
OBJECT-ORIENTED DEVELOPMENT USING FUSION METHOD

SUHAIMI IBRAHIM
Faculty of Computer Science & Information System, UTM, Kuala Lumpur
(Former researcher at Aston university, Birmingham)

PAULGOLDER
Department of Computer Science and Applied Mathematics, Aston University,
Birmingham, United Kingdom

Abstrak

Kertas kexja ini membincangkan mengenai pembangunan perisian menggunakan suatu
metodologi berorientasikan objek yang dinamakan kaedah Fusion. Kaedah ini berasaskan
notasi yang lengkap dan tepat dalam keija-keija analisis dan rekabentuk. Fusion boleh
digunakan untuk membangunkan sistem berorientasikan objek secara jujukan dan serentak
dengan beberapa pertimbangan yang terhad. Kajian kes mengenai perkhidmatan layan diri
di stesyen petrol digunakan untuk meninjau sejauh mana kemampuan dan konsistensi
pendekatan kaedah ini. C++ digunakan sebagai bahasa perlaksanaan. Skop pembangunan
perisian merangkumi analisis, rekabentuk dan perlaksanaan.

Katakunci: Objek, kelas, warisan, atribut, hubungan, agregasi, visibiliti, interaksi

Abstract

This paper discusses a software development in the light of object-oriented methodolody,
called Fusion method. Fusion is claimed to be based on a concise but comprehensive set of
well-defined notations for capturing analysis and design decisions. Fusion can be used to
develop sequential object-oriented systems and certain restricted kinds of concurrent
systems. A case study on self service petrol pump is used to observe the consistency and
completeness of this approach with C++ as an implementation language. The scope of the
development covers the analysis, design and implementation.

Keywords : Object, class, inheritance, attribute, relationship, aggregation, visibility,
interaction

1.0 CONCEPT OF OBJECT ORIENTATION

Software development is an exciting but messy business. Developers are expected to tackle
increasingly complex problems and the enormous flexibility of software means that it can
be applied to a widening range of subjects. The abstract nature of most programming
allows it to fit almost any domain, but it also deprives as of many intuitions that guide us
in our interactions with the physical world.

Object orientation is one approach to programming that attempts to exploit those intuitions.
The assence of object-oriented computation, the objects, are likened to objects in the
physical world. This produces a programming, model markedly different from the tradition

Jilid 6. BiL 1 (Disember 1994) 47 Jurnal Teknologi Maklumat

'functional' view. The object-oriented paradigm as we use it encompasses a few attributes
such as

1. Objects have operations that define their behavior and variables that define the state of
die object between operation calls.
2. Gasses describe the common behavior of collections of objects.
3. Classes may be specialised by defining a class that adheres to all the behaviors of the
original class. Additional behaviors and/or state variables can be defined for the new class.
4. Objects are first-class citizens. They obey the semantics of other types in the language.

The third property is often called inheritance. It may be either single or multiple inheritance
depending on whether behaviors and/or state variables are obtained from one class or more
than one class. It is this property that produces class hierarchies. The original class is called
a superclass and the new class is called a subclass. The fourth property is sometimes called
aggregation; it allows objects to be composed of other objects [Poo 89]. Smalltalk, C++,
objective-C, Eiffel and Flavors are object-oriented languages that support this definition.

2.0 WHAT IS FUSION METHOD ?

There are now many different development methods specific to object-oriented software.
They may loosely be referred to as first generation object-oriented methods, because they
arose from applying the notions of object orientation to existing non-object-oriented
methods. In this report we present Fusion, a second generation object-oriented software
development method. Fusion was developed to provide a systematic approach to object-
oriental software development. It integrates and extends the best aspects of several
methods. Figure 1 shows the principal influences on Fusion.

Figure 1: Influences on Fusion

Fusion method is a full coverage method, providing for all of analysis, design and
implementation. The notations of Fusion allow the systematic discovery and preservation
of the object structure of die system. By integrating and extending existing approaches,
Fusion provides a direct route from a requirement definition thorough to a programming
language implementation.

3.0 BACKGROUND AND REQUIREMENTS

A computer-based system is required to control the dispensing of petrol, to handle
customer nayment, and to monitor tank levels. Before a customer can use the self-service

Jilid 6, B1L 1 (Disember 1994) 48 Juraal Teknologl Maklummt

pumps, the pump must be enabled by the attendant. When a pump is enabled, the pump
motor is started, if it is not already on, with the pump clutch free. When the trigger in the
pun is depressed, the clutch is engaged and petrol pumped. When it is released, die clutch
is freed.

There is a microswitch on the holster in which the gun is kept that prevents petrol being
pumped until the gun is taken out. Once die gun is replaced in the holster, the delivery is
deemed to be completed and the pump disabled. Further depressions of the trigger in the
gun cannot dispense more petrol. After a short standby period, the pump motor will be
turned off unless the pump is reenabled.

A metering device in the petrol line sends a pulse to the system for every 1/100 liter
dispensed. Displays on the pump show the amount dispensed and the cost. There are two
kinds of pump. The normal kind allows the user to dispense petrol manually. The
sophisticated pumps, imported from New Zealand, allow the customer to preset either an
amount or a volume of petrol. Petrol will then be pumped up to a maximum of the required
quantity.

Transactions are stored until the customer pays. Payment may be either in cash, by credit
card, or on account. A customer may request a receipt and will get a token for every
RM 10.00 spent. Customers sometimes abscond without paying and the operator must
annotate the transaction with any available information (e.g., the vehicle's registration). At
the end of the day, transactions are archived and may be used for ad hoc inquiries on sales.

At present, two grades of petrol are dispensed from five pumps on the forecourt. Each
pump takes its supply from one of two tanks, one tank for each grade. The tank level must
not drop below 4% of the tanks capacity. If this happens, the pumps serviced by that tank
cannot be enabled to dispense petrol.

4.0 ANALYSIS AND DESIGN

We begin with the analysis phase to build a more precise description than the requirements
statement of what the system is supposed to do. We build the object model and use
scenarios to help determine the system interface (and hence the system portion of the object
model) and construct the life-cycle model. Then the schemata comprising the operation
model are developed.

4.1 OBJECT MODEL FOR PROBLEM DOMAIN

A customer uses a pump to deliver petrol and then pays for a delivery (or absconds!).
Associated with each customer is the registration number of his or her car. Each pump has
a display. A display shows a delivery comprising the cost, volume, and grade of the petrol
delivered.

To model the fact that there are five pumps the Pump class has a pump id attribute. The
fact that each pump has a display is modeled by an aggregation relationship. The Display
class is thus shown nested inside the Pump class. The details of each sale are recorded in a
transaction. If the customer absconds the attendant annotates the transaction. The
transactions are stored in a daily record, which in turn is stored in the archive for later
retrieval.

J M 6. B1L 1 (Disember 1994) 49
Ju raa l Teknologi M aklumat

Each payment can earn tokens. The attendant can also request a receipt for a customer.
Finally a pump is supplied by a storage tank. Each storage tank has a capacity, a current
level, and an identifying number.

From this part of the requirements we get the following classes and relationships:

Classes: These are Transaction, Sale, Attendant,- DailyRecord, Archive,
Token, Receipt, StorageTank.

Relationships: A sale is recorded in a transaction, an-attendant annotates a
transaction, transactions are stored in a daily record, daily records are stored
in an archive, each payment earns tokens, an attendant requests a receipt for a
payment, a pump is supplied by a storage tank.

This information allows us to draw the fragment of the object model that is centered on the
transaction. This is shown in figure 2. We have left the details in the Sale class, because
there are some relationships that cross the aggregation boundary.

Storage Tank
tank id

Sale

Customer
car_reg

Pump
pumpjd

I_______I

Pgfcsra-
Yorume

lysfon
0..1

payment

payment Archive
amount

Figure 2: Object Model for Sale and Transaction

JUid 6, B1L 1 (Disember 1994) 50 Ju raa l Teknologi M aklum at

Figure 3 : Object Model for Pump

The next part of the objeqt model we develop concentrates on the pump. This is shown in
figure 3. A pump has a complex structure and is modeled by an aggregation; it is composed
of a gun, holster, motor, clutch, petrol line, and display. The petrol line contains a meter
which sends pulses to the display. A pump may be in one of several states. This is modeled
by introducing an attribute, status, which can be either enabled, disabled, or out of
service. The attendant can change a pump from being disabled to enabled. A pump is
disabled by replacing its gun in its holster.

The requirements state that the pump motor is turned off after a short standby period. To
model this we introduce a timer. It starts by replacing the gun in die holster, and turns the
motor off after the appropriate standby period. The start relationship is thus a ternary
relationship between timer, gun, and holster. This makes the diagram a little difficult to
understand, so we have chosen to introduce the GunHolster Assembly aggregation to
make the relationship binary.

The clutch and motor are controlled by the GunHolster Assembly, and they pump the
petrol down the petrol line. The controls and pumps relationships are thus also ternary, and
once again we introduce an aggregate class, ClutchMotorAssembly, to simplify the
diagram.

From this part of the requirements we get the following classes and relationships:

Classes: Gun, Holster, Motor, Clutch, PetrolLine, Meter, Timer,
GunHolster Assembly, Clutch MotorAssembly.

Relationships: a petrol line contains a meter, a rmeter pulses the display, an attendant
enables a pump, a pump is disabled by the gun holster assembly, the gun holster

JOJd 6, BiL 1 (Disember 1994) 51 Jumal Teknologi Maklumat

assembly starts the timer, the time turns off the motor, the gun holster assembly
controls the clutch motor assembly, the clutch motor assembly pumps petrol
down the petrol line.

However, the requirements statement contains two examples of generalization. Payments
can be made either in cash, by credit card, or on account. These payment methods require
different information in each case, and so these are candidates for payment specializations.
Also there are two kinds of pump: the simple one that we have already described in our
models, and the sophisticated version from New Zealand, which allows the customer to
preset the volume or amount. This can also be modeled by an inheritance relationship. We
will make no decision about whether the subclasses are a disjoint union or not, so we leave
the triangles empty. These inheritance relationships are shown in figure 4.

Figure 4: Inheritance Relationships

4.2 DETERMINATION OF SYSTEM INTERFACE

The object model developed up to this point covers the system and its environment. The
next step in Fusion involves determining the boundary between the system and its
environment Once we have done this we can identify those classes and relationship that
form part of the system and die information that the system should record.

Jilld 6, BiL 1 (Disember 1994) 52 Ja m a l Teknologl M aklum at

In this phase of the analysis we use scenarios to help identify the system boundary. These
allow us to trace through the likely use of the system in terms of its Interactions with the
external environment We can develop scenarios for the following three uses of the system:

• Delivery of petrol
• Payment for delivery
• Display of delivery

Figure 5 shows the scenario of the delivery of petrol. This scenario clearly reveals that
customer and attendant are active agents that lie outside the system. They interact with the
system to achieve the delivery. The scenario also identifies a number of system operations:
e n a b l e _ p u m p , r e m o v e g u n , depress t r igg er , r e lease_ t r igger , and
replace_gun. The same principles of scenario also apply to die payment^for delivery and
display of delivery.

| Timer | Customer | 1 System |

Time

Attendant

remove_gun ^ ^enable_pump

depress_triggei^w

release_trigger ^
replace_gun ^

^ start timer
w

Figure 5 : Scenario for Delivery of Petrol

4.3 LIFE CYCLE MODEL

At this point in the development we can do either of two things. We can use the scenarios
to develop the life-cycle model, or we can use the output of the scenarios to build the
system object model and the operation model. We have chosen to develop die life cycle.

The life cycle of the system is essentially a sequence of delivery followed by payment It is
also possible that the pumps are taken out of service if die tank levels fall too low. At the
end of the day the transactions are archived. This is captured by the following regular
expression:

lifecycle FetiolStation: ((Delivery. Payment)411 PumpsOutOfService)* . archive

Delivery, Paym ent and Pum psOutOfService expand to regular expressions
describing the sequence of system operations and events that achieve them. The regular
expression also includes some extra interactions generated by the sophisticated pumps.
Thus the line labeled (a) permits an optional preset of amount or volume, and die line
labeled (b) allows the delivery to be terminated not only by a release_trigger event but
also by a cut_off_supply generated when the required amount or- volume has been
delivered. ~ -

Jttid 6, BiL 1 (Dtsember 1994) 53 Ja m a l Teknologi M aklumat

Delivery = enable pump.
[start pump motor].
[(preset volume I preset amount)]. // (a)
remove gun from holster,
depress trigger.
(pulse. #display amount)* .
(release trigger I cut off supply). // (b)
replace gun.
#start timer.
[turn off motor]

Payment = NormalPayment I CustomerAbsconds
NormalPayment = enter_payment_details. #dispense_tokens.

[request_receipt. #dispense_receipt]
CustomerAbsconds = enter_annotation

PumpsOutOfService = tapk_level_low.
#take_pumps_out_of_service

4.4 OBJECT INTERACTION GRAPHS

An object interaction graph is produced for each system operation. It shows what objects
are involved in the computation and defines how they collaborate. We will develop an
object interaction graph for each of the operations for which we built schemata.

(1)
enable

enable_pum]lg) Terminal Pumps:
Pump

(1.1)
reset. Display

(1.3)
start T

Motor
l

(1.2)
finee

Clutch

Description.:
On receipt of the call to enable_pump(n) the terminal invokes enable jnim p with identifier n. If the pump
is in service and not already enabled then its display is reset, its clutch is freed, and its motor is started.

Figure 6 : Object Interaction Graph for enable_pump

The first step is to identify the objects (and possibly agents) that are involved in the
realization of a system operation. For enable_pump the objects involved are a Pump,
Display, Motor, and Clutch. Because the attendant invokes this operation, a Terminal
must also be involved, because this is how the attendant interacts with the system. In the
second step the role of each object in implementing the operation is decided. One
distinguished role is that of the controller. The controller receives the system operation

JiUd 6, BiL 1 (Disember 1994) 54 Ju rn a l Teknologi M aklum at

message. In this example we will take the terminal as the controller because it is the part of
die system with which the invoking agent (the attendant) interacts. This means that the
other objects axe the collaborators.

The third step is to decide how the functionality of the operation is distributed among the
various objects involved. It would seem appropriate for the Pump to be responsible for
starting the Motor, resetting the Display, and freeing the Clutch, because they are all
components of the Pump. The Terminal then only needs to invoke enable_pump with
the appropriate pump number. In the final step, the distribution of functionality of the
system operation is recorded in an object interaction graph. The object interaction graph for
enable_pump is shown in figure 6. We can also construct the object interaction graphs
for the other operations such as remove_gun, replace_gun, depress_trigger arid
release_trigger.

5.0 IMPLEMENTATION

In this section we look at implementing the class descriptions for Pump and Gun. The
information we need for this task has already been collected up into the class descriptions
so this task is essentially one of translating them into the implementation language.

First consider Pump. The first step is to translate the attributes from the class description
into C++ declarations. Pump has two value attributes, pump_id and status, and four
object-valued attributes, terminal, motor, display, and timer. We will define the
pum pjd to be a C++ int, with a comment that it should be in the range 0 to 4. The
status will be defined as a C++ enumeration type.

We make all attributes protected rather than private, because we know that there is a
derivation of pump, namely, sophisticatedPump. The reference members must be
initialized when a Pump is created. We do this by declaring a constructor for Pump,
which takes references to the appropriate objects as parameters.

class Pump {
protected:

int pump id; //Value between 0 and 4
PumpStatus status;
Terminal &terminal;
Clutch clutch;
Motor motor;
Display display;
Timer &timer,

public:
Pump(Tenmnal &term, Timer &tim) //Constructor

: tenmnal(term), timer(tim) {} // initializes references
virtual void enabhK);
virtual void disable();
virtual int is_enabled();
virtual void delivery_complete();

};
Figure 7 : C++ Class Definition for Pump

Jflfd 6. BtL 1 (Disember 1994) 55 Ja m a l Teknologt M aklum at

There are four operations: enable, disable, is enabled, and delivery_complete.
Because we know that Pump is a superclass we will make all the methods virtual, that is,
redefinable. The methods have no parameters, and only is.enabled has a return value (of
type Boolean). The usual representation of Boolean values in C++ is int. Figure 7
shows the resulting C++ class definition.

The next step is to develop the declaration for the methods of Pump, for example the
operation enable. The object interaction graph for this operation was shown in figure 6.
TTie Display, Clutch and Motor are all attributes of the Pump, so there are no
parameters and no local variables. The code for enable is shown in figure 8.

void Pump :: enable()
{

display .reset();
clutch.free();
motor. start();

}

Figure 8 : C++ for enable on Pump

Gun is another class description. The full class definition for the Gun is shown in figure
9. The detail implementations of Gun operations can be further derived, as we did for the
Pump.

class Gun {
private:

int trigger, // 0 = released, 1 = depressed
int status; // 0 = disabled, 1 = enabled
Clutch clutch;
const Pump &pump;

public:
Gun(Pump &p): pump(p) {}
void depress_trigger();
void release_trigger();
void gun_enable();
void gun_disable();
int gun_is_enabled();

Figure 9 : C++ Class Definition for Gun

6.0 CONCLUSION

The project of implementing automated petrol pump was carried out using the technique of
object-oriented methodology, called Fusion method. This method was principally based on
several other methods and proved successful in the requirements analysis, design and
implementation. The functional requirements have been well refined in terms of classes,
relationships and its interfaces. The solution coverage is more comprehensive and
complete, however it requires detailed study and understanding of several methods in
analysis and design. The emergence of Fusion method in the object-oriented methodology
has considerably reduced the software crisis in the area of software development and
maintenance.

Jllld 6. B1L 1 (DUember 1994) 56 Ju raa l Teknologl M aklumat

REFERENCES

1) Booch, G. (1991), Object-oriented Analysis and Design, second edition, The
Benjamin/Cummings Publishing Co.

2) Scharenberg, M.E. & Dunsmore, H.E. (1991), "Evolution of classes and objects
during object-oriented design and programming", JOOP, January, pp 30 - 34.

3) Winbland, A.L. (1990), Object-Oriented Software, Addision Wesley.

4) Coleman, D. (1994), Object-oriented Development The Fusion Method, Prentice Hall.

5) Pinson, L.J. & Wiener, R.S. (1988), An Introduction to Object-oriented Programming
and Smalltalk, Addison Wesley.

6) Capretz, L.F. & Lee, P.A. (1993), "Object-oriented design: guidelines and techniques",
Information and Software Technology, vol 35(4), pp 195 - 206.

7) Eckert, G. & Golder, P. (1994), "Improving object-oriented analysis", Information and
Software Technology , vol 36(2) pp 67 - 86.

8) Gilliam, C. (1994), "An approach for using OMT in the development of large system",
JOOP, February, pp 56 - 59.

9) Poo, Loh & Kazmi (1989), "An approach to object-oriented system specification based
on the Jackson System Development Method", Technical Report 11/89, National
University of Singapore.

Jilld 6, BIL 1 (Disember 1994) 57 Ju rn a l Teknologi Maklumat

