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ABSTRACT

Low-level tasks have been widely regarded as autonomous bottom-up

processes in computational vision research. Examples of low-level tasks are edge

detection, stereo matching, and motion tracking. In medical imaging, active contours

have also been widely applied for various applications. In fact, active contours is

one of the most popular PDE-based tools and powerful tool in performing object

tracking. Active contour model, also called classical explicit snake was first introduced

by Kass, Witkin and Terzopoulos. The main weaknesses of this method relate to

not only the intrinsic characteristics of the contour, but also the parameterization,

in which it is unable to handle topological changes. To solve these problems, a

different model for active contours based on geometric partial different equation is

proposed which is independent of parameterization, intrinsic and very stable. The

important development has been the introduction of geodesic active contours. Level-

set method was introduced for the moving fronts capture, where the active contour

method is given implicitly as the zero level-set of a scalar function defined on

implementing the entire image domain. This allows for a much more natural changes

in the topology of the curve than parametric snakes. However, the main weakness

of level set methods is that the complexity of the computational cost is high. A fast

algorithm using semi-implicit addictive operator splitting (AOS) technique is used to

restrict the computational cost. Edge detection based on semi-implicit is implemented

for the edge detection on medical images such as medical resonance image (MRI).

Multigrid is a numerical method that has a good accuracy and stability even with big

time step. Exploiting these properties, multigrid was adopted for implementation of

the geodesic active contour model. MATLAB has been chosen as the development

platform for the implementations and the experiments since it is well suited for the kind

of computations that are required. Besides it is widely used by the image processing

community. Experimental results demonstrate the multigrid is the most appropriate

method that can applied with AOS implementation for medical imaging to detect the

location of the tumor which can decrease number of iterations.
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ABSTRAK

Tugasan aras rendah digunakan secara meluas sebagai proses berautonomi

bawah ke-atas dalam kajian penglihatan perkomputeran. Beberapa contoh tugasan

aras rendah ialah seperti pengesanan pinggir tepi, pemadanan stereo, dan penjejakan

gerakan. Kontur aktif juga telah banyak digunakan dalam pelbagai aplikasi seperti

imej perubatan. Salah satu alat berasaskan PDE adalah yang paling popular dalam

perlaksanaan penjejakan objek. Kontur aktif model juga dinamakan kaedah klasik

tidak tersirat yang pertama kali diperkenalkan oleh Kass, Witkin dan Terzopoulos.

Kelemahan kaedah ini tidak hanya bergantung pada sifat hakiki kontur tetapi juga pada

parameter. Ia tidak boleh dikendalikan dalam perubahan topologi. Dalam mengatasi

masalah ini, model yang berbeza telah diperkenalkan untuk kaedah kontur aktif

berdasarkan persamaan geometri berbeza separa. Kaedah ini mempunyai parameter

bebas, intrinsik dan stabil. Kontur aktif geodesik telah menjadi suatu pembangunan

yang penting. Kaedah set paras merupakan kaedah tangkapan gerakan terkehadapan,

di mana kontur aktif secara tersirat diperkenalkan sebagai set paras sifar fungsi

skalar tersembunyi dan dianggap sebagai domain keseluruhan imej. Perubahan dalam

topologi yang lebih melengkung secara semulajadi dibenarkan berbanding kaedah

kontur aktif tradisional. Namun, kelemahan utama kaedah set paras ialah kos

pengiraan sudah cukup tinggi. Algoritma pantas ialah satu teknik pemisahan agihan

separa-tersirat (AOS) digunakan untuk mengurangkan kos pengiraan. Pengesanan

sempadan tepi berdasarkan separa tersirat mampu mengesan sempadan tepi pada

imej perubatan seperti pengimejan resonans magnetik (MRI). Multigrid adalah suatu

algoritma dalam kaedah berangka yang mempunyai ketepatan dan kestabilan yang

lebih baik walapun dalam langkah masa yang besar. Berdasarkan sifat ini, kaedah

multigrid dilaksanakan dalam melaksanakan kontur aktif geodesik. Perisian MATLAB

dipilih sebagai platform pembangunan kerana ia sesuai untuk semua pengiraan yang

diperlukan. Malah ia digunakan secara meluas dalam komuniti imej pemprosesan.

Daripada hasil kajian menunjukkan kaedah berangka paling baik untuk dilaksanakan

bersama AOS untuk mengesan lokasi tumor dalam bidang imej perubatan dimana ia

mengurangkan bilangan lelaran.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF APPENDICES xiv

LIST OF SYMBOLS xv

LIST OF SYMBOLS xvi

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Theory of Edge Detection 2

1.3 Snake Active Contour Models(ACM) 3

1.4 Fast ACM Algorithm 6

1.4.1 Geometric ACM 7

1.4.2 Geodesic ACM 8

1.5 ACM for MRI Application 9

1.6 Direct Method and Iterative Method 11

1.7 Multigrid Method (MG) 12

1.8 Performance Analysis 14

1.8.1 Convergence Criterion 14

1.8.2 Root Mean Square Error (rmse) 16

1.9 Background of the problem 16

1.10 Research Questions 17

1.11 Objectives of the study 17

1.12 Scope of the problem 18



viii

1.13 Originality of the research works 18

2 GEODESIC ACTIVE CONTOUR MODEL SEMI-IMPLICIT

AOS SCHEME 19

2.1 Semi-implicit addictive operator splitting (AOS) 19

2.2 Geodesic ACM 24

2.3 Level Set Method 28

2.4 Stopping Function Based on Perona−Malik Model 31

3 Numerical Implementation 33

3.1 Linear System of Equations 33

3.2 Direct Elimination Method 35

3.2.1 Thomas algorithm 35

3.2.2 Gauss Elimination 36

3.3 Iterative Method 37

3.3.1 Jacobi 38

3.3.2 Gauss Seidel 39

3.3.3 Successive-over-relaxation 40

4 MULTIGRID 41

4.1 Equations and discretizations. 41

4.1.1 Smoothing and Approximation 46

4.1.2 The multigrid iteration matrix 47

4.1.3 Rate of convergence 48

4.1.4 Coarse Grid Approximation 51

4.2 Multigrid For Geodesic Active Models 52

5 ANALYSIS AND DISCUSSION 54

5.1 Results of Edge Detection Methods 54

5.1.1 Direct method 54

5.1.1.1 Thomas method 54

5.1.1.2 Gauss-elimination 57

5.1.2 Iterative method 59

5.1.2.1 Jacobi 59

5.1.2.2 Gauss-seidel 62

5.1.2.3 Successive-over-relaxation (SOR) 64

5.1.3 Multigrid 67

5.2 Contour Edge Detection 73



ix

5.2.1 Analysis results of direct methods 77

5.2.2 Analysis results of iterative methods 78

5.2.3 Analysis results of multigrid method 80

5.3 Computational Cost 81

5.4 Accuracy of the Solution 83

6 SUMMARY AND RECOMMENDATIONS 86

6.1 Summary 86

6.2 Conclusion 88

6.3 Recommendations 88

A File main.m 94

APPENDICES 94

B File Thomas.m 95

C File Gauss Elimination.m 96

D File Jacobi.m 97

E File Gauss-seidel.m 98

F File SOR.m 99

G File Multigrid-jacobi.m 100



x

LIST OF TABLES

TABLE NO. TITLE PAGE

5.1 Analysis of Gauss-elimination(GE) and Thomas Method(TH) for

MRI image 1 and image 2 78

5.2 Analysis of Gauss-elimination(GE) and Thomas Method(TH) for

MRI image 3 and image 4 78

5.3 Analysis of Jacobi(JC), Gauss-seidel(GS) and SOR method for

MRI image 1 and image 2 79

5.4 Analysis of Jacobi(JC), Gauss-seidel(GS) and SOR method for

MRI image 3 and image 4 79

5.5 Analysis of MG-Jacobi(MG-JC), MG-Gauss-seidel(MG-GS) and

MG-SOR(MG-SOR) method for MRI image 1 and image 2 80

5.6 Analysis of MG-Jacobi(MG-JC), MG-Gauss-seidel(MG-GS) and

MG-SOR(MG-SOR) method for MRI image 3 and image 4 80

5.7 Computational cost of Direct method 81

5.8 Computational cost of Iterative method 81

5.9 Computational cost of Multigrid method 82

5.10 Comparison of computational cost for image 1. 82

5.11 Comparison of computational cost for image 2. 82

5.12 Comparison of computational cost for image 3. 83

5.13 Coordinate of the contour to the exact coordinate of the object

using direct method for image 1.The pixels have size 1 in each

direction 84

5.14 Coordinate of the contour to the exact coordinate of the object

using iterative method for image 2. The pixels have size 1 in each

direction 84

5.15 Coordinate of the contour to the exact coordinate of the object

using multigrid method for image 3. The pixels have size 1 in

each direction 85



xi

5.16 Coordinate of the contour to the exact coordinate of the object

using multigrid method for image 4. The pixels have size 1 in

each direction 85



xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Edge detection using snakes active contour model (Kass et al.,

1988) 4

1.2 Parametric snake curve v(s) 6

1.3 MRI application using ACM 10

2.1 Flowchart of Research Works 21

2.2 Finite difference discretization in 2D 25

3.1 System of Linear Algebraic Equations 34

3.2 Initial partitioning of matrix A 38

4.1 Different Grid 42

4.2 Flowchart of i steps of the multigrid iterations 43

4.3 Grid schedule for a V-cycle with four levels 44

4.4 Grid schedule for a W-cycle with four levels 44

4.5 Grid schedule for an FMG cycle on four levels with v0-l

applications of the basic V-cycle 44

4.6 Coarse-grid correction 52

5.1 Final contour of the MRI image 1 based on Thomas method 55

5.2 Final contour of the MRI image 2 based on Thomas method 55

5.3 Final contour of the MRI image 3 based on Thomas method 56

5.4 Final contour of the MRI image 4 based on Thomas method 56

5.5 Final contour of the MRI image 1 based on Gauss-Elimination

method 57

5.6 Final contour of the MRI image 2 based on Gauss-Elimination

method 58

5.7 Final contour of the MRI image 3 based on Gauss-Elimination

method 58



xiii

5.8 Final contour of the MRI image 4 based on Gauss-Elimination

method 59

5.9 Final contour of the MRI image 1 based on Jacobi method 60

5.10 Final contour of the MRI image 2 based on Jacobi method 60

5.11 Final contour of the MRI image 3 based on Jacobi method 61

5.12 Final contour of the MRI image 4 based on Jacobi method 61

5.13 Final contour of the MRI image 1 based on GS method 62

5.14 Final contour of the MRI image 2 based on GS method 63

5.15 Final contour of the MRI image 3 based on GS method 63

5.16 Final contour of the MRI image 4 based on GS method 64

5.17 Final contour of the MRI image 1 based on SOR method 65

5.18 Final contour of the MRI image 2 based on SOR method 65

5.19 Final contour of the MRI image 3 based on SOR method 66

5.20 Final contour of the MRI image 4 based on SOR method 66

5.21 Final contour of the MRI image 1 based on Multigrid Jacobi Method 67

5.22 Final contour of the MRI image 2 based on Multigrid Jacobi Method 68

5.23 Final contour of the MRI image 3 based on Multigrid Jacobi Method 68

5.24 Final contour of the MRI image 4 based on Multigrid Jacobi Method 69

5.25 Final contour of the MRI image 1 based on Multigrid GS Method 69

5.26 Final contour of the MRI image 2 based on Multigrid GS Method 70

5.27 Final contour of the MRI image 3 based on Multigrid GS Method 70

5.28 Final contour of the MRI image 4 based on Multigrid GS Method 71

5.29 Final contour of the MRI image 1 based on Multigrid SOR Method 71

5.30 Final contour of the MRI image 2 based on Multigrid SOR Method 72

5.31 Final contour of the MRI image 3 based on Multigrid SOR Method 72

5.32 Final contour of the MRI image 4 based on Multigrid SOR Method 73

5.33 Comparison of numerical method for tumor detection

in image 2,(a)jacobi,(b)gauss-seidel,(c)SOR,(d)multigrid-

jacobi,(e)multigrid-gauss-seidel,(f)multigrid-sor 74

5.34 Comparison of numerical method for tumor detection in

image 3, (a)jacobi, (b)gauss-seidel,(c)SOR,(d)multigrid-

jacobi,(e)multigrid-gauss-seidel,(f)multigrid-sor 75

5.35 Comparison of numerical method for tumor detection in

image 1, (a)jacobi, (b)gauss-seidel,(c)SOR,(d)multigrid-

jacobi,(e)multigrid-gauss-seidel,(f)multigrid-sor 76

5.36 Number of iterations numerical method 77

5.37 To find the accuracy between (a) coordinate of the original image,

and (b) coordinate of the final contour 84



xiv

LIST OF APPENDICES

APPENDIX NO. TITLE PAGE

A File main.m 94

B File Thomas.m 95

C File Gauss Elimination.m 96

D File Jacobi.m 97

E File Gauss-seidel.m 98

F File SOR.m 99

G File Multigrid-jacobi.m 100



xv

LIST OF SYMBOLS

f - Reduced stream function

f0 - Reduced stream function for n = 1
2

x - Coordinate along the plate

y - Coordinate normal to the plate

e0 - Initial error vector

G - Gaussian

ω - Frequency domain

D2 - Second directional derivative operator

s - Normalized index of the control points.

E∗snake - Energy functional of snake

Eint - Internal spline energy

Eimage - Image forces

Econ - External constraint forces

u0 - Initial of level set

u - Level set

Rr - Relative residual convergence criterion

Ri - Relative error-norm criterion

ε - Convergence criterion

5+ - Forward approximations of the spatial derivatives

5− - Backward approximations of the spatial derivatives

Σ∆ - Average of the accuracy

k - Constant forces

τ - Speed of convergence

Σ∆ - Average of accuracy



xvi

LIST OF SYMBOLS



CHAPTER 1

INTRODUCTION

1.1 Introduction

Over the last few decades, it has been predicted that the research of computer

vision is not likely to be harvested practically in the foreseeable future. Preliminary

works have been completed as a part of the Artificial Intelligence that has been released

in the 1970s. Researchers sought to use computer to reproduce human ability to see

objects, recognize them and make sense of their movements.

It is proven to be very much difficult than anyone had anticipated. New

technology in Computer Vision applications are evolving into many practical

applications, especially in the field of robotics, medical imaging and video technology.

This approach on active contour is a prime candidate for practical exploitation (Blake

& Isard, 1997).

In computational vision research, the process of autonomous bottom-up has

been widely used for low-level tasks such as line or edge detection, motion tracking

and stereo matching. Image processing has one problem where the edge detection has

difficulty in finding lines separating homogeneous regions.

Active contour model(ACM) is one of the most popular PDE(Partial

Differential Equation) based tools in computer vision and powerful in object tracking.
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1.2 Theory of Edge Detection

The edge detection theory has two parts (Marr & Hildreth, 1980). Firstly,

intensity changes were detected separately at different scales which occurred over

a wide range of scales in natural images. Secondly, intensity changes which are

spatially localized in images arise from surface discontinuities or from reflectance or

illumination of boundaries.

Changes that occur over a wide range of scales is a major difficulty with natural

images. A method of dealing separately with the changes occurring at different scales

is greatly needed. A basic idea is to capture local images at various resolutions and

then detects the changes in intensity that occur in each one (Marr & Hildreth, 1980).

Therefore two issues have to be determined, (a) the nature of the optimal smoothing

filter, and (b) how to detect intensity changes at a given scale.

There are two combined physical considerations in order to determine the

suitable smoothing filter. The first is to filter an image, which is to reduce the range

of scales where intensity changes occur. Therefore, the spectrum of filter should be

smooth and roughly band- limited in the frequency domain. The second consideration

is the constraint of spatial localization or constraint in the spatial domain.

There are three properties that could give rise to intensity changes in an image.

The first property is illumination changes such as shadows, visible light sources and

illumination gradients. The second is changes in the orientation or distance from the

visible surfaces and the third is changes in surface reflectance.

Only one distribution could optimize the localization requirements (Leipnik,

1960) that is a Gaussian. A Gaussian provides an optimal trade-off between the

conflicting requirements, which is the spatial and the frequency domain.

G(x) = [
1

σ(2π)
1
2

]exp(
−x2

2σ2
), (1.1)

with Fourier Transform where σ is the standard deviation derivation q the distribution,

G(ω) = exp(−
1

2
σ2ω2). (1.2)



3

. In two dimensions,

G(r) = (
1

2
πσ2)exp(

−r2

2σ2
). (1.3)

.

When intensity occurs, intensity change needs to be defined to reduce the task

of detecting these changes to that of finding the zero-crossings of the second derivative

D2. The representation at this point consists of zero-crossing segments and their slopes.

The intensity variation near and parallel to the line of zero-crossings should locally be

linear so zero-crossing has a maximum slope. This condition will be approximately

true in smoothed images (Marr & Hildreth, 1980).

There are three main steps in the detection of zero-crossings. They are: (1) a

convolution with D2G, where D2 stands for a second directional derivative operator;

(2) the localization of zero-crossings; and (3) checking of the alignment and orientation

of a local segment of zero-crossings.

1.3 Snake Active Contour Models(ACM)

There are various tasks in image processing such as image segmentation, object

tracking or object edge detection using snakes active contour model. An active contour

was proposed which represents a new approach to visual analysis of shape (Kass et al.,

1988).

Active contours implement image processing selectively to regions of the

image, instead of processing the entire image. The basic snake model is controlled

continuity spline. It is operated under external constraint forces and influence of image

forces.

An initial contour in ACM solves the image plane towards the problem of

object boundaries. Suitable energy terms are added so the contour corresponds to a

local minimum of the functional coincides.

The image forces push the snake towards the image features such as lines,

edges, and subjective contours. The external constraint forces place the snake near
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Figure 1.1: Edge detection using snakes active contour model (Kass et al., 1988)

the desired local minimum of the functional which coincides at the edge of the object

as desired. These forces come from automatic attentional mechanisms such as a user

interface or interpretation of high-level.

The contour is defined in the (x,y) plane parametrically as v(s) = (x(s),y(s)),

where x(s) and y(s) are x, y coordinates of the contour and s is the normalized index of

the control points. The function of energy consists of two components, internal energy

and external energy. The energy functional is:

E∗snake =
∫ 1

0
Esnake(v(s)) ds

=
∫ 1

0
Eint(v(s))+Eext (v(s))

=
∫ 1

0
Eint(v(s))+Eimage(v(s))+Econ(v(s)). (1.4)

.

The snake energy consists of three terms. The first term, Eint represents the

internal spline energy due to bending. The second term, Eimage gives rise to the image

forces, and the last term, Econ gives rise to the external constraint forces.
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The internal energy is defined as:

Eint = (α(s)|vs(s)|
2 +β(s)|vss(s)|

2)/2 (1.5)

The spline energy is composed in first-order and second-order term where the

first-order term is controlled by the coefficients α(s) and the second-order term is

controlled by β(s). Both terms are combined to make the snake act as a membrane

and a thin plate.

The weight α(s)and β(s) should be adjusted to control the relative importance

in terms of membrane and thin-plate. α(s) should be set to zero at a point to allow a

snake to be a second-order discontinuous and develop a corner.

Each iteration takes implicit Euler steps to calculate the internal energy and

explicit Euler steps to determine the image and external constraint energy. Three

different energy functionals which attract the snake to the desired features in the image

are present. The total image energy is as follows:

Eimage = wlineEline +wedgeEedge +wtermEterm. (1.6)

If set

Eline = I(x,y) (1.7)

Then, the snake will be attracted if there is either a light or dark lines depending on the

sign of wline. Based on a very simple energy functional, it can search the edges in an

image. If Eedge =−|5 I(x,y)|2 is set then the snake is attracted to contours with large

image gradients.

(Kass et al., 1988) experimented with a slightly different edge functional to

demonstrate the continuity of the relationship of scale-space to the edge detection

theory. The edge energy functional is:

Eedge =−(Gσ ∗5
2I)2, (1.8)
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where Gσ is a standard deviation σ of Gaussian. If the term of energy is added to

a snake, it means that the snake is attracted to zero-crossings. However it is still

constrained by the smoothness of its own (Kass et al., 1987). The curvature of the

level lines is used to seek line segments and corners termination and can be defined by:

Eterm =
∂ θ

∂ n⊥
(1.9)

where n = (cos θ , sin θ ), n⊥ = (−sin θ ,cos θ ) and θ = tan−1(
Cy

Cx
) be the gradient

angle. Let C(x,y = Gσ(x,y)∗ I(x,y) be a slightly smoothed version of the image.

Snake is attracted to edges or terminations created by combining Eedge and

Eterm.

Figure 1.2: Parametric snake curve v(s)

A formulations of the image energy has also been proposed to improve the

original model, including the Balloon force field, together with the potential forces

comprising the external forces. The external forces on the original model are modified

to give more stable results to push the the curve to the edges (Cohen,1991).

1.4 Fast ACM Algorithm

The traditional snake ACM has two significant weaknesses (Caselles &

Coll,1996). Firstly, it depends on the intrinsic characteristics of the contour and

parameterization because the model is non-geometrical. Secondly, it cannot naturally
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handle topology of the evolving contour changes because of situations where no prior

knowledge of the number of objects to be detected is available.

Geometric ACM has addressed some weaknesses of the standard active

contours. Geometric ACM was introduced based on the mean curvature motion

equation (Caselles et al.,1993). The implicit geometric ACM, that can be associated

with the explicit snake model is represented by function, is embedded into an energy

functional.

(Weickert & Kuhne,2002) considered, which combined geometric and geodesic

model and introduced two additional functions, a and b:

∂ u

∂ t
= a(x)|5u|div(

b(x)5u

|5u|
+ |5u|kg(x), (1.10)

• |5u|div( 5u
|5u|), is the mean curvature term of ACM which smoothes level sets,

• k|5 u| describes motion in normal direction, i.e. dilation or erosion depending

on the sign of k. Also called as balloon force for pushing a level set into concave

regions or to create convex regions.

• g is a stopping function such as the PeronaMalik diffusivity.

a := g, b := 1 are set for the results in the geometric model, or a := 1, b := g

for the results in the geodesic model. Discretizations of space and time have to be

considered to provide a numerical algorithm.

1.4.1 Geometric ACM

Based on the curve evolution theory and geometric flows, the level sets

are used in geometric ACM implementation to allow automatic changes in the

topology(Caselles et al.,1993).

The geometric ACM equation is expressed by (Weickert & Kuhne,2002):

∂ u

∂ t
= g(x)|5u|div(

5u

|5u|
+ k), Ω× (0,∞), (1.11)
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u(x,0) = u0(x) on Ω, (1.12)

where

g(x) =
1

1+(5Gσ ∗go)2
(1.13)

Gσ ∗ go is the convolution of the image where the contour of an object O is

searched with the Gaussian Gσ(x) and u0 is the initial data.

Unlike the method of snakes that depends on many adjustment parameters,

geometric ACM is stable and allows a rigorous mathematical analysis. The model

allows simultaneous extraction of smooth shapes and detects several contours. As

a result of the stability, it can be engineered as a method of zero parameter in the

applications.

A novel algorithm using multigrid for the rapid evolution of geometric ACM

implementation was proposed in order to retain accuracy and demonstrate excellent

stability and rotational invariance properties even with big time steps. Internal forces

are treated with implicit schemes while external forces with explicit schemes to keep

the curve smooth (Papandreou & Maragos(2004).

1.4.2 Geodesic ACM

Based on energy minimization, geodesic ACM permits connections of snakes

for object segmentation. The energy of the snakes model is equivalent to finding

geodesic curves in a Riemannian space, which is defined by the content of image

(Caselles et al.,1997).

In the implicit geodesic ACM (Weickert & Kuhne,2002)

∂ u

∂ t
= |5u|(div(g(x)

5u

|5u|
)+ kg(x), Ω× (0,∞), (1.14)

u(x,0) = u0(x) on Ω, (1.15)
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where k is a positive real constant.

This scheme is derived from the classical energy-based active contours and

geometry curve evolution. Formulation of geodesic is to detect the edge to find

a minimum weighted length of curves, improving the edges detection with large

differences in their gradient. Then, this geodesic ACM is assumed to represent the

zero level- set of a 3D function, and the computation of geodesic curve is reduced to a

geometric flow.

To improve those models, this geodesic flow includes a new velocity curves

component. The new velocity component allow accurate tracking of boundaries of

the high variation in their gradient, including small gaps, a task that is difficult to

achieve with the previous curve evolution models. In (Caselles et al.,1997), the level

sets approach is used in order to find the geodesic curve (Osher & Sethian,1988).

The purpose of g(x) is to stop the evolving curve when it arrives at the object

boundaries. (Caselles et al.,1993) & (Malladi,R., Sethian & Vemuri,1995) chose

g(x) =
1

1+(5Gσ ∗go)2
, (1.16)

where x is a smoothed version of x and x was computed using Gaussian

filtering. Gσ ∗ go is the convolution of the image go where we are looking for the

contour of an object O with the Gaussian Gσ(x) = Cσ−1/2exp(−|x|2/4σ).

Geodesic ACM are widely used in many applications, including object

segmentation and tracking in movie sequence (Goldenberg et al.,2001). The AOS

scheme has been adapted to the geodesic ACM, motivated by level set approach and

fast marching for re-initialization.

1.5 ACM for MRI Application

ACM has also been widely used to detect edge and segmentation of medical

imagery of magnetic resonance imaging (MRI), computed tomography (CT), and

ultrasound medical imagery application.



10

Figure 1.3: MRI application using ACM

A novel technique that combines MRI of hyper-polarized helium gas and

conventional MRI facilitates high resolution imaging of lung function (Ray & Acton

(2002). This application which computes the total volume of the lung cavity and the

cavity volume from the proton imagery were used to calculate ventilation percentage.

Parametric snake is used in the segmentation method to measure the amount

of lung air space and a classification approach to calculate the functional air space.

It has a lower association with computational complexity compared to the geometric

counterpart. The main weakness associated with parametric snakes is it is difficult to

merge or split.

ACM is developed to find and map the outer cortex of the brain images

(Davatzikos & Prince, 1995) and then to determine the spine of such ribbons. ACM has

an external force derived from an integration of the data and internal elasticity forces.

(Yezzi et al., A.,1997) used a new geometric ACM, based on Riemannian

metrics depending on the image and related to gradient flows for ACM. This is done by

combining curve evolutionary approach to active contours and classical snake methods.

Their idea is based on Euclidean curve shortening evolution which determines

the gradient direction where the Euclidean perimeter shrinks as fast as possible. The
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numerical methods from evolutionary level set techniques were developed by (Osher

Sethian, 1982, 1984,1986, 1989), and (Malladi et al.,1995).

In (Derraz et al.,2007), coupling of geometrical ACM for image segmentation

using homogenization of edge stopping map function based on the anisotropic

diffusion PDE was carried out. This homogenization provides a regular velocity

propagation, unique viscous solution and unique segmentation for low contrasted

images. However, geometrical ACM is based on gradient information.

1.6 Direct Method and Iterative Method

Much research has focused on the development algorithms, both direct and

iterative. Direct and iterative methods was used to solve a linear system of equations,

in the form of Au = f with A an n by n nonsingular matrix, that form a subspace.

The convergence of Krylov subspace methods depends strongly on the eigenvalue

distribution of A, and on the angles between eigenvectors of A.

Classical direct search methods was developed during the period 1960-1971.

The direct method used here is a Gaussian elimination and Thomas method applied to

sparse symmetric matrices. Gaussian elimination is an algorithm for solving systems

of linear equations. It can also be used to find the rank of a matrix, to calculate the

determinant of a matrix, and to calculate the inverse of an invertible square matrix.

Comparison between direct and iterative methods show that the computation

rate and the number of iterations are both important factors influencing the CPU time

required for each solver. The computation rate was influenced by the algorithm and the

data structure used for each method. While the number of iterations was influenced by

the structure of the matrices and convergence rate.

The iterative methods require much less memory than direct methods and show

the most promising for very large finite element models, especially if the element

aspect ratios are near unity. Rapid convergence of the iterative methods makes them

faster than the direct solvers (Poole,1991).

Many researchers have considered to apply left pre-conditioning methods

applied to linear system of equations in order to ensure that the associated Jacobi and
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Gauss-Seidel methods converge faster than the original ones. Such modifications or

improvements are based on pre-chosen pre-conditioning method which eliminates the

elements of the first column of A below the diagonal (Milaszewicz,1987).

In 1975, a 3-block SOR method was proposed for solving least-squares

problems based on a partitioning scheme for the observation matrix A. Preliminary

works have been completed for correcting and extending the SOR convergence

interval. Problem of the 3-block formulation, leading other alternative formulation to a

2-block SOR method and it is shown that the method always converges for sufficiently

small SOR parameter ω (Markham et al.,1985).

The successive over-relaxation (SOR) method is a variant of the Gauss-Seidel

method to solve a linear system of equations and have more faster convergence than

the Gauss-Seidel method. The idea is to choose a value for ω that will accelerate the

rate of convergence of the iterations to the solution(David & Frankel, 1950).

1.7 Multigrid Method (MG)

The boundary value problems in numerical solution are absolutely necessary in

almost all development fields of physics and engineering sciences. Numerical solution

is crucial to solve dimensional huge system where the system has become larger and

possesses larger number of equations although the computers have become faster and

vector computers are available.

Brandt, McCormick and Ruge introduced Multigrid in 1982. In 1983, it was

further explored by (Stuben,1983), and then popularized by Ruge and Stuben in 1987.

The basic idea of multi-level adaptive technique (MLAT) is not to work with a single

grid, but with order grids of rising fineness. Brandt has shown the actual efficiency of

the multigrid methods (Brandt,1997).

Multigrid has an extremely simple principle. Firstly, suitable relaxation

methods are applied to obtain approximations with smooth errors. Secondly, because

of the smoothness of the error, this corrections approximation can be computed on

coarser grids.
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The basic idea is to recursively take coarser and coarser grids. Finally,

combination with nested idea of iteration for a suitable algorithmization in which

the computational work required to achieve the accuracy of the discretisation is

proportional to the number of discrete unknowns (Trottenberg et al., 1984).

The basic idea for convergence acceleration is to get error smoothing effect

of relaxation methods. This idea can be found in the early literature by Southwell

(1935,1946 & 1952). Scroder has then introduced the recursive application of coarser

grids for an efficient solution of specific discrete elliptic boundary value problems.

But, explicit error smoothing has not yet been performed. Finally, the self-suggesting

idea of nested iterations has been known for a long time.

A theory of multigrid methods to find considerations of the problem in analysis

of model type is presented. For smoothing, non-rectangular domains and non-

linear problems treatment, red black and four colour relaxation methods are used

(Hackbusch, 1985).

Since 1977, multigrid methods have grown. In recent years, the field of finite

elements which has first been of a more theoretical interest to multigrid methods

becomes attractive for practical investigations. Apart from linear and non-linear

boundary value problems, eigenvalue problems and bifurcation problems, parabolic

and other time-dependent and non-elliptic problems occur in numerical fluid dynamics.

Multigrid methods also can be solved by integral equations efficiently.

Furthermore, multigrid methods are suitable to solve special systems of equations

without continuous background. Extension of the field of applications of multigrid

methods is the combination of the multigrid idea with other numerical and more

general mathematical principles such as combination with extrapolation and defect

method. Finally, multigrid methods are used on vector and parallel computers for

optimal use as well as to approach within the computer architecture.

The main idea of multigrid is to use a global correction from time to time to

accelerate the convergence of basic iterative methods, accomplished with solving a

coarse problem. This principle is the same as the interpolation between coarser and

finer grids. The typical application for multigrid is in the numerical solution of elliptic

partial differential equations in two or more dimensions(Hackbusch, 1985).
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In some cases iterative methods performed better than multigrid methods,

based on the comparison with Borzi(1999) and Chan et al., (2009). Though, the

number of iterations and root mean square error, (rmse) of iterative methods is not

as good as multigrid. The multigrid algorithm involves a new parameter (cycle index)

which is the number of times the MG procedure is applied to the coarse level problem.

According to Borzi(1999), the choice N = 1 in a multigrid cycle is suitable to solve the

problem to second-order accuracy.

1.8 Performance Analysis

1.8.1 Convergence Criterion

Convergence criterion is usually sought in converged solution. The concept of

the convergence rates has been developed for analyzing iterative methods for solving

systems of simultaneous linear algebraic equations. Its rate of convergence sequence

as well as the convergence, uniqueness of the solution and error in the approximate

solution are obtained after a finite number of computations(Hamilton,1984).

Many convergence rates have been proposed and some are based on the

residual-norm, while others are based on the error-norm. Consider a large sparse linear

system of equations Au = f , where A is a n×n matrix.

(1)Relative residual convergence criterion. It is defined as

Rr =
‖ rk ‖2

‖ r0 ‖2
=
‖ b−Axk ‖2

‖ b−Ax0 ‖2
≤ tol, k = 1,2, ...,maxit (1.17)

where maxit refers to maximum number of iteration.

Based on the relation ek = A−1rk , it is know that the criterion has the following error

bound,

‖ ek ‖2≤‖ A−1 ‖2 . ‖ rk ‖2≤ tol. ‖ A−1 ‖2 . ‖ r0 ‖2 (1.18)
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(2) Relative error-norm criterion. The relative error-norm criterion is defined

based on the approximate solution as

Ri =
‖ xk− xk−1 ‖∞

‖ xk ‖∞
≤, k = 1,2, ...,maxit (1.19)

in which ‖ . ‖∞. The relative error-norm criterion is closely related to the relative

residual convergence criterion, but this relation also depends on the properties of

matrix A.

Iterative methods for solving this problem are

u(n+1) = MU(0) +N f , (1.20)

where M and N have to be constructed in such a way that given an arbitrary initial

vector u(0), the sequence u(v),v = 0,1, ..., converges to the solution u = A−1 f . M is

called the iteration matrix. The following convergence criterion based on the spectral

radius ρ(M) of the matrix M. The following theorem is proved by Varga (1962).

Theorem 1.8.1. If A is an (m×m), then A converges if and only if p(A) < 1.

‖M(k)‖< ε (1.21)

Iteration process is determined by number of k iteration which satisfy the

inequality below,
−logε

−‖A(k)‖
1
k

≤ k (1.22)

An optimum value of iteration, k0 at convergence criterion can be approximate

by the following equation,

k0 '
−logε

ρ(A)
=

logε

τ(A)
, (1.23)

where τ(A) is an asymptotic mean of iteration rate which satisfies the theorem

provided below,
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Theorem 1.8.2. If k→ ∞ , asymptotic mean of iteration rate is given by

τ(A) = lim
n→∞

τk(A) = logρ(A) (1.24)

Practically, an iterative method will converge at k0 iteration, if the convergence

criterion ε = 10−a,α ∈ Z+is satisfied such that

e(k) = max|uk+1−uk|< ε, (1.25)

with u(k) and u(k+1) are previous iteration and latest iteration respectively. The best

convergence rate for a comparison of iterative method is the one which gives the

smallest maximum error e(k).

1.8.2 Root Mean Square Error (rmse)

The convergence rate for iterative methods is determined by computing root

mean square error, (RMSE) formula. The formula is given as the following,

RMSE =

√
ℵ

∑
i

(u
(k+1)
j −u

(k)
j )2/ℵ, (1.26)

where ui and ui are approximation solution and exact solution respectively. For one

dimensional problem ℵ = m, two dimensional ℵ = m×m, and three dimensional

ℵ = m×m×m, i = x, i = (x,y), and i = (x,y, z) respectively.

If the rmse is within the error, ε , then the procedure will stop. Otherwise, the

procedure will continue until this condition is reached.

1.9 Background of the problem

Difficulty in image processing is the boundaries detection where the problem

is to find lines separating the homogeneous regions. The original ACM has some

significant weaknesses.
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Firstly, it depends on its parameterization, in which the model is non-

geometrically and intrinsic properties of the contour. Secondly, there is no prior

knowledge of some of the detected object, so it cannot handle the topological changes

in contour naturally.

In image analysis and computer vision, geometric ACM is a very popular PDE-

based tool. Most of the geometric ACMs are built based on the level-set method.

Computation cost can be high, which makes its utilization in time-critical applications

problematic despite the advantages of the level-set method.

The Geodesic ACM’s weakness is in its stability constraints on the time step

size related to explicit numerical schemes.

1.10 Research Questions

The research will explore the following questions.

1. What is active contour and how does it work?

2. How to implement the active contour using direct, iterative and multigrid

method?

3. Under which condition is each active contour method satisfactory?

4. How is the performance of the active contour methods for each numerical

methods?

5. Which numerical methods is the best approaches to detect edge of object ?

1.11 Objectives of the study

The objectives of this research are:

1. To implement a Semi-implicit additional operator scheme (AOS) on geodesic

ACM.

2. To apply a multigrid algorithm to the semi-implicit scheme for geodesic ACM.
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3. To compare the performance of three algorithms (direct, iterative and multigrid

method) on the geodesic ACM.

4. To analyze the numerical results from the sequential algorithms based on the

computational complexity, accuracy and number of iterations.

1.12 Scope of the problem

The scope of this research revolves around detecting edges of the object

using geodesic ACM based on semi-implicit additional operator scheme (AOS). This

approach will be implemented with numerical methods such as direct, iterative and

multigrid method to solve the tridiagonal linear system efficiently.

The methods under consideration are Gauss-elimination, Thomas, Jacobi,

Gauss-Seidel and Successive-over-relaxation (SOR) and will be applied for medical

image segmentation such as medical resonance image(MRI).

The experiment were run on Intel Core Duo Processor 2.0GHz and RAM 2GB.

Matlab 7.6.0 (R2008a) were used as a tool to implement the algorithm. The analysis

of the results are conducted in terms of numerical performance.

1.13 Originality of the research works

A number of original works have been carried out in this research. First,

iterative methods were implemented for the edge detection on medical images unlike

previous works where geodesic ACM based on AOS scheme use direct methods such

as Thomas method and Gauss-elimination. Second, the multigrid implemented to

enhance the iterative methods for improving the current results based on accuracy,

number of iterations and root mean squared error.
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