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ABSTRACT

In industrial processes, turbulent flows are known to sometimes generate significant levels of

noise and consequent vibrations of the structures. As well the involvement of the heat in the most

engineering processes; this study focus on the effect of temperature of the internal flow in the

tube has been investigated numerically to study the vibration tendency on the tube structure. The

Fluent software has been used with LES solution provided for more accurate results. The results

show the direct relation of the temperature in the vibration tendency. The results also show that

the diameter of the tube has inverse relationship to the vibration tendency of the structure.



ABSTRAK

Dalam kajian ini, kesan suhu aliran dalaman dalam tiub telah disiasat berangka untuk mengkaji

kecenderungan getaran pada struktur tiub. Perisian Fasih telah digunakan dengan penyelesaian

LES disediakan untuk hasil yang lebih tepat. Keputusan menunjukkan hubungan langsung suhu

dalam kecenderungan getaran. Juga ia menunjukkan bahawa diameter tiub mempunyai hubungan

yang songsang kepada kecenderungan getaran struktur.
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1 INTRODUCTION

Piping systems conveying liquids are subjected to severe transient loadings whenever changes

in the momentum of the fluid or piping structure are abruptly induced due to planned or accidental

actions. Typical sources of transients are (Rocher, R. 2012):

1. valve slam

2. startup and shutdown of pumps

3. loss of coolant in nuclear reactors

4. vibrations induced by operating equipment installed on the line

5. Earthquakes.

Fluid around a structure can significantly change the structure’s vibration characteristics. The

presence of a inactive fluid decreases the natural frequencies and increases the damping of the structure.

A dense fluid couples the vibration of elastic structures which are adjacent to each other. Fluid flow can

induce vibration. A turbulent fluid flow exerts random pressures on a structure, and these random

pressures induce a random response. The structure can resonate with periodic components of the wake.

(Blevins, R. 2000)

If a structure is sufficiently flexible, the structural deformation under the fluid loading will in

turn change the fluid force. The response can be unstable with very large structural vibrations once the

fluid velocity exceeds a critical threshold value.
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Vibration induced by fluid flow can be classified by the nature of the fluid structure interaction

as effects which are largely independent of viscosity include added mass and inertial coupling.

Unsteady pressure on the surface of a structure, due to either variations in the free stream flow or

turbulent fluctuations, induces a forced vibration response. Strong fluid-structure interaction

phenomena result when the fluid force on a structure induces a significant response which in turn

changes the fluid force.

1.1 Problem statement

The volume flow rate of 0.024m3/s (Lee,H. et al,2009) is used to examine effect of the heated

water flow on the circular tube. Cross bonding to different temperatures with values 298 K (Lee,H. et

al,2009) 363K (Lee,H. et al,2009) 600K (Pironkov, P. 2010)

1.2 Objectives

To determine the effect of the temperature in internal flow related to FSI.

1.3 Scope of the study

1. Numerical solution will be used.

2. Include the pipe flow with and without temperature effect.

3. Investigate the effect of change of diameters of the pipe in constant flow rate.
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1.4 Significant of the study

The heated tube has been widely used in the industrial application such as HVAC systems, heat

exchangers, boilers, turbines, refineries reactors and most of the petro-chemical industry process.
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