advising
(M alasri. 1988)

Sem i-A uto A dvising System
(M alasri, 1990)

Student A dvising system
(B illo, 1993)

South Dakota School o f
M ines & Technology

Univ. M iami, Coral Gables C hristian B rother C ollege Univ. o f P ittsburgh

Electrical Eng. Civil & A rchitecture Eng. Civil Eng. Industrial Eng.
U ndergraduate U ndergraduate Undergraduate U ndergraduate
T urbo Pascal V5.0 Lotus 1-2-3 Q U A TTR O Q uick Basic
List s tu d en t's courses
com pleted and credits
detail
C heck and list all courses
to be com pleted before
g raduation

C heck student credits and
GPA
C heck transfer and
prerequisite courses
list all core courses which
the student can take

List all required courses
Keep all student records
D isplay student progress
Recom m end w hat courses the
student can take for one
sem ester
Suggest trial schedule

D evelop student long­
term schedule

Yes Yes Yes No
All R em aining C ourses All R em aining Core N/A No

Table 2,2 : Published student advisor system with other technology

3.0 Intelligence Knowledge-based System

The methods of knowledge-based systems are now being applied in many diverse areas.

This technology is useful for tasks where the knowledge of highly skilled human experts

can be represented explicitly and acted upon by inference procedures. The result is

intended to be a system which exhibits intelligent, knowledgeable behavior (Golumbic,

1986).

For the student advising problem, the knowledge-based system is preferred over

a conventional algorithmic system for several reasons :

I. It was desired to manage knowledge and not data. The is system required to advise

undergraduate students based on some domain expert’s specific rules and heuristics.

Jilid 9, Bil 2 (Disember 1997) Jurnal Teknologi Maklumat

48

II. The system need to contain explanation facilities available to other faculty members,

thereby to understand the university advising process for undergraduate computing

students.

III. The system needed sufficient flexibility to be easily maintained and modified to

conform more to a particular discipline.

IV. A thorough analysis and understanding of the undergraduate advising process that

would come about as a by product of the knowledge-based system development.

V. The permanent storage of course-advising information.

4.0 Implementation of Student Course Advising System (SCAS)

There are three groups of peoples involved in the student course advising problem:

student advisor, student and administration. Figure 4.1 shows the relationship between

the groups.

Figure 4.1 : The relationship between groups involved in student advising process

There are three main problem areas that need to be solved in SCAS. These areas are:

1) Advise student to select the right course. This involves first year student, second year

direct entry student and final year direct entry student.

Jilid 9, Bil 2 (Disember 1997)
mmmmmmumasamasmm
Jumal Teknologi Maklumat

49

2) Advise on to change course for student already began their course but decided to

change their course. It also involves providing information to students who have

problem in particular units

3) Advise to select the electives subjects for final year student.

4.1 The Design of SCAS

The design of SCAS involves two main areas: the knowledge design and the inference

engine design. The knowledge obtained through knowledge acquisition process can be

categorized into three main groups:

1) Course knowledge i.e. information related to the course which includes subjects,

course and unit prerequisites.

2) Evaluation knowledge i.e. knowledge related to evaluation process which includes

questions asked by the advisor to identify the student ability, the weighting factors

and reasoning statements.

3) Rule knowledge i.e. heuristics and decision rules.

For the purpose of flexibility and maintainability these three knowledge are stored in

three difference data files. Any changes in the information and knowledge will not affect

other components of the SCAS, especially the inference engine. Changes can be made in

these data files and therefore avoiding recompiling the whole system when there are

changes in the knowledge. Figure 4.2 shows how the above knowledge fit with the other

components in the SCAS.

B tH H saese^ ^ B sssssasB essi^ a
Jilid 9, Bil 2(D isem ber 1997) Jumal Teknologi Maklumat

50

Knowledge Base

Figure 4.2 : Course, evaluation and rule knowledge as components o f the SCAS

Course and evaluation knowledge represented in frame, refer table 4.1 and 4.2. Rule

knowledge represented in procedural rules, example of the rules are:

i. IF the student overall performance is suitable for software engineering course THEN

check for software engineering detail subject

ii. IF the student have no problem with all detail software engineering subject THEN

the student really suitable for the course.

Refer to figure 4.3 on how this rules used in SCAS.

Slot Fillers
Unit/subject 205
Title Software Tools and Evironment
Prerequisite 103
Course_taken SE, IT, El

Table 4 .I : Unit Frame fo r Course Information

Slot Fillers
Question_number 103 1
Question Do you have basic

understanding of software
principle?

Weight_Factor 5
Reason Basic understanding of

software engineering
principles

Table 4.2 : Evaluation skill represented in frame

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

rule -SE0 : if rule_SE0l : if
level=2 and 103=60 andoII 105 = 50

then then
check = rule_SE01 check = done

Figure 4.3 : Rules used in SCAS

The ability of advisor in evaluating a student is presented in evaluation knowledge.

Within a unit/subject, certain attributes are more important than others in determining

whether a student understand a particular unit/subject or not. Weighting factor is used to

give indication or measurement associated with the attributes. The higher the weighting

factor the more important is the attribute.

Consider an example shown below for a subject named ‘Programming’. This

subject has four attributes, each attribute has a weighting factor represented by a number

in the bracket.

I. Unit 103 - Programming

A. Understand software engineering basic principles. (10)

B. Familiar with general idea about programming methods. (5)

C. Familiar with general idea about programming style. (5)

D. Know how to design program. (3)

Considering the unit named ‘Programming’, the attribute A ‘Understand software

engineering basic principles’ is more important than other attributes B - D in determining

whether a student understand the programming subject. The higher the weighting factor,

the greater is the importance. The weighting factor figures were determined by the

student advisor.

Jifid 9, Bil 2 (Disember 1997) Jamal Teknologi Maklumat

52

When an answer to a question is yes, the fact associated with the question also become

yes. In order to get a total score for each student , the sum of those weighting factors

initiated to yes is calculated. The score is called the total weighting factor. If all the facts

are initiated to yes, the total weighting factor is called the maximum sum weighting

factor. Therefore the suitability level for each student can be calculated using the

equation

Suitability level - Total weighting factor / total m axim um sum weighting factor

4.1.1 Inference Engine Design

The inference engine was designed using object-oriented approach.

Object-Oriented design

Using the object-oriented design approach as specified by (Booch, 1991), the major steps

involves are defines as:

Step 1: Identify the object and their attributes

From the problem domain a number of class can be identified:

Figure 4.4 : Objects and attributes

Jilid 9, Bil 2 (Disember 1997) Jumal Teknoiogi Maklumat

53

From Figure 4.4 of SACS, five distinct objects can be found.

1) Student Advising Inference Engine (SAIE). This provide service for building the

advise process, reasoning process and user interface display.

2) Unit. This gives information about each unit/subject in the programme.

3) Course. This gives information about all courses in the programme.

4) Evaluation. Representing evaluation knowledge.

5) Rule. Representing advice knowledge.

Step 2: Identify the operations suffered by and required of each object

This stage is concerned with identifying the operation that may be performed on an

object as listed in Table 4.3.

Object Operation
SAIE Get course and unit relevant for UNIT and COURSE object, Get the right

evaluation object from EVALUATION, Calculate suitability level, Get the right
rule from RULE object, Select the right reason from EVALUATION, Get fact or
input from student and display reason and other display facility

Unit Insert all unit information into working memory, search for specific unit, display
specific unit

Course Read unit and course data, compare course involve in UNIT object with existing
course qffered

Evaluation Insert all object frame into working memory, search for specific object, insert
user/student answer for each question,

Rule Insert rule (include rule condition and action) into working memory, search for
specific rule

Table 4.3: Operation performed on objects

Step 3 : Establish the visibility of each object in relation of other object

From Figure 4.15, it is clear that object SAIE establishing relation to other objects in the

system. Unit object need to refer to course object to identify whether a course is a valid

course in the system.

Jilid 9,, Bil 2(Disember 1997) Jumal Teknologi Maklumat

54

Step 4 : Establish the interface to each object: this step involves writing a structure

for the object

It can be seen at this point that there is one major object in the system which is the

inference engine. This object will use all other objects as part of it component, but SAIE

object cannot change any value in other object (can only use or read the object). This

provides both data hiding and encapsulation of the whole system.

Step 5 : Implementation of each object

The implementation step involves the use of a pseudo-code approach to design the

respective procedure for each object.

4.2 Implementation of Knowledge-base and Inference Engine Subsystem

The artificial intelligence (AI) programming language such as prolog provide some

building facilities for building inference engine, therefore developing an inference engine

using this type of language is trivial. Writing inference engine in C++ requires more

afford.

Figure 4.5: Subsystems and their relation in the SCAS

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

55

As can be seen from Figure 4.5, there are five blocks in this subsystem. The blocks

'R u le 'E v a lu a t io n ’, and ‘Course’ are configuration files which store the information,

rules and facts about courses and subjects in School of Computing. This three files are

implemented as plain ASCII files to store the information, facts and rules. Ideally, these

files should be protected to avoid unauthorised persons from tempering with the

information in the files. It should only allows the administration or the advisor to change

the files.

The task of the block named ‘Extract Knowledge’ is to read the three

configuration files , extract and store the information in the appropriate knowledge-base

dynamic memory. This feature make the system very flexible, where any changes in the

knowledge block does not need any changes of system or recompilation of the whole

inference engine.

In this system the two main tasks of inference engine are giving requested

information about the courses to students, and advise student on selecting suitable course

and on changing to another course. In the advising tasks the major steps performed by the

inference engine are:

1) Ask. questions to get information from student

2) From the answers calculate student suitability level

3) From the suitability level check rules

4) Derive conclusion from rules

5) Give explanation/reasoning for the conclusion

The inference engine is implemented using forward chaning method and object-oriented

programming technique in C++ is used to write the implementation of the inference

engine. The knowledge and the information in the application environment of the student

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

56

advising system, can be easily represented as object, attribute and value. The used of

object-oriented language in this problem can make the representation of objects more

efficient. Object-oriented language like C++ has features built into the language to

support objects. An instances of class is a data object that can be manipulated. The code

fragments shown in Figure 4.6 gives the definition of the class for the unit data structure

as was implemented in C++. The evaluation information and rules data structures are

defined similarly to the code fragments in Figure 4.6.

There are various other object-oriented programming languages such as Prolog,

Smalltalk, Object Pascal, Common Lisp Object system(CLOS) and Ada. However, what

distinguishes C++ from many other languages is the ability to define new data types in a

way that their use cannot be distinguished from the built-in types (Hekmatpour 1990).

Borland C++ was chosen for the development of the SCAS because it offers a good

development environment and it is widely available and easily accessible at the School of

Computing.

typedef struct UnitCourse {
int unit; //unit code
char unittitle[SHORTSTR];//unit full title
int nocourseinv;//number course involve might be not necessery
int prerequisite[MAXPRESUB]; //prerequisite for a particular unit
int courseinv[MAXCOURSE]; //all course involve for a

particular unit
JUnitStruct;
struct UnitFrame { UnitStruct unitinfo;

struct UnitFrame *next; //point to the next node
} ;

typedef struct UnitFrame* UnitFramePtr;
class Unit
{
public:

Unit();
void sls_insert(UnitStruct ui); //insert a node to the list
void display!); //Display all info/node
void dispaunit(UnitFramePtr aunit); //display one node
UnitFramePtr search(int unitcode); //search for particular unit
int scoursefint coursecode,int* arrcourse); //search all unit

given a course
void testfile(ofstreamt out_stream); //display info to file

private:
UnitFramePtr start,last;

} ;

Figure 4.6: Codefragments showing the class definition o f unit information.

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

57

4.3 System Testing SCAS

The testing process is intended to validate the working of the SCAS and to verify the

SCAS meets its specification. The main goals of the system testing are :

1) To verify the information and knowledge to be supplied to system are correct

according to the Student Guideline and expert/advisor knowledge. This process done

by human expert.

2) To check that the system read the knowledge, rules and facts in the configuration

files correctly and any changes in the configuration files will be registered by the

system. Figure 4.7 show example of correct facts print by the system.

3) To validate the advising functions of the system according to the SCAS functional

specification. Refer to example Test 3.

List of units for Software Engineering Unit for Year 1 :
101: SYSTEM
102: BUSINESS ORGANISATION, PLANNING) AND CHANGE
103: PROGRAMMING
104: TECHNOLOGY
105:.BASIC MATHEMATICS
108: HUMAN COMMUNICATIONS AND PSQ A
Unit for Year 2 :
204: DATABASES
205: SOFTWARE TOOLS AND ENVIRONMENTS 206: SOFTWARE ENGINEERING DESIGN
207: SOFTWARE ENGINEERING METHOD A
208: MATHEMATICS AND COMPUTING
Unit for Year 3 :
305: SOFTWARE ENGINEERING MANAGEMENT
306: HUMAN COMPUTER INTERACTION AND KNOWLEDGE BASED SYSTEMS
310: PROCESS MANAGEMENT
Select the unit coda for more information
or type p(unit code) for list of prerequisites unit e.g.<p201>:

Figure 4.7 : Subject detail screen

Test 3: Test 3 was conducted to test the advising function for the case of a second

year Software Engineering student who want to change her/his course to

Information Technology. The test data used in this test is shown in table 4.4. The

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

result o f the consultation screen is shown in Figure 4.8. The result o f the

consultation is than verified by the student advisor.

D ata field D ata value
Current course Software Engineering
New course Information Technology
Student level Second year
Problems in subject Software Engineering Design

Software Engineering Method A
Academic background 1. Software Engineering

2. Programming
3. Discrete Mathematics
4. Introduction to computer system

Table 4.4 : Test data fo r use in test 3 in validating advising function

ADVISE SYSTEM - Reasons Cor system conclusion ************************************* *.*-*** * * *

Conclusion : Not suitable for course - Information Technology
Reasons:
You score 19.84127% and the minimum score required is 50%
You have problem with 210 COMMUNICATION ENGINEERING II

1. Understand the use of digital communication in local and wide
area networks to quantify the description and processing of signals?

2. Ability to describe the limitations imposed upon IAN and WAN
by noise encoding and the methods of modulation.

You have problem with 211 MICROELECTRONICS
1. Familiar with the various microprocessor technologies.
2. Familiar with the various microprocessor circuits types.
3. Familiar with the various microprocessor levels of integration.
4. Ability to design siiqple integrated circuit systems for amplification

and signal processing.
5. Ability to synthesize combinational logic.
6. Familiar with the architecture and use of typical microprocessors.
Press any key to continue

ADVISE SYSTEM - Reasons for system conclusion
*************************-********************
Conclusion : Not suitable for course - Information Technology Reasons:

You score 19.84127% and the minimum score required is 50%
You have problem with 213 SOFTWARE ENGINEERING METHODS B

1. Understand the stages in the software development process.
2. Understand the relationship between the stages in the software development process.

Below are all subjects you need to know for new root(not in current root):
1. 210 : COMMUNICATION ENGINEERING II
2. 211 : MICROELECTRONICS
3. 213 : SOFTWARE ENGINEERING METHODS B
Press any key to continue

Figure 4.8 : The result o f consultation screen fo r Test 3

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

59

There is a substantial amount of code in the SCAS to be tested and effective strategy is

needed to make sure it is tested thoroughly. In this system the bottom-up testing strategy

was adopted across the whole stages of testing process during the jdevelopment period.

Incremental approach was used in the testing process. Drivers were written in order to

test the unit, module and subsystems.

4.4 Sample consultation sessions with SCAS

The implemented SCAS provides the user with facilities which includes provide

information related to courses and giving advice to student for selecting and changing

course.

Figure 4.9 shows a screen shot of the main menu of SCAS.

• SHEFFIELD HALLAM UNIV. UNDERGRADUATE
* Version 0.78 By Dayang Norhayati Abg.

COMPUTING PROGRAMME ADVICE SYSTEM *
Jawawi 1996 *

1. Course Advice System
2. Quick Information
0. EZXT system

Select an option :

Figure 4 .9: SCAS Main Menu

Option ‘ 1 ’ offers the advising function for both new students and existing students.

Option ‘2’ lists all the subjects details of a particular courses offered.

Table 4.5 shows an example data fed to the SCAS for a second year direct entry

software engineering student. Figure 4.10, shows the result of the consultation and this

result has been verified to be correct by the human expert.

D ata field * D ata value
Course interested Software Engineering
Student status Second year direct entry
Academic background 1. Software Engineering

2. Programming
3. Discrete Mathematics
4. Introduction to computer system

Table 4.5 : Example data 1

Jilid 9, Bil 2(Disember 1997) Jumal Teknologi Maklumat

60

ADVISE SYSTEM - Reasons for system conclusion
Conclusion : Suitable for course - Software Engineering

Reason:
You score 80% and the minimum score required is 50%
Advise : But you still have some problem with following subjects
You have problem with 105 BASIC MATHEMATICS

1. Understand the nature of the binary number system.
2. Ability to describe data using statistical measures and
distributions.
3. Ability to apply and use a range of statistical distributions i

hypothesis testing.
Figure 4.10 : The result o f consultation screen fo r data 1

4.0 Conclusion

In this paper the used of knowledge based system in solving student course advising

problem has been described. An implementation of a Student Course Advising system

(SCAS) using object-oriented C++ has been discussed. Knowledgeable behaviour was

produced where the ‘expert’ and ‘knowledge’ is stored separately from the inference

engine. Object-oriented programming technique was found to enhance the development

of the system.

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

5.0 References

1) Batchelder M. J.:”The Advisor’s Assistant”, Proceedings o f the IEEE Frontiers in

Education Conference, 1989, 255

2) Billo R. E. and Bidanda B.: “A Student Advising System for Undergraduate

Engineering Curricular Scheduling”, Computer Education, 1994, 22(3), 205-213

3) Booch, G., O bject O riented D esign with A pplications, The

Bejamin/Cummings Publishing Company, inc., 1992

4) Chan D. and Cochran J. K.: “Using Expert-system Shells for Graduate Student

Advising”, Engineering Education, 1988, 310

5) Crooke D. E., Starks S. A. and Thorp D. S., “CSAD: A Course Advisor”, ASEE

Annual Conference Proceedings, 1987, 658

6) Frank J. L., Duffield C. A. and Swearingen C. A., “Mentor-I: An Expert Database

System for Student Guidance”, IEEE Expert, 1988, 3,40-46

7) Golumbic, M. C., Markovich M., Tsur S. and Schild U. J.: “A Knowledge-Based

Expert System for Student Advising”, IEEE Transactions on Education, 1986(5), E-

29(2), 120

8) Hekmatpour S., C++ A Guide fo r C Programmers, Prentice Hall,New Jersey, 1990

9) Kawalski K. and Ealy D.: “Schedule Advisement Expert System”, Computer

Education, 1991, 17(4), 259-265

10) Malasri S.: “Student Advising Using Spreadsheet Program”, International Journal

Appl. Engineering Education, 1988, 559

11) Malasri S.: “Semi-Automated Student Advising System Using Quattro Spreadsheet

Software”, Computer Education, 1990, 14(4), 317-324

12) Occena L. G. and Miller S. L.: “IEADVISE - An Undergraduate Course-Advising

Expert System in Industrial Engineering”, Expert Systems, 1993(8), 10(3), 139

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

62

13) Valtoria M., Smith B. and Loveland D.: “The Graduate Course Advisor: A Multi-

Phase Rule-Based Expert System”, Proceeding o f the IEEE Workshop on Principles

of Knowledge-Based System, 1984, 53

Jilid 9, Bil 2 (Disember 1997) Jumal Teknologi Maklumat

	DygNorhayatiAbgJawawi1997_IntelligenceStudentadvisingSystemanImplementation
	BW TIFF image-Duplex

