THE ADSORPTION CHARACTERISTICS OF GOLD ONTO 3-AMINOPROPYLTRIETHOXYSILANE GRAFTED COCONUT PITH

MUHAMMAD USMAN RASHID

UNIVERSITI TEKNOLOGI MALAYSIA

THE ADSORPTION CHARACTERISTICS OF GOLD ONTO 3-AMINOPROPYLTRIETHOXYSILANE GRAFTED COCONUT PITH

MUHAMMAD USMAN RASHID

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

SEPTEMBER 2012

To my beloved mother and father

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Associate Professor Dr. Hanapi Bin Mat for his guidance, advice and support.

My utmost appreciation also goes to Norasikin Saman, Khairiraihanna Johari, Song Shiow Tien and all members of Advance Materials and Process Engineering (AMPEN) Research Group who have patiently help me throughout my experimental work. Special thanks to Mr. Yassin bin Sarin for assisting in metal concentration analysis.

Finally, I would like to extend special word of appreciation to the most important persons in my life, my lovely mother Mrs. Naseem Akhtar for her unconditional love and continued support.

ABSTRACT

Increased use of gold in the various industries has raised significant quantities of such compounds into environment. Gold is persistent and non-biodegradable. Precious metal (gold) becomes serious threat to human health in the form of ionic compounds. They can cause damage to nervous system, skin problem, cancer, kidney problem, bone marrow and hearing damage. Also their high price and limited sources makes it economical to recover them. In this study, coconut pith was investigated for the biosorption studies of Au(III). The chemical modification of coconut pith was done using 3-aminopropyltriethoxysilane. The Scanning Electron Microscopy (SEM) results reveal that the surface of grafted coconut pith (GCP) has cracks and coarse surface as compared to virgin coconut pith (VCP) which shows smooth surface. These cracks and irregularities help to increase the biosorption on the interior and surface of GCP. The Fourier Transform Infrared (FTIR) spectroscopy shows different silanization bonds on GCP; Si-O-Si (1032 cm⁻¹), Si-CH₂ (1411cm⁻¹⁾ and NH₂ (1569.56 cm⁻¹) which were absent in VCP. The effect of different parameters such as pH, contact time, temperature, and initial Au(III) concentration on biosorption was studied. The optimum conditions for biosorption of Au(III) onto GCP and VCP were at Au(III) concentration of 500 ppm, pH 4, contact time of 360 minutes, and temperature of 60 °C. The highest biosorption capacity of 262.19 mg/g was recorded for Au(III) biosorption onto GCP biosorbent at pH 4 and dosage of 1 gm/ml. The biosorption of Au(III) onto VCP and GCP biosorbents was best fitted to the Langmuir isotherm model while the pseudo-second order model was found to best describe experimental data. Au(III) biosorption selectivity of the GCP was better compared to VCP. The regenerability of GCP and VCP biosorbents in gold (III) biosorption was completed in three cycles revealing excellent durability of GCP as compared to VCP.

ABSTRAK

Peningkatan penggunaan emas dalam pelbagai industri telah meningkatkan kuantiti bahan ini dengan ketara ke atas alam sekitar. Emas adalah bahan yang kekal dan tidak terbiodegradasi. Logam berharga (emas) dalam bentuk sebatian ion menjadi ancaman serius kepada kesihatan manusia. Ianya boleh menyebabkan kerosakan terhadap sistem saraf, masalah kulit, kanser, masalah buah pinggang, sumsum tulang dan kerosakan pendengaran. Selain itu, harganya yang tinggi dan sumber yang terhad menjadikannya ekonomikal untuk digunapakai. Dalam kajian ini, habuk kelapa telah disiasat untuk biojerapan Au(III). Pengubahsuaian kimia 3terhadap dilakukan habuk kelapa telah dengan menggunakan aminopropyltriethoxysilane. Keputusan Mikroskop Elektron Imbasan (SEM) mendedahkan bahawa habuk kelapa yang diubahsuai (GCP) mempunyai keretakan dan permukaaan kasar berbanding habuk kelapa dara (BPV), yang menunjukkan permukaan yang licin. Keretakan dan permukaan kasar ini membantu meningkatkan biojerapan pada bahagian dalaman dan permukaan GCP. Fourier Tranformasi Infra-Merah (FTIR) menunjukkan perbezaan ikatan silana pada GCP; Si-O-Si (1032 cm⁻¹), Si-CH₂ (1411cm⁻¹) dan NH₂ (1569.56 cm⁻¹) yang mana tidak kelihatan dalam VCP. Kesan parameter yang berbeza terhadap biopenjerapan seperti pH, masa pengadukan, suhu, dan kepekatan logam awal telah dikaji. Keadaan yang optimum untuk biojerapan emas ke atas biopenjerap GCP dan VCP pada kepekatan logam awal 500 ppm, pH 4, 360 minit masa pengadukan dan suhu 60 °C. Kapasiti biojerapan yang tinggi adalah 262.19 mg/g yang dicatatkan untuk penjerapan Au(III) ke atas GCP biopenjerap pada pH 4 dan dalam nisbah (1:1) biopenjerap/biojerap. Biojerapan bagi biopenjerap GCP dan VCP mematuhi model isoterma Langmuir, manakala pseudotertib-kedua telah didapati sebagai yang terbaik untuk menerangkan data ekperimental yang diperolehi. Pilihan bagi biojerapan Au (III) adalah yang terbaik bagi biopenjarap GCP berbanding VCP. Kebolehgunaan biopenjerap GCP dan VCP terhadap biojerapan Au(III) telah dilaksanakan dalam tiga kitaran mendedahkan ketahanan yang terbaik bagi GCP berbanding VCP.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xvii
	LIST OF ABBREVIATIONS	xviii
	LIST OF APPENDICES	xix
1 INTE	RODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	5
1.3	Research Objectives and Scopes	6
1.4	Thesis Outline	7
1.5	Summary	7
2 LITE	ERATURE REVIEW	9
2.1	Precious Metals	9
	2.1.1 Introduction to gold	9
	2.1.2 Gold health effects	10

	2.1.3	Conventional methods of gold recovery	10
		2.1.3.1 Precipitation	10
		2.1.3.2 Ion exchange	11
		2.1.3.3 Reverse osmosis	12
2.2	Bioso	rbents	13
	2.2.1	Introduction to biosorbents	13
	2.2.2	Biosorbent modifications	15
		2.2.2.1 Preatreatment process for biosorbent	16
		2.2.2.2 Polymer grafting	18
2.3	Bioso	rbent Process	19
	2.3.1	Biosorbent parameters	20
		2.3.1.1 Effect of pH	20
		2.3.1.2 Effect of temperatures	21
		2.3.1.3 Biosorbent dosage	21
		2.3.1.4 Adsorbate concentration	22
		2.3.1.5 Ionic strength	22
	2.3.2	Equilibrium isotherms	23
		2.3.2.1 Langmuir isotherms	24
		2.3.2.2 Freundlich isotherms	25
		2.3.2.3 Dubinin-Radushkevich isotherm	27
		2.3.2.4 Temkin isotherm	28
		2.3.2.5 Halsey isotherm	29
		2.3.2.6 Toth isotherm	30
		2.3.2.7 Sips isotherm	30
		2.3.2.8 Redlich Peterson isotherm	31
	2.3.3	Kinetic models	33
		2.3.3.1 Pseudo first-order kinetic model	34
		2.3.3.2 Pseudo second-order kinetic model	35
		2.3.3.3 Intraparticle diffusion model	36
		2.3.3.4 Elovich equation	38
2.4	Cocor	nut Pith as Biosorbents	40
2.5	Summary		

3	MAT	'ERIAL	S AND METHODS	43
	3.1	Introd	uction	43
	3.2	Mater	ials and Chemicals	43
	3.3	Persor	nal Protection Equipment	44
	3.4	Biosor	rbent synthesis	44
		3.4.1	Virgin coconut pith (VCP) biosorbent preparation	44
		3.4.2	Pretreatment of virgin coconut pith biosorbent	45
		3.4.3	Virgin coconut pith (VCP) grafting	46
	3.5	Biosor	rbent Characterization	48
		3.5.1	Morphological properties	48
		3.5.2	Functional group determination	48
		3.5.3	Elemental composition analysis	49
		3.5.4	Thermogravimetric analysis	49
	3.6	Gold I	Biosorption Performance Evaluation Procedures	49
		3.6.1	Effect of pH	50
		3.6.2	Effect of temperatures	51
		3.6.3	Effect of gold concentration	52
		3.6.4	Effect of contact time	53
		3.6.5	Biosorbents selectivity evaluation	53
		3.6.6	Biosorbents regenerability	55
	3.7	Analy	tical Procedures	56
		3.7.1	pH determination	56
		3.7.2	pH point zero charge (pH _{pzc})	56
		3.7.3	Gold concentration determination	57
	3.8	Summ	nary	57
4	RESU	ULTS A	ND DISCUSSION	5 8
	4.1	Introd	uction	58
	4.2	Biosor	rbents Characterization	58
		4.2.1	Morphological properties	58
		4.2.2	Functional group determination	61
		4.2.3	Elemental component analysis	63
		4.2.4	pH point zero charge	68
		4.2.5	Thermogravimetric analysis	69

ix

	4.3	Gold Biosorption Performance Evaluation	70
		4.3.1 Effects of ligand concentration	70
		4.3.2 Effect of pH	72
		4.3.3 Effect of temperatures	74
		4.3.4 Effect of gold concentration	78
		4.3.5 Effect of contact time	79
		4.3.6 Kinetic modeling	81
		4.3.7 Biosorption isotherms	93
	4.4	Biosorbents Selectivity and Regenerability	99
		4.4.1 Gold selectivity	99
		4.4.2 Biosorbents regenerablity	100
	4.5	Summary	102
5	CON	NCLUSIONS	103
	5.1	Introduction	103
	5.2	Biosorbent Synthesis, Functionalization and	
		Characterization	103
	5.3	Biosorbents Performance Evaluation	104
	5.4	Recommendations	105
RE	FEREN	CES	106
API	PENDIC	ES A-E	116-153

LIST OF TABLES

IADLE NU.	TA	BL	Æ	Ν	0.	,
-----------	----	----	---	---	----	---

TITLE

2.1	Comparison between biosorption and	
	conventional methods	12
2.2	Types of biomass	15
2.3	Pearson classification of metals	23
2.4	Equilibrium isotherm models	32
2.5	Adsorption kinetic models for biosorption	39
4.1	Summary of FTIR spectra analysis of VCP and	
	GCP biosorbents.	62
4.2	Thermodynamic data for VCP and GCP	
	biosorbents. Experimental conditions: pH=4; gold	
	concentration, $C = 50$ ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.05 g/0.05 L;	
	and agitation speed, 200 rpm.	76
4.3	Thermodynamic data for VCP and GCP	
	biosorbents.Experimental conditions: pH=4; gold	
	concentration, $C = 196$ ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.05 g/0.05 L ;	
	and agitation speed, 200 rpm.	77
4.4	Biosorption kinetic models for gold biosorption	
	onto VCP and GCP	87
4.5	Biosorption kinetic models for gold biosorption	
	onto VCP and GCP bisorbents.	88

4.6	Isotherm model parameters for gold biosorption
	onto VCP and GCP biosorbents.

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Some types of agricultural wastes used as biosorbent	14
2.2	Waste coconut pith	41
3.1	Experimental flowchart	47
4.1	SEM images of VCP at 0.5 K (left) and 1.00 K (right)	
	magnification	59
4.2	SEM images of GCP at 0.5 K (left) and 1.00 K (right)	
	magnification	60
4.3	SEM images of VCP after adsorption at 0.5 K (left) and	
	1.00 K (right) magnification	60
4.4	SEM images of GCP after adsorption at 0.5 K (left)	
	and 1.00 K (right) magnification	61
4.5	FTIR spectrum of VCP and GCP biosorbents	63
4.6	EDX image of VCP biosorbent	64
4.7	EDX image of GCP biosorbent	65
4.8	EDX image of VCP biosorbent with attached gold	66
4.9	EDX image of GCP biosorbent with attached gold	67
4.10	Point zero charge analysis for VCP and GCP biosorbent	68
4.11	Thermogravimetric analysis curves for VCP and GCP	
	biosorbents	69
4.12	TG and DTG curves for VCP and GCP biosorbents	70
4.13	Effect of ligand concentration on adsorption capacity.	
	Experimental conditions: gold concentration, $C = 50$ ppm;	

	contact time, 48 h; temperature, 30 °C; sorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed, 200 rpm.	71
4.14	Effect of pH on Au (III) biosorption onto VCP and GCP	
	biosorbents. Experimental conditions: gold	
	concentration, C= 50 ppm; contact time, 48 h;	
	temperature, 30 °C; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	73
4.15	Effect of Equilibrium pH on Au (III) biosorption onto	
	VCP and GCP biosorbents. Experimental conditions:	
	gold concentration, C= 50 ppm; contact time, 48 h;	
	temperature, 30 °C; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	73
4.16	Effect of temperature on Au(III) biosorption onto VCP	
	and GCP biosorbents. Experimental conditions: pH=4;	
	gold concentrations $C=50$ and 196 ppm; contact time,	
	48 h;biosorbent dosage concentration, 0.05g/50 ml and	
	0.200 g/200 ml; and agitation speed, 200 rpm.	76
4.17	Arhenius equation plot for VCP and GCP biosorbents.	
	Experimental conditions: pH=4; gold concentration, C =	
	50 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.05 g/0.05 L; and agitation speed,	
	200 rpm.	77
4.18	Arhenius Equation plot for VCP and GCP biosorbents.	
	Experimental conditions: pH=4; gold concentration, C =	
	196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.05 g/0.05 L; and agitation speed,	
	200 rpm.	78
4.19	Effect of gold concentration on Au (III) biosorption onto	
	VCP and GCP biosorbents. Experimental conditions:	
	pH = 4; contact time, 48 h; temperature, 30°C;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	79
4.20	Effect of contact time on Au (III) biosorption onto VCP	
	and GCP biosorbents. Experimental conditions: pH=4;	

	gold concentrations $C=50$ and 196 ppm; contact time,	
	48 h; temperature, 30 $^{\circ}$ C ; biosorbent dosage	
	concentration, 0.05g/50 ml and 0.200g/200ml ; and	
	agitation speed, 200 rpm.	81
4.21	Biosorption kinetics and model fitting of Au(III) onto	
	VCP biosorbent. Experimental conditions: $pH = 4$; gold	
	concentration, C= 50 ppm; contact time, 48 h;	
	temperature, 30°C; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	89
4.22	Biosorption kinetics and model fitting of Au (III) onto	
	GCP biosorbent. Experimental conditions: pH =4; gold	
	concentration, C= 50 ppm; contact time, 48 h;	
	temperature, 30°C; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	89
4.23	Biosorption kinetics and model fitting of Au (III)	
	biosorption onto VCP biosorbent. Experimental	
	conditions:pH = 4; gold concentration, $C = 196$ ppm;	
	contact time, 48 h; temperature, 30°C; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	90
4.24	Biosorption kinetics and model fitting of Au(III) onto	
	GCP biosorbent. Experimental conditions: $pH = 4$; gold	
	concentration, $C = 196$ ppm; contact time, 48 h;	
	temperature, 30°C; biosorbent dosage concentration,	
	0.200g/200 ml; and agitation speed, 200 rpm.	90
4.25	Weber-Morris kinetic plot for Au(III) onto VCP	
	biosorbent. Experimental conditions: pH=4; gold	
	concentration, $C = 50$ ppm; contact time, 48 h; biosorbent	
	dosage concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	91
4.26	Weber-Morris kinetic plot for Au(III) onto GCP	
	biosorbent. Experimental conditions: pH=4; gold	
	concentration, C = 50 ppm; contact time, 48 h; biosorbent	
	dosage concentration, $0.05g/50$ ml; and agitation speed,	

	200 rpm.	91
4.27	Weber-Morris kinetic plot for Au(III) onto VCP	
	biosorbent. Experimental conditions: pH=4; gold	
	concentration, C = 196 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.200g/200 ml; and	
	agitation speed, 200 rpm.	92
4.28	Weber-Morris kinetic plot for Au(III) onto GCP	
	biosorbent. Experimental conditions: pH=4; gold	
	concentration, $C = 196$ ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.200g/200 ml;	
	and agitation speed, 200 rpm.	92
4.29	Biosorption isotherm for Au(III) onto VCP and GCP	
	biosorbents. Experimental conditions: $pH = 4$; contact	
	time, 48 h; temperature, 30°C; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed, 200 rpm.	93
4.30	Biosorption isotherms and model fitting of Au(III)	
	biosorption onto VCP biosorbent. Experimental	
	conditions: $pH = 4$; contact time, 48 h; temperature,	
	30°C; biosorbent dosage concentration, 0.05g/50 ml;	
	and agitation speed, 200 rpm.	98
4.31	Biosorption isotherms and modeling fitting of Au(III)	
	biosorption onto GCP biosorbent. Experimental	
	conditions: $pH = 4$; contact time, 48 h; temperature,	
	30°C; biosorbent dosage concentration, 0.05g/50 ml;	
	and agitation speed, 200 rpm.	98
4.32	Biosorption selectivity of various metals for VCP and	
	GCP biosorbents. Experimental conditions: $pH = 4$;	
	contact time, 48 h; temperature, 30°C; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed, 200 rpm.	100
4.33	Regenerability of VCP and GCP bisorbents. Experimental	
	conditions: pH=4; gold concentration C= 250 ppm;	
	contact time, 48 h; biosorbent dosage concentration,	
	0.250g/250 ml; and agitation speed, 200 rpm.	101

LIST OF SYMBOLS

α	-	Elovich constant related to chemisorption rate(mg/gmin)
β	-	Elovich constant related to surface coverage
С	-	Gold concentration (ppm)
C _e	-	Equilibruim gold concentration (ppm)
Co	-	Initial gold concentration (ppm)
K ₁	-	Equilibruim rate constant of pseudo-first order kinetic
		model(1/min)
K ₂	-	Equilibruim rate constant of pseudo-second order kinetic
		model(g/mg.min)
K _d	-	Dissociation constant
$K_{\rm F}$	-	Freundlich constant (dm ³ /mg)
K_L	-	Langmuir constant (dm ³ /mg)
n	-	Intensity of adsorption
Pg	-	Percentage grafting(% grafting)
Qe	-	Amount adsorbed at equilibruim condition(mg/g)
Q _{max}	-	Maximum adsoption capacity(mg/g)
Qt	-	Adsoption capacity at time t (mg/g)
\mathbf{R}^2	-	Corelation coefficient
R _L	-	Langmuir parameter

LIST OF ABBREVIATIONS

VCP	-	Virgin coconut pith
GCP	-	Grafted coconut pith
APS	-	Aminopropyl Triethoxy Silane
AAS	-	Atomic Absorption Spectra
FTIR	-	Fourier transfrom Infrared Spectroscopy
H^+	-	Hydrogen Ions
OH	-	Hydroxyl Ions
NaOH	-	Sodium Hydroxide
ppm	-	Parts Per Million
SEM	-	Scanning Electron Microscopy
EDX	-	Energy Dispercive X-rays
Fe	-	Iron
Κ	-	Potassium
Na	-	Sodium

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Data for pH point zero charge (pH_{pzc}) .	116
A1	Data for pH point zero charge (pH _{pzc}) analysis.	
	Experimental conditions, contact time, 48 h;	
	temperature, 30 °C; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	116
A2	Data of Au (III) biosorption capacity: effect of ligand	
	concentration. Experimental conditions, gold	
	concentration C= 50 ppm; contact time, 48 h;	
	temperature, 30 °C; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	117
В	Data collection for Au(III) biosorption study	118
B1	Data of Au(III) biosorption capacity: effect of pH.	
	Experimental conditions, gold concentration, C =	
	50 ppm; contact time, 48 h; temperature, 30 °C;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	118
B2	Data of Au(III) biosorption capacity: effect of gold	
	concentration. Experimental conditions: $pH = 4$; contact	
	time, 48 h; temperature, 30°C; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed, 200 rpm.	119
B3	Data of Au (III) biosorption capacity: effect of contact	
	time. Experimental conditions: $pH = 4$; gold	

	concentration, $C=196$ ppm; contact time, 48 h;	
	temperature, 30°C; sorbent dosage concentration,	
	0.200g/200 ml; and agitation speed, 200 rpm.	120
B4	Data of Au (III) biosorption capacity: effect of contact	
	time. Experimental conditions: $pH = 4$; gold	
	concentration, C= 50 ppm; contact time, 48 h;	
	temperature, 30°C; sorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	121
B5	Data of Au (III) biosorption capacity: effect of	
	temperatures. Experimental conditions: pH=4; gold	
	concentration C= 196 ppm; contact time, 48 h;	
	biosorbent dosage concentration: 0.05g/50 ml; and	
	agitation speed, 200 rpm.	122
B6	Data of Au (III) biosorption capacity: effect of	
	temperature. Experimental conditions: pH=4; gold	
	concentration, C= 50 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	122
B7	Data for thermodynamic parameters. Experimental	
	conditions: pH=4; gold concentration, C = 50 ppm;	
	contact time, 48 h; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	123
B8	Data for thermodynamic parameters. Experimental	
	conditions: pH=4; gold concentration, C = 196 ppm;	
	contact time, 48 h; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	123
B9	Thermodynamic plot. Experimental conditions: pH=4;	
	gold concentration, $C = 50$ ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	124
B10	Thermodynamic plot. Experimental conditions: pH=4;	
	gold concentration, C = 196 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	124

B11	Activation energy plots. Experimental conditions:	
	pH=4; gold concentration, $C = 50$ ppm; contact time,	
	48 h; biosorbent dosage concentration, 0.05g/50 ml;	
	and agitation speed, 200 rpm.	125
B12	Activation energy plots. Experimental conditions:	
	pH=4; gold concentration, $C = 196$ ppm; contact time,	
	48 h; biosorbent dosage concentration, 0.05g/50 ml;	
	and agitation speed, 200 rpm.	125
С	Data for Au(III) biosorption isotherm modelling	126
C1	Data of Au (III) biosorption isotherm modeling	
	(Langmuir, Freundlich and Temkin isotherm).	
	Experimental conditions: pH=4; contact time, 48 h;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	126
C2	Data of Au(III) biosorption isotherm modeling	
	(Dubinin-Raduskevich). Experimental conditions:	
	pH=4; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	127
C3	Langmuir isotherm plot for Au(III) biosorption onto	
	VCP and GCP biosorbents. Experimental conditions:	
	pH=4; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	128
C4	Freundlich isotherm plot for Au(III) biosorption onto	
	VCP and GCP biosorbents. Experimental conditions:	
	pH=4; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	128
C5	Temkin isotherm plot for Au(III) biosorption onto VCP	
	and GCP biosorbents. Experimental conditions: pH=4;	
	contact time, 48 h; biosorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	129
C6	Dubinin-Raduskevich isotherm plot for Au(III)	

	biosorption onto VCP and GCP biosorbents.	
	Experimental conditions: pH=4; contact time, 48 h;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	129
D	Data for Au (III) biosorption kinetic modelling	130
D1	Data for pseudo-first and second-order kinetic models	
	for Au(III) biosorption. Experimental conditions:	
	pH = 4; gold concentration, C= 196 ppm, contact time,	
	48 h; biosorbent dosage concentration, 0.200g/200 ml;	
	and agitation speed, 200 rpm.	130
D2	Data for pseudo-first and second-order kinetic	
	models for Au (III) biosorption isotherm. Experimental	
	conditions: $pH = 4$; gold concentration, $C= 50$ ppm;	
	contact time, 48 h; sorbent dosage concentration,	
	0.05g/50 ml; and agitation speed, 200 rpm.	131
D3	Data for Elovich kinetic model for Au (III) biosorption.	
	Experimental conditions: $pH = 4$; gold concentration,	
	C= 196 ppm; contact time, 48 h; sorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	132
D4	Data for Elovich kinetic model for Au (III) biosorption.	
	Experimental conditions: $pH = 4$; gold concentration,	
	C= 50 ppm; contact time 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	133
D5	Data for Weber-Morris kinetic model for Au (III)	
	biosorption. Experimental conditions: pH=4; gold	
	concentration, C= 50 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 50mg/50 ml; and	
	agitation speed, 200 rpm.	134
D6	Data for Weber-Morris kinetic model for Au (III)	
	biosorption. Experimental conditions: pH=4; gold	
	concentration, C= 196 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.200g/200 ml;	

	and agitation speed, 200 rpm.	135
D7	Data for film diffusion model for Au (III) biosorption.	
	Experimental conditions: pH=4; gold concentration,	
	C= 50 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	136
D8	Data for film diffusion model for Au (III) biosorption.	
	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	136
D9	Data for pore diffusion model for Au (III) biosorption.	
	Experimental conditions: pH=4; gold concentration,	
	C= 50 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	137
D10	Data for pore diffusion model for Au(III) biosorption:	
	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	137
D11	Pseudo-first and second order kinetics plot for Au(III)	
	onto VCP biosorbent. Experimental conditions: pH=4;	
	gold concentration, C= 196 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.200g/200 ml; and	
	agitation speed, 200 rpm.	138
D12	Pseudo-first and second order kinetics plot for Au(III)	
	onto GCP biosorbent. Experimental conditions: pH=4;	
	gold concentration, C= 196 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.200g/200 ml; and	
	agitation speed, 200 rpm.	139
D13	Pseudo-first and second order kinetics plot for Au(III)	
	onto VCP biosorbent. Experimental conditions: pH=4;	
	gold concentration, $C=50$ ppm; contact time, 48 h;	

	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	140
D14	Pseudo-first and second order kinetics plot for Au(III)	
	onto GCP biosorbent. Experimental conditions: pH=4;	
	gold concentration, C= 50 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.05g/50 ml; and	
	agitation speed, 200 rpm.	141
D15	Elovich kinetic plot for Au(III) onto VCP biosorbent.	
	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	142
D16	Elovich kinetic plot for Au(III) onto GCP biosorbent	
	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	142
D17	Elovich kinetic plot for Au(III) onto VCP biosorbent.	
	Experimental conditions: pH=4; gold concentration,	
	C= 50 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	143
D18	Elovich kinetic plot for Au(III) onto GCP biosorbent.	
	Experimental conditions: pH=4; gold concentration,	
	C= 50 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.05g/50 ml; and agitation speed,	
	200 rpm.	143
D19	Weber-Morris kinetic plot for Au(III) onto VCP	
	biosorbent. Experimental conditions: pH=4; gold	
	concentration, C= 196 ppm; contact time, 48 h;	
	biosorbent dosage concentration, 0.200g/200 ml;	
	and agitation speed, 200 rpm.	144
D20	Weber-Morris kinetic plot for Au(III) onto GCP	
	biosorbent Experimental conditions: pH=4; gold	

	concentration, C= 196 ppm; contact time, 48 h;		
	biosorbent dosage concentration, 0.200g/200 ml;		
	and agitation speed, 200 rpm.	145	
D21	Weber-Morris kinetic plot for Au(III) onto VCP		
	biosorbent Experimental conditions: pH=4; gold		
	concentration, C= 50 ppm; contact time, 48 h;		
	biosorbent dosage concentration, 0.05g/50 ml;		
	and agitation speed, 200 rpm.	146	
D22	Weber-Morris kinetic plot for Au(III) onto GCP		
	biosorbent. Experimental conditions: pH=4; gold		
	concentration, C= 50 ppm; contact time, 48 h;		
	biosorbent dosage concentration, 0.05g/50 ml;		
	and agitation speed, 200 rpm.		147
D23	Film diffusion plot for Au(III) onto VCP biosorbent.		
	Experimental conditions: pH=4; gold concentration,		
	C= 50 ppm; contact time, 48 h; biosorbent dosage		
	concentration, 0.05g/50 ml; and agitation speed,		
	200 rpm.		148
D24	Pore diffusion plot for Au(III) onto VCP biosorbent.		
	Experimental conditions: pH=4; gold concentration,		
	C= 50 ppm; contact time, 48 h; biosorbent dosage		
	concentration, 0.05g/50 ml; and agitation speed,		
	200 rpm.		148
D25	Film diffusion plot for Au(III) onto GCP biosorbent.		
	Experimental conditions: pH=4; gold concentration,		
	C= 50 ppm; contact time, 48 h; biosorbent dosage		
	concentration, 0.05g/50 ml; and agitation speed,		
	200 rpm.		149
D26	Pore diffusion plot for Au(III) onto GCP biosorbent.		
	Experimental conditions: pH=4; gold concentration,		
	C= 50 ppm; contact time, 48 h; biosorbent dosage		
	concentration, 0.05g/50 ml; and agitation speed,		
	200 rpm.		149
D27	Film diffusion plot for Au(III) onto VCP biosorbent.		

	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	150
D28	Pore diffusion plot for Au(III) onto VCP biosorbent.	
	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	150
D29	Film diffusion plot for Au(III) onto GCP biosorbent.	
	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	151
D30	Pore diffusion plot for Au(III) onto GCP biosorbent.	
	Experimental conditions: pH=4; gold concentration,	
	C= 196 ppm; contact time, 48 h; biosorbent dosage	
	concentration, 0.200g/200 ml; and agitation speed,	
	200 rpm.	151
E	Data for selectivity and regeneration of biosorbent	152
E1	Data of selectivity for VCP biosorbent. Experimental	
	conditions: $pH = 4$; contact time, 48 h; temperature,	
	30°C; biosorbent dosage concentration, 0.05g/50 ml;	
	and agitation speed, 200 rpm.	152
E2	Data of selectivity for GCP biosorbent. Experimental	
	conditions: $pH = 4$; contact time, 48 h; temperature,	
	30°C; biosorbent dosage concentration, 0.05g/50 ml;	
	and agitation speed, 200 rpm.	152
E3	Data of regenerability for VCP and GCP biosorbents.	
	Experimental conditions: pH=4; gold concentration,	
	C= 250 ppm; contact time, 48 h; sorbent dosage	
	concentration, 0.250g/250 ml; and agitation speed,	
	200 rpm.	153

CHAPTER 1

INTRODUCTION

1.1 Research Background

Earth surface contains large reservoirs of water up to 70% of earth surface. It is most valuable resource amongst all the natural resources. There are several ways by which, water contamination can occur but as general, they fall into two categories: direct and indirect contaminant sources. The direct sources contain wastes from industries, refineries and wastewater treatment plants and in later one they contain the sources which have potential to enter underground water. The pollutants, which have a potential to pollute the water falls under organic or inorganic class. Insecticides, pesticides and volatile organic compounds come under organic class while the metals, dyes and fertilizers comes under the inorganic class (Mack et al., 2007). Our concern will be inorganic. There effects on the human health are adverse and known to be carcinogenic and toxic.

Metals have found their use in various kinds of industries ranging from mining electronic electroplating to metal finishing. The wastewater being discarded by these industries if containing these metal ions become hazardous. Due to their increased concentration in the wastewater they can reach toxic levels and damage life on earth by entering into ecological system (Vijayaraghavan and Yun, 2008). Taking these serious threats into consideration to human health, there is a need to find out the cheap and environmental friendly process which can act as a shield to these threats to increase the standard of living and to make world a better place to live (Bhatnagar et al., 2010). Countries having strong environmental laws to limit the use of contaminant being wasted in the environment (without being treated under consideration) are urged to developed on site or in plant facilities to treat the effluents to make the pollutants under the acceptable concentration (Banat et al., 1996; Vijayaraghavan and Yun, 2008).

Gold is a metal, which is widely used in various industries (electrical systems, fuel cells, catalysts, biomedical area, etc.) due to its unique physical and chemical properties. The increase in the industrial demand for gold has determined the need for gold recycling. This is the main reason in the finding of a better and safer technology for this purpose (Bulgariu and Bulgariu, 2011). Worldwide, billions of peoples are using mobile phones as fast communication devices. Nowadays, mobile phones serve not just as a personal luxury or an addition to traditional landline telephones but also as a primary means of communication in some areas of the world where communication infrastructure is not in place.

Due to rapid economic growth, technological advances and the obsolescence of electronic equipment in the market, the amount of waste mobile phones has been growing. The life time of these devices is reducing day by day. In fact, most users upgrade their phones due to technological advances and fashion obsolescence; mobile phones are usually taken out of use well before they cease to operate and consequently the potential lifespan of a mobile phone is under 3 years and all of them eventually have to be discarded.

This consumer behavior has resulted in hundreds of millions of mobile phones that are taken out of use each year. Worldwide estimates are that, by 2005, there were over 500 million mobile phones weighing 250,000t stockpiled in drawers, closets and elsewhere, waiting for disposal. Mobile phones contain toxic elements, such as lead, mercury, chromium, nickel, beryllium, antimony and arsenic as well as valuable metals, such as gold, silver, palladium and platinum. Therefore, recycling of waste mobile phones is required for both environmental protection and resource conservation. Many kinds of technologies are being used still with varying ranges of efficiency and working in different kinds of conditions (Ha et al., 2010). Precious metals including gold are concentrated in anode slimes generated in the tank-house at the electro-refining step of nonferrous metals. In order to separate and recover each precious metal, the anode slimes are totally dissolved in hydrochloric acid each liquor containing chlorine gas or hypochlorite to obtain a concentrated chloride solution from which each precious metal is separated and recovered by mean of different processes (Parajuli et al., 2008).

However the prime focus was on the method, which should be cheaper and effective also even in low concentrations, because of the diversion from conventional methods, which have high operational and maintenance costs, and also the production of activated sludge formed becomes itself a problem to handle (Bhatnagar et al., 2010). The best approach to reduce their concentration or completely removing them is to omit metals from cycling/ entering into the food chain, with a promising recovery of these metals from their sources (Katarzyna, 2010). Precious metals demand is increasing progressively due to its increased use in electronic/electrical devices, catalyst and medical equipment's and mining industry because of their good physical and chemical characteristics (Nilanjana, 2010; Parajuli et al., 2006; Ramesh et al., 2008; Zou et al., 2007).

These precious metals are considered identical to currency internationally under ISO 4217 (Nilanjana, 2010). The recovery of gold from the sources, which contain them is profitable also because of the high price and also reduce the environmental threats (Parajuli et al., 2006). To reduce their concentration into very low amounts many methods are available. Scientists and engineers are using several methods to reduce the concentration of metals in the industrial wastewater, it includes agglomeration, neutralization, complexation, ion-exchange resin, separation and elution (Zou et al., 2007).

Therefore, the development in this area finds a new method, which is called biosorption. It is more efficient than the previous methods and can reduce the concentration up to traces of precious metals. Because the other methods become less effective when used for low concentrations and also the recovery methods are expensive due to their high demand of labor and time (Nilanjana, 2010; Zou et al., 2007). In the biosorption process, the biosorbents used help in removing pollutants from wastewater and are usually known as biomass, which is easily available in the market throughout the country in cheap amount. Industrial crops produces a huge amounts of cheap material during their reaping and processing of food crops (Lehrfeld, 1996). Woody plants consist of a major part of lignocelluloses, which in turn consists of lignin, hemicelluloses and cellulose. Their structure and properties makes them important in biotechnology (Malherbe and Cloete, 2002). A most tragic situation is that most of lignocelluloses are disposed of by burning, which is even banned in developing countries and is also considered as a threat to environment (Howard et al., 2003).

To solve this residue problem and to use it for beneficiary effects it was studied and recommended to use these residue in removing the metals from the wastewater (Lehrfeld, 1996). The use of these non-living organisms in biosorption makes the process even more cost effective. The biosorbent used here was obtained from coconut. Coconut palm belongs to the family Arecaceae (palm family). Due to various uses it is called the tree of life (Bhatnagar et al., 2010). Coconut is one of the important agricultural crops in Malaysia and is abundantly available in Malaysia. The area over which coconut grows has increased from 117,000 ha (1998) to 147,000 ha in 2004 (Hameed et al., 2008).

1.2 Problem Statement

Increased population, vast industrialization activities and unplanned use of water resources in the world are creating a threat to the water quality in various regions of the world. Electrical and electronic usage has been increased to make our life comfortable but resulted in heaps of wastes popularly known as e-waste. The major concern related with e-waste is two way negative impacts on environment. One is the air water and soil contamination by the untreated e-waste and the other is excessive mining to meet the market demands (Parajuli et al., 2009). However, the problem associating with the recovery of gold is due to the ineffective and costly processes, when the concentration of gold is present in traces. Therefore, biosorption is used to recover traces of metals in comparison to other conventional methods. Conventional methods become costly, ineffective and labor intensive when treating traces of gold. Their removal from the wastewater helps to protect the environment and save the gold resources for future usage due to their rarity.

Biosorption process is preferred due to its cost effectiveness and efficiency. Adsorption capacity of the particular biosorbent to remove gold was studied. The biosorbent under consideration was coconut pith due to its abundance in Malaysia. Instead of its own natural adsorption capacity, a modification process is exercised by the attachment of functional groups called surface modification. This functional group helps greatly to increase the adsorption capacity and functionality of biosrobents (Park et al., 2010; Vijayaraghavan and Yun, 2008). The surface modification will be executed by grafting organosilanes on the sorbent surface. The effect of different parameters such as pH, initial metal concentration and time and temperature effect on the adsorption capacity was studied.

1.3 Research Objectives and Scopes

The objectives and scope of this research are:

 To synthesize, functionalize and characterize coconut pith waste as biosorbents for Au(III).

Coconut pith was obtained from T&H Coconut Fiber Sdn. Bhd., Johor. The sample was ground to a particular size of 75-150 μ m. Coconut pith was treated chemically using graft polymerization method with the help of γ aminopropyltriethoxysilane. The characterization of these adsorbents was done using Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopy.

 To study the gold adsorption capacity of virgin coconut pith and grafted coconut pith.

The batch equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models and various kinetic models. The biosorption experiment was carried out at the following conditions.

- a) Contact time 1-2880 min
- b) Agitation speed 200 rpm.
- c) Gold concentration 10 500 ppm.
- d) pH 2–10.
- e) Temperature 30 60 °C.

1.4 Thesis Outline

This thesis consists of five Chapters. Chapter 1 titled introduction contains research background highlighting the current situation and available methods, problem statement, research objectives and scopes, dissertation outline and summary. Objective and scopes lays the boundary of the study. Chapter 2 explains the past research done on gold adsorption, some discoveries on biosorption and technical aspects of gold adsorption system.

Chapter 3 discusses the materials and methods that was adopted during the sample preparation, characterization, and functionalization and in adsorption/desorption experiments. Chapter 4 represents the results and discussion about characterization, modification and biosorption performance of biosorbent. The results for effect of different parameters like pH, contact time, temperature and gold concentration are explained. Conclusions, recommendations and suggestions are presented in Chapter 5. In addition, the response of biosrobents towards metal selectivity and regenerability studies were also investigated.

1.5 Summary

The demand of gold (Au) is increasing because of extensive usage in electrical, electronic instruments, catalysts and medical devices. As a result their concentration in wastewater is increasing, thereby causing a serious threat to the environment. To keep the concentration in safe limits, a process called biosorption was initialized and used, which binds and concentrates the metal from the wastewater. The biosorbent used was abundantly and cheaply available. The attraction of biosorption process lies in low cost and its effective uptake of metal, even in traces of concentration. In Malaysia, coconut pith available in abundance was used as biosorbent. Surface modification was used to increase its adsorption capacity. The effect of different parameters on the biosorption capacity was studied with VCP and GCP biosorbents. The detailed study of kinetic models and isotherms were also done. The selection of biosorbents was studied with different metals. Regenerability of biosorbents was studied in three cycles.

REFERENCES

- Abdelmouleh, M., Boufi, S., Belgacem, M. N., Duarte, A. P., Ben Salah, A., and Gandini, A. (2004). Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J. Adhes. Adhes. 24(1), 43-54.
- Abdelmouleh, M., Boufi, S., ben Salah, A., Belgacem, M. N., and Gandini, A. (2002). Interaction of silane coupling agents with cellulose. Langmuir. 18(8), 3203-3208.
- Abu Ala Rub, F. A. (2006). Biosorption of zinc on palm tree leaves: Equilibrium, kinetics, and thermodynamics studies. Sep. Sci. Technol. 41(15), 3499-3515.
- Agarwal, G. S., Bhuptawat, H. K., and Chaudhari, S. (2006). Biosorption of aqueous chromium(VI) by tamarindus indica seeds. Bioresour. Technol. 97(7), 949-956.
- Ahmad, A. A., Hameed, B. H., and Aziz, N. (2007). Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. J. Hazard Mater. 141(1), 70-76.
- Aoki, N., Fukushima, K., Kurakata, H., Sakamoto, M., and Furuhata, K.-i. (1999). 6-Deoxy-6-mercaptocellulose and its S-substituted derivatives as sorbents for metal ions. React. Funct. Polym. 42(3), 223-233.
- Arzu Y, D. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated aspergillus niger. Biochem. Eng. J. 28(2), 187-195.
- Banat, I. M., Nigam, P., Singh, D., and Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: A review. Bioresour. Technol. 58(3), 217-227.
- Baral, S. S., Das, S. N., Rath, P., Chaudhury, G. R., and Swamy, Y. V. (2007). Removal of Cr(VI) from aqueous solution using waste weed, Salvinia cucullata. J. Chem. Ecol. 23(2), 105-117.

- Batzias, F. A., and Sidiras, D. K. (2007). Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems. J. Hazard Mater. 149(1), 8-17.
- Bhatnagar, A., Vilar, V. t. J. P., Botelho, C. I. M. S., and Boaventura, R. A. R.(2010) Coconut-based biosorbents for water treatment: A review of the recent literature. Adv. Colloid. Interface. Sci. 160(1-2), 1-15.
- Biella, S., Castiglioni, G. L., Fumagalli, C., Prati, L., and Rossi, M. (2002). Application of gold catalysts to selective liquid phase oxidation. Catal. Today. 72(1-2), 43-49.
- Binupriya, A. R., Sathishkumar, M., Kavitha, D., Swaminathan, K., Yun, S.E., and Mun, S.-P. (2007). Experimental and isothermal studies on sorption of congo red by modified mycelial biomass of wood-rotting fungus. Clean–Soil, Air, Water. 35(2), 143-150.
- Bohumil, V. (1994). Advances in biosorption of metals: Selection of biomass types. FEMS Microbiol. Reviews. 14(4), 291-302.
- Bulgariu, L., and Bulgariu, D. (2011). Extraction of gold(III) from chloride media in aqueous polyethylene glycol-based two-phase system. Sep. Purif. Technol. 80(3), 620-625.
- Bulut, Y., G benli, N., and Aydn, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. J. Hazard Mater. 144(1-2), 300-306.
- Bratskaya,S.Yu., Prestov, A.V., Yatluk, G.Yu., Avramenko.A.V., (2009). Heavy metal removal by flocculation/precipitation using N-(2-carboxyethyl) chitosans. Colloid.Surf.A. 339(1-3),140-144.
- Bilge, Alyuz. Sevil, Veli. (2009). Kinetics and equilibruim studies for the removal of nickel and zinc from aqueous solution by ion exchange resin. 167(1-3),482-488.
- Calfa, B. A., and Torem, M. c. L. (2008). The fundamentals of Cr(III) removal from liquid streams by a bacterial strain. Miner. Eng. 21(1), 48-54.
- Chand, R., Watari, T., Inoue, K., Kawakita, H., Luitel, H. N., Parajuli, D., et al. (2009). Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner. Eng. 22(15), 1277-1282.

- Chiang, C.-H., Ishida, H., and Koenig, J. L. (1980). The structure of γaminopropyltriethoxysilane on glass surfaces. J. Colloid. Interface. Sci. 74(2), 396-404.
- Demir, H., Top, A., Balkse, D., and Alka, S. (2008). Dye adsorption behavior of Luffa cylindrica fibers. J. Hazard Mater. 153(1-2), 389-394.
- Deng, L., Su, Y., Su, H., Wang, X., and Zhu, X. (2006). Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae: Equilibrium, kinetics and Environmental effects. Adsorption. 12(4), 267-277.
- Djeribi, R., and Hamdaoui, O. (2008). Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick. Desalination. 225(1-3), 95-112.
- Doshi, H., Ray, A., and Kothari, I. (2007). Biosorption of cadmium by live and dead spirulina IR spectroscopic, kinetics, and SEM studies. Curr. Microbiol. 54(3), 213-218.
- Doulati Ardejani, F., Badii, K., Limaee, N. Y., Shafaei, S. Z., and Mirhabibi, A. R. (2008). Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. J. Hazard Mater. 151(2-3), 730-737.
- Dundar, M., Nuhoglu, C., and Nuhoglu, Y. (2008). Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest. J. Hazard Mater. 151(1), 86-95.
- Esposito, A., Pagnanelli, F., and Veglia, F. (2002). pH-related equilibria models for biosorption in single metal systems. Chem. Eng. Sci. 57(3), 307-313.
- F. Gholami, A. H. M., Gh. A. Omrani, Sh. Nazmara. (2006). Recovery of chromium(VI) from aqueous solution by ulmus leaves. Iranian J.Environ Health. Sci.Eng. 3(2), 97-102.
- Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., and Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 162(2–3), 616-645.
- Fiol, N. R., Villaescusa, I., Marta-nez, M. a., Miralles, N. r., Poch, J., and Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50(1), 132-140.
- Geay, M., Marchetti, V., Clament, A., Loubinoux, B., and Gerardin, P. (2000). Decontamination of synthetic solutions containing heavy metals using

Chemically modified sawdusts bearing polyacrylic acid chains. J. Wood Sci. 46(4), 331-333.

- Gholami, F., Mahvi, A.,H., Ormani, Gh., Nazmara, Sh., Ghasri, A.,. (2006). removal of chromium(VI) from aqueous solution by ulmus leaves. Environ. Health vol 3(No 2), 97-102.
- Ghosh, P. K., Sarma, U. S., Ravindranath, A. D., Radhakrishnan, S., and Ghosh, P. (2007). A novel method for accelerated nomposting of coir pith. Energy Fuels. 21(2), 822-827.
- Gokhale, S. V., Jyoti, K. K., and Lele, S. S. (2008). Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99(9), 3600-3608.
- Green-Ruiz, C., Rodriguez-Tirado, V., and Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature, effects. Bioresour. Technol. 99(9), 3864-3870.
- Gupta, V. K., and Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard Mater. 152(1), 407-414.
- Ha, V. H., Lee, J.-c., Jeong, J., Hai, H. T., and Jha, M. K. (2010). Thiosulfate leaching of gold from waste mobile phones. J. Hazard Mater. 178(1–3), 1115-1119.
- Hameed, B. H., Ahmad, A. A., and Aziz, N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J. 133(1-3), 195-203.
- Hameed, B. H., Mahmoud, D. K., and Ahmad, A. L. (2008a). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J. Hazard Mater. 158(1), 65-72.
- Hameed, B. H., Mahmoud, D. K., and Ahmad, A. L. (2008b). Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids. Surf., A: 316(1-3), 78-84.
- Hanif, M. A., Nadeem, R., Bhatti, H. N., Ahmad, N. R., and Ansari, T. M. (2007). Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard Mater. 139(2), 345-355.

- Hasan, M., Ahmad, A. L., and Hameed, B. H. (2008). Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem. Eng. J. 136(2-3), 164-172.
- Hendri. (2010). safety issues concerning precious metals.computer and Technol. update. http://www.humahost.com/precious-metals/safety-issues-concerning-precious-metals.html.
- Ho, Y.-S., and Ofomaja, A. E. (2006). Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 30(2), 117-123.
- Ho, Y. S., and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34(3), 735-742.
- Howard R.L., A. E., Jansen van Rensburg E.L. and Howard S. (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African J. Biotechnol. vol.2(12), pp.602-619.
- Jefferies DJ, F. P. (1984). Chemical. analysis of some coarse fish from a suffolk river carried out as part of the preparation for the first release of captive-bred otters. J Otter trust. 1, 17-22.
- JS, L. (1996). Remote sensing and inventory development and biomass burning in africa. Biomass burning and global change. vol 1(The MIT press, cambridge, Massachusetts USA, pp 35.
- Kamel, S., Hassan, E. M., and El-Sakhawy, M. (2006). Preparation and App.ication of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J. Appl. Polym. Sci. 100(1), 329-334.
- Katarzyna, C.(2010). Biosorption and bioaccumulation: the prospects for practical applications. Environ. Int. 36(3), 299-307.
- kelesoglu, s. (2007). Comparative adsorption studies of heavy metals ions on chitin and chitosan biopolymers. izmir institute of Technol., izmir.
- Khormaei, M., Nasernejad, B., Edrisi, M., and Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. J. Hazard Mater. 149(2), 269-274.
- Kumar, R., Bishnoi, N. R., Garima, and Bishnoi, K. (2008). Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135(3), 202-208.
- Lehrfeld, J. (1996). Conversion of agricultural residues into cation exchange material. J. Appl. Polym. Sci. 61(12), 2099-2105.

- Liu, R., Ma, W., Jia, C.-y., Wang, L., and Li, H.-Y. (2007). Effect of pH on biosorption of boron onto cotton cellulose. Desalination. 207(1-3), 257-267.
- Low, K. S., Lee, C. K., and Mak, S. M. (2004). Sorption of copper and lead by citric acid modified wood. Wood. Sci. Technol. 38(8), 629-640.
- Luo, S.-l., Yuan, L., Chai, L.-y., Min, X.-b., Wang, Y.-y., Fang, Y., et al. (2006).
 Biosorption behaviors of Cu²⁺, Zn²⁺, Cd²⁺ and mixture by waste activated sludge. Tran. Nonferr. Met. Soc. China. 16(6), 1431-1435.
- Mack, C., Wilhelmi, B., Duncan, J. R., and Burgess, J. E.(2007) Biosorption of precious metals. Biotechnol. Adv. 25(3), 264-271.
- Malherbe, S., and Cloete, T. E. (2002). Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol. 1(2), 105-114.
- Malkoc, E., and Nuhoglu, Y. (2005). Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J. Hazard Mater. 127(1-3), 120-128.
- Mittal, A., Malviya, A., Kaur, D., Mittal, J., and Kurup, L. (2007). Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste material. J. Hazard Mater. 148(1-2), 229-240.
- Mohanty, K., Jha, M., Meikap, B. C., and Biswas, M. N. (2006). Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chem. Eng. J. 117(1), 71-77.
- Mukhopadhyay, M., Noronha, S. B., and Suraishkumar, G. K. (2007). Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour. Technol.. 98(9), 1781-1787.
- Mustafa, I. (2008). Biosorption of Ni(II) from aqueous solutions by living and nonliving ureolytic mixed culture. Colloid. Surf., B 62(1), 97-104.
- Nadeem, R., Hanif, M. A., Shaheen, F., Perveen, S., Zafar, M. N., and Iqbal, T. (2008). Physical and Chemical. modification of distillery sludge for Pb(II) biosorption. J. Hazard Mater. 150(2), 335-342.
- Naja, G., and Volesky, B. (2011). The mechanism of metal cation and anion biosorption. Microb.Biosorption.Metals. 19- 58.
- Namasivayam, C., Dinesh Kumar, M., Selvi, K., Ashruffunissa Begum, R., Vanathi, T., and Yamuna, R. T. (2001). "Waste coir pith"a potential biomass for the treatment of dyeing wastewaters. Biomass Bioenergy. 21(6), 477-483.

- Namasivayam, C., and Kadirvelu, K. (1994). Coirpith, an agricultural waste byproduct, for the treatment of dyeing wastewater. Bioresour. Technol. 48(1), 79-81.
- Namasivayam, C., and Kanchana, N. (1992). Waste banana pith as adsorbent for color removal from wastewaters. Chemosphere. 25(11), 1691-1705.
- Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M., and Ranganathan, K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour. Technol. 57(1), 37-43.
- Namasivayam, C., Radhika, R., and Suba, S. (2001). Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Waste Manage. 21(4), 381-387.
- Namasivayam, C., and Sureshkumar, M. V. (2008). Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Technol. 99(7), 2218-2225.
- Namasivayam, C., and Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes. Pigments 54, 47-58.
- Nilanjana, D.(2010) Recovery of precious metals through biosorption: A review. Hydrometallurgy. 103(1-4), 180-189.
- O'Connell, D. W., Aszalos, B., Birkinshaw, C., and O'Dwyer, T. F. A study of the mechanisms of divalent copper binding to a modified cellulose adsorbent. J. Appl. Polym Sci. 116(5), 2496-2503.
- Osma, J. F., Saravia, V. n., Toca-Herrera, J. L., and Couto, S. R. g. (2007). Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye reactive black from aqueous solutions. J. Hazard Mater. 147(3), 900-905.
- Ofomaja, A.E., (2010). Intraparticle diffusion for lead(II) biosorption onto monsonia wood sawdust. Bioresour. Technol. 101, 5868-5876.
- Panda, G. C., Das, S. K., Chatterjee, S., Maity, P. B., Bandopadhyay, T. S., and Guha, A. K. (2006). Adsorption of cadmium on husk of Lathyrus sativus: Physico-Chemical. study. Colloids. Surf., B 50(1), 49-54.
- Parajuli, D., Inoue, K., Kawakita, H., Ohto, K., Harada, H., and Funaoka, M. (2008). Recovery of precious metals using lignophenol compounds. Miner. Eng. 21(1), 61-64.

- Parajuli, D., Kawakita, H., Inoue, K., and Funaoka, M. (2006). Recovery of gold(III), palladium(II), and platinum(IV) by aminated lignin derivatives. Ind. Eng. Chem. Res. 45(19), 6405-6412.
- Parajuli, D., Khunathai, K., Adhikari, C. R., Inoue, K., Ohto, K., Kawakita, H., et al. (2009). Total recovery of gold, palladium, and platinum using lignophenol derivative. Miner. Eng. 22(13), 1173-1178.
- Park, D., Yun, Y.-S., and Park, J.(2010) The past, present, and future trends of biosorption. Biotechnol. Bioprocess. Eng. 15(1), 86-102.
- Park, J., Won, S. W., Mao, J., Kwak, I. S., and Yun, Y.-S. (2010). Recovery of Pd(II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. J. Hazard. Mater. 181(1–3), 794-800.
- Park, Y. J., and Fray, D. J. (2009). Recovery of high purity precious metals from printed circuit boards. J. Hazard Mater. 164(2-3), 1152-1158.
- Pearson, R. G. (1963). Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533-3539.
- Pino, G. H. n., Souza de Mesquita, L. M., Torem, M. L., and Saavedra Pinto, G. A. (2006). Biosorption of cadmium by green coconut shell powder. Miner. Eng. 19(5), 380-387.
- Ponnusami, V., Vikram, S., and Srivastava, S. N. (2008). Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. J.Hazard. Mater. 152(1), 276-286.
- Preetha, B., and Viruthagiri, T. (2007). Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Sep. Purif. Technol.. 57(1), 126-133.
- Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., and Ueda, K. (2008). Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 99(9), 3801-3809.
- Sac, Y., and Kutsal, T. l. (2000). Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem. Eng. J. 6(2), 145-151.
- Saliba, Saliba, R., Gauthier, Gauthier, H., and Gauthier, R. (2005). Adsorption of Heavy Metal Ions on Virgin and Chem.ly-modified Lignocellulosic Material. Adsorpt. Sci. Technol. 23(4), 313-322.

- Saw, S. K., Sarkhel, G., and Choudhury, A. (2011). Surface modification of coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: Characterization and stability. Appl. Surf. Sci. 257(8), 3763-3769.
- Schiewer, S., and Patil, S. B. (2008). Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresour. Technol. 99(6), 1896-1903.
- Sumathi, K. M. S., Mahimairaja, S., and Naidu, R. (2005). Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresour. Technol. 96(3), 309-316.
- Saad,A. Al-jalil., Omar, A.Alharbi., (2010). Comparative study on the use reverse osmosis and adsorption process for heavy metals removal from waste water. J. Environ.Sci.
- Tangaromsuk, J., Pokethitiyook, P., Kruatrachue, M., and Upatham, E. S. (2002). Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresour. Technol. 85(1), 103-105.
- Unnithan, M.R., Vinod, V.P., Anirudhan, T.S., (2004). Synthesis, characterization, and application as a Chromium(VI) adsorbent of Amine-modified polyacrylamide-grafted coconut coir Pith. 43(9), 2247-2255.
- Padmavathy, V., (2008). Biosorption of nickel(II) ions by bakers yeast: Kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99(8), 3100-3109.
- Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., and Herrera-Franco, P. J. (1999). Chemical. modification of henequen fibers with an organosilane coupling agent. Composites Part B 30(3), 321-331.
- Vijaya, Y., Popuri, S. R., Boddu, V. M., and Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydr. Polym. 72(2), 261-271.
- Vijayaraghavan, K., and Yun, Y.-S.(2008) Bacterial biosorbents and biosorption. Biotechnol. Adv. 26(3), 266-291.
- Vijayaraghavan, K., and Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnol. Adv. 26(3), 266-291.
- Vilar, V. t. J. P., Botelho, C. I. M. S., and Boaventura, R. A. R. (2007). Methylene blue adsorption by algal biomass based Material: Biosorbents characterization and process behaviour. J. Hazard Mat. 147(1-2), 120-132.

- Vilar, V. t. J. P., Botelho, C. I. M. S., and Boaventura, R. A. R. (2008). Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: Kinetics and equilibrium. Bioresour. Technol. 99(4), 750-762.
- Volesky, B., and Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnol. Progr. 11(3), 235-250.
- Wan Ngah, W. S., and Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by Chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 99(10), 3935-3948.
- Wang, X. S., Qin, Y., and Li, Z. F. (2006). Biosorption of Zinc from Aqueous solutions by rice bran: Kinetics and equilibrium studies. Sep. Sci. Technol. 41(4), 747-756.
- Warhurst, A. M., Mconnachie, G. L., and Pollard, S. J. T. (1997). Characterisation and Applications of activated carbon produced from Moringa oleifera seed husks by single-step steam pyrolysis. Water Res. 31(4), 759-766.
- Weber Jr., W.J., Morris, J.C., (1963). kinetics of adsorption on carbon from solution. J.saint.Eng.ASCE. 89 31-59.
- Wu, F., Hu, Z., Xu, J., Tian, Y., Wang, L., Xian, Y., et al. (2008). Immobilization of horseradish peroxidaseon self-assembled (3-mercaptopropyl)trimethoxysilane film: characterization, direct electrochemistry, redox thermodynamics and biosensing. Electrochim. Acta. 53(28), 8238-8244.
- Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., and Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A 41(7), 806-819.
- Yu, J., Tong, M., Sun, X., and Li, B. (2007a). Cystine-modified biomass for Cd(II) and Pb(II) biosorption. J. Hazard. Mater. 143(1-2), 277-284.
- Yu, J., Tong, M., Sun, X., and Li, B. (2007b). A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochem. Eng. J. 33(2), 126-133.
- Zafar, M. N., Nadeem, R., and Hanif, M. A. (2007). Biosorption of nickel from protonated rice bran. J. Hazard Mater. 143(1-2), 478-485.
- Zou, H.S., Chu, Z.Q., and Lin, G. (2007). A novel recovery Technol. of trace precious metals from waste water by combining agglomeration and adsorption. Trans. Nonferr. Met. Soc. China. 17(4), 858-863.