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ABSTRACT

Lack of stability is known as one of the principal factors contributing

to the loosening of hip prosthesis. Initial stability of the hip prosthesis is 

related to the magnitude of relative displacement at the femoral bone-

prosthesis interface. The present study investigated the effect of prosthesis 

geometry on the initial stability. In addition, the effect of hole and fin as 

additional features of prosthesis was also investigated. Three-dimensional 

(3D) finite element model of femur and prosthesis was constructed based on 

Computed Tomography (CT) dataset of a Malaysian male patient.

Simulations of normal walking condition were performed on the models to 

investigate the relative displacement between the bone and prosthesis 

interface. The simulation results showed that rectangular hip prosthesis 

contributed to the reduction of relative motion at the proximal and distal ends

of the prosthesis. For the prosthesis with additional hole as a feature on the 

proximal region of prosthesis, the result showed that it increased the 

magnitude of relative displacement at the proximal region on the medial side. 

For the effect of fin, it was observed that the relative displacement was lower 

than 40 µm along the lateral and medial sides.
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ABSTRAK

Kekurangan kestabilan adalah salah satu faktor utama yang 

menyumbang kepada kegagalan pembedahan pinggul tulang. Kestabilan 

pertama bagi implan adalah berkait rapat dengan magnitud pergerakan relatif 

di antara dua permukaan iaitu permukaan tulang dan permukaan implan.

Tujuan projek ini dijalankan adalah untuk menyiasat kesan geometri implan

ke atas kestabilan pertama. Selain itu, kesan lubang dan sirip sebagai ciri 

tambahan pada implan juga turut dikaji. Model tiga dimensi (3D) femur dan 

implan dibina berdasarkan setdata Tomografi Berkomputer yang diperoleh 

dari seorang pesakit lelaki Malaysia. Simulasi berdasarkan beban berjalan 

secara biasa dijalankan untuk mengkaji pergerakan relatif di antara 

permukaan tulang dan implan. Keputusan dari simulasi menunjukkan bahawa 

implan yang berbentuk segiempat dapat merendahkan pergerakan relatif di 

bahagian proksimal dan bawah implan. Bagi implan yang mempunyai ciri 

lubang pada bahagian proksimal implan, keputusan menunjukan bahawa ia 

telah meningkatkan pergerakan relatif pada kawasan proksimal bagi bahagian 

tengah. Untuk kesan sirip, diperhatikan bahawa pergerakan relatif lebih 

rendah daripada 40µm pada bahagian tengah dan belakang.
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

  

 
1.1 Problem Definition 
 
 

Hip arthroplasty is a procedure to replace the damaged bone on the hip joint 

with an implant called hip prosthesis. However, there are several important issues in 

determining the longevity of the hip prosthesis such as stress distribution in the 

femoral bone and the stability of the hip prosthesis. Many authors have agreed that 

one of the factors contributing to the long-term longevity of the hip arthroplasty is 

the stability of the hip prosthesis (Chae et al., 2006, Pancanti et al., 2003, and 

Viceconti et al., 2006). Unlike cemented prosthesis, the stability of cementless 

prosthesis depends on the rate of bone growth to the prosthesis surface. There are 

two types of stability; initial stability and secondary stability. Initial stability refers to 

the amount of relative motion at the bone-prosthesis surface induced by the 

physiological loading before biological process. While, secondary stability is the 

relative motion at the bone-prosthesis surface once the biological process is 

completed (Viceconti et al., 2006 and Orlick et al., 2003).  

 

There are many factors influencing the initial stability such as geometry and 

material properties of prosthesis, quality of the bone, and the human activity. 

Different approaches have been used in evaluating the stability of either in vitro 

study or in vivo study. These approaches are important to determine the long-term 

fixation of hip prosthesis and the success of the hip arthroplasty. Many previous 

studies have analysed and investigated the effect of cross section on the hip 

prosthesis. However, they were more interested to investigate the stress distribution 
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on the prosthesis surface compared to its stability (Joshi et al., 2000, Bennet and 

Goswami, 2007, Sabatini et al., 2008, and Chen et al., 2009).   

 

Therefore, the focus of this study is to analyse and determine the relative 

motion on the cementless prosthesis by investigating the effect of geometry of 

prosthesis. In addition, the effect of hole and fin as an additional feature on the 

proximal region of prosthesis was also investigated in this study. In this study, a 

finite element analysis was performed to evaluate the relative motion at the bone-

prosthesis interface for normal walking condition. Three-dimensional solid model of 

femur bone constructed from the CT dataset was obtained from a male patient. Then, 

the prosthesis was designed based on the morphological data extracted from femoral 

bone constructed earlier. 

 
 
 
 
1.3 Objectives 
 
 

The objective of this study is to design hip prosthesis for total hip joint 

arthroplasty based on morphological data of a patient. In addition, a finite element 

procedure was established in order to assess the initial stability. The initial stability 

was determine based on the value of relative displacement at the bone-prosthesis 

interface. Finally, another objective of this study is to investigate the effect of 

geometry of prosthesis and additional features on the initial stability. 

 

 

 

1.4 Scope 
 
 
 The computed tomography (CT) dataset was obtained form a male patient. 

Then, the three-dimensional model of femoral bone was constructed based on this 

dataset. After that, the morphological data of bone were obtained in order to 

construct the hip prosthesis. The design of prosthesis was focused on cementless and 

collarless hip prosthesis. The parametric studies were to investigate the effect of 

geometry of prosthesis and additional feature on the initial stability. There were two 
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types of feature, which are hole and fin. As for loading condition, normal walking 

condition was chosen as the loading case. 
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