

SYSTEM VERILOG RTL MODELING WITH

EMBEDDED ASSERTIONS

CHOW CHEE SIANG

UNIVERSITI TEKNOLOGI MALAYSIA

SYSTEM VERILOG RTL MODELING WITH

EMBEDDED ASSERTIONS

CHOW CHEE SIANG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical - Computer & Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2011

iii

Specially dedicated to my beloved parents, wife, supervisor, lectures, fellow friends

and those who have guided and inspired me throughout my journey of education.

iv

ACKNOWLEDGEMENT

 This project will not able to complete without the help and guidance from

others. Thus, I would like to take this opportunity to acknowledge the people below.

 First and most importantly, I would like to express my gratitude to my project

supervisor Dr. Muhammad Nasir. He guided me along the journey and always gives

constructive suggestions and opinions. With his help, I do not lose in term of the

project scope and objectives. I would say, throughout the whole year of working

under him, I really gain a lot of knowledge not only in the technical area but also

prepare myself to be a better person.

 On top of that, I would like to thank my manager and Intel Penang Design

Centre for supporting and sponsoring me to sign up this part time course. Thanks to

my manager for being so thoughtful and always allows me to take examination leave

to complete my project.

 On a personal level, my deepest thank go to my parents, wife, friends and

peers for their mental support throughout my academic years.

v

ABSTRACT

 This project has a final goal of developing a new methodology of pre-silicon

and post-silicon validation which helps in better IP delivery to SOC system.

Hardware Description Language, System Verilog is adopted in doing RTL modeling

and System Verilog Assertions are used in verifications. Both design and validation

components are combined into single module with pre-defined compiler directive.

The conversion of non-synthesizable System Verilog assertions into synthesizable

format enables designers to integrate some built in checkers into own design for pre-

silicon and post silicon validation. By having synthesizable assertions in the design,

the validation cycle can be shorten because some of the testing can be carried out

using FPGA. The testing on FPGA can run much faster than simulation which has

dependency on simulator tool. Every System Verilog assertion is being modeled as a

real hardware component and embedded into design block. The project provides the

methodology and examples of how to synthesize System Verilog Assertions using

component cascading method to represent temporal expressions used in non-

synthesizable assertions.

vi

ABSTRAK

 Projek ini bertujuan untuk membangun satu metodologi baru untuk pra

silicon era dan lewat silikon era yang mana membantu dalam penyampaian IP lebih

baik kepada sistem SOC. System Verilog, bahasa baru untuk menyampai RTL

peragakan dan System Verilog Assertions digunakan dalam penentusahan. Kedua-

dua komponen reka bentuk dan pengesahan disatukan menjadi modul tunggal dengan

arahan penyusun ditakrifkan. Transformasi dari System Verilog Assertions yang

tidak boleh di-sintesis ke bentuk yang boleh di-sintesis membolehkan pereka-pereka

menyepadukan beberapa jenis bentuk kepada reka bentuk sendiri. Kitaran

pengesahan boleh dipendekkan kerana ujian-ujian RTL boleh dilaksanakan dengan

menggunakan FPGA. Ujian pada FPGA dapat berjalan lebih cepat lagi daripada

simulasi yang banyak bergantung kepada alat pensimulasi. Setiap System Verilog

Assertion boleh dibentukkan dalam sintesi format dan ditanam dalam blok reka

bentuk. Projek ini menyediakan kaedah dan contoh-contoh bagaimana untuk

mensintesiskan System Verilog Assertions menggunakan komponen melata kaedah

mewakili ungkapan-ungkapan menggunakan dalam non-sintesis ungkapan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xiii

 LIST OF SYMBOLS xiv

 LIST OF APPENDICES xv

1 INTRODUCTION 1

 1.1 Problem Statement and Motivations 1

 1.2 Research Objectives 3

 1.3 Research Work 4

 1.4 Research Contributions 4

 1.5 Research Methodology 5

 1.6 Report Organization 5

2 WHAT IS SYSTEM VERILOG AND ASSERTIONS 6

 2.1 System Verilog: A First Look 6

 2.2 System Verilog Constructs in Detail 7

 2.3 System Verilog Assertions: A First Look 15

 2.4 System Verilog Assertions in Detail 16

viii

 2.5 Where to use SVA 18

3 SYNTHESIZABLE SVA 20

 3.1 Why synthesize SVA 20

 3.2 Good Assertion Practice 21

 3.3 Synthesizable SVA Algorithm 21

 3.4 Non-synthesizable to Synthesizable SVA Mapping 35

 3.5 Cascading SVA Components 36

4 SOFTWARE DEVELOPMENT 41

 4.1 Microsoft Word Template and Visual Basic 41

 4.2 Microsoft Word Add-in and Visual Studio 43

 4.3 Design Working Flow 46

 4.4 Macro Working Flow 53

5 DESIGN EXAMPLES 57

 5.1 8 bit counter 57

 5.2 Multiply-Accumulator 62

6 SUMMARY AND FUTURE WORKS 65

 6.1 Summary 65

 6.2 Future Work 66

REFERENCES 67

Appendices A-D 69

ix

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Do’s & Dont’s #1 8

2.2 Do’s & Dont’s #2 9

2.3 Do’s & Dont’s #3 11

2.4 Do’s & Dont’s #4 13

3.1 Summary of synthesizable SVA mapping 37

3.2 Steps of cascading SVA components - 1 39

3.3 Steps with waveform illustration - 1 40

3.4 Steps of cascading SVA components – 2 41

3.5 Steps with waveform illustration - 2 42

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 typedef construct #1 7

2.2 typedef construct #2 8

2.3 datatype construct 9

2.4 datatype parameterized 10

2.5 operators 11

2.6 procedural block 12

2.7 Unique construct 14

2.8 Priority construct 15

2.9 Immediate assertions 16

2.10 Concurrent assertions 17

2.11 Concurrent assertions with imply 18

2.12 Concurrent assertions with disable 18

3.1 Rising edge detector circuit 22

3.2 Symbolic diagram of rising edge detector 22

3.3 Timing diagram of rising edge detector 22

3.4 Rising edge detector RTL code 23

3.5 Synthesized rising edge detector 23

3.6 Falling edge detector circuit 23

3.7 Symbolic diagram of falling edge detector 24

3.8 Timing diagram of falling edge detector 24

3.9 Falling edge detector RTL code 24

3.10 Synthesized falling edge detector 25

3.11 fixed delay circuit 25

3.12 Symbolic diagram of fixed delay 25

3.13 Timing diagram of fixed delay of D = 4 25

xi

3.14 RTL code of fixed delay 26

3.15 pulse to level converter circuit 27

3.16 Symbolic diagram of pulse to level converter 27

3.17 Timing diagram of pulse to level converter with D = 4 27

3.18 RTL code of pulse to level converter 28

3.19 change detector circuit 28

3.20 Symbolic diagram of change detector 29

3.21 Timing diagram of change detector 29

3.22 RTL code of change detector 29

3.23 Synthesized change detector 30

3.24 Bounded interval delay circuit 30

3.25 Symbolic diagram of Bounded interval delay 30

3.26 Timing diagram of Bounded interval delay 31

3.27 RTL code of Bounded interval delay 31

3.28 Synthesized Bounded interval delay 32

3.29 Consecutive repeat high stay high circuit 32

3.30 Symbolic diagram of Consecutive repeat high stay high 32

3.31 Timing diagram of Consecutive repeat high stay high 33

3.32 RTL code of Consecutive repeat high stay high 33

3.33 Consecutive repeat high stay low circuit 34

3.34 Symbolic diagram of Consecutive repeat high stay low 34

3.35 Timing diagram of Consecutive repeat high stay low 34

3.36 RTL code of Consecutive repeat high stay low 35

3.37 Schematic of cascaded SVA – 1 37

3.38 Timing diagram of cascaded SVA - 1 38

3.39 Schematic of cascaded SVA - 2 39

3.40 Timing diagram of cascaded SVA - 2 40

4.1 Microsoft Word Developer tab 42

4.2 Microsoft Visual Basic Layout 42

4.3 Microsoft Visual Basic Run Macro 43

4.4 Microsoft Word’s Word Option 44

4.5 Microsoft Word’s Add-Ins 44

4.6 Microsoft Word’s Template and Add-ins 45

xii

4.7 Microsoft Word’s WLL 45

4.8 Design Working Flow 46

4.9 Template page 1 47

4.10 Template page 2 48

4.11 Template page 3 49

4.12 Pre-defined Tables 49

4.13 Combi table example 50

4.14 Schematic of combi example 50

4.15 Sequential table example 50

4.16 Schematic of sequential example 51

4.17 SVA Component table example 51

4.18 Input/Output table example 52

4.19 Free Form table example 52

4.20 High level Macro working flow 54

4.21 Table extraction process 55

5.1 Counter RTL in tables 58

5.2 Schematic of counter 59

5.3 RTL code of counter 60

5.4 Schematic of counter without SVA 61

5.5 Simulation of counter with SVA - 1 61

5.6 Simulation of counter with SVA - 2 62

5.7 Multiply Accumulator RTL in tables 62

5.8 Schematic of multiply accumulator 63

5.9 RTL code of multiply accumulator 64

5.10 Simulation of multiply accumulator 64

xiii

LIST OF ABBREVIATIONS

SVA – System Verilog Assertions

SV – System Verilog

RTL – Register Transfer Level

IP – Intellectual Property

SOC – System On Chip

HDL – Hardware Description Language

xiv

LIST OF SYMBOLS

D – Number of clock cycle delay

! – Boolean NOT function

D1 – First delay in clock cycles

D2 – Second delay in clock cycles

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A System Verilog Keywords 69

B Synthesized Schematic of some SVA Components 71

C Cascaded Components RTL code and synthesized

schematic

76

D Design examples 82

CHAPTER 1

INTRODUCTION

 This project report proposes the use of System Verilog in Register Transfer

Level (RTL) modeling with embedded verifications components which are also in

System Verilog format. The overall idea is to accelerate the design and verification

of Intellectual Property Core (IP core) in a standard, easy and consistent way. In this

chapter, the near end challenges and future of RTL logic system are discussed. This

chapter also covers the background, research objectives and motivations, research

work scope, brief of methodology and how the subsequent chapters are being

organized.

1.7 Problem Statement and Motivations

An HDL does a good job of spanning design concepts (called the register

transfer level, RTL) down to a few primitives that are used in great numbers to

implement a design (called the gate level). However, years over years, the design

complexity and size has grown exponentially. The System Verilog extensions to the

Verilog HDL address two major engineering needs, i.e. to efficiently model designs

and verify these complex designs.

Some motivations to why there are getting more designers use System

Verilog in the RTL design. There is comparable amount of code reduction, thus it

eliminates most of the coding errors and improve the readability of the code. System

2

Verilog has the capability to represent complex functionality in concise, easier to

read, easier to reuse RTL code. System Verilog also provides the capability to add

white-box assertions to synthesizable code, without the convoluted synthesis

“translate_off” and “translate_on” pragmas. System Verilog is a single language used

throughout the design flow, including synthesizable RTL models, test programs and

bus functional models. These advantages can lead to improved time to market

through clearer specifications, and earlier detection of design bugs. One of the

biggest design issues today is the occurrence of tape-out delays or re-spins caused by

finding bugs late in the design cycle. Under System on Chip (SOC) concept, the time

to develop particular RTL design or an IP, including design and verifications, is

getting shorter to align the development duration to shorter “time to market” period.

So, in the very tight schedule to deliver an IP product, IP development team needs to

complete both design and verifications with good quality. The proposed

methodology, switching the HDL to System Verilog and embeds the assertions into

the synthesizable RTL code will greatly help the IP development team to achieve the

important milestone and allow better IP integration process in SOC (System on Chip)

design. In short, System Verilog includes features that address current design

challenge through improved specification of design, conciseness of expression and

unifications of design and verifications.

Generally, all of assertions are non-synthesizable and ignored by synthesis

tool. By migrating assertions to be synthesizable RTL code, it greatly helps the post

silicon debug, as the embedded checks are served as built in RTL checkers provide

valuable insights to the cause of failure. Moreover, the synthesizable RTL assertions

tend to have better simulation performance against non-synthesizable in pre-silicon

validation environment, as it eliminates the threads which happen in non-

synthesizable assertions which simulator needs to keep track of. One more advantage

to gain is, designers are the candidates who understand own design the most, should

be involved in writing checks and assertions to ensure the design always does the

right thing, so the verification engineers can focus on higher level (functional or

system level) checking instead of focusing on gate or small logic block. Using

System Verilog as verification language brings us a lot of advantages, such as,

System Verilog as IEEE standard since 2005 ensures a wide embracing and support

3

by multiple vendors of EDA tools and verification IPs, as well as interoperability

between different tools and vendors. The risks and costs of adopting a new

verification language are reduced because System Verilog is an extension of the

popular Verilog language, the adoption process by engineers is easier and

straightforward. System Verilog enables engineers to adopt a modular approach for

integrating new modules into any existing code. Being an integrated part of the

simulation engine, System Verilog eliminates the need for external verification tools

and interfaces, and thus ensures optimal performance (running at least x2 faster than

with any other verification languages).

System Verilog indeed offers many interesting new constructs, both for

system engineers, RTL designers and verifications purposes. The excitements grow

when there are more and more emerging tools supporting System Verilog. The

perspective of using System Verilog for RTL design is to move to higher level of

abstraction. A gain in design productivity could be hoped for, but an issue such as

design for verifications should certainly also be addressed when considering new

RTL modeling styles. In addition, focus has been put on the elements in the language

believed to improve the robustness, readability and reusability of the RTL while

escaping a few known pitfalls in Verilog.

1.8 Research Objectives

There are few objectives need to be achieved in this research,

1. To explore RTL modeling using System Verilog

2. To provide macro for standard and synthesizable System Verilog RTL code

generation

3. To explore RTL modeling with System Verilog assertions embedded

4. To provide macro for standard and synthesizable System Verilog assertions

to be added into the design

4

1.9 Research Scope

This research is divided into two parts and based on available hardware,

software resources, limited time frame and expertise, this research project is

narrowed down to the following scope of work:

1. The RTL design will be using System Verilog.

2. The algorithm to translate System Verilog assertions from non-synthesizable

to synthesizable RTL code will be outlined and developed.

3. The final RTL design block will consists of both logic design and assertions

for verifications.

4. The synthesizable System Verilog assertions are developed in component

manner, and how design can make use of it by cascading several components.

5. High level macro is developed to assist in RTL code generation.

6. This project is limited to design, synthesis, simulate and verify the design

correctness with simulation software (Altera Quartus II)

7. Several test cases will be selected to demonstrate the flow of using high level

macro and how to embed assertions in the design.

1.10 Research Contributions

1. A standard algorithm to convert non-synthesizable System Verilog assertions

to synthesizable RTL code. Any complex assertions can be modeled easily

based on the algorithm.

2. An approach of using synthesizable assertions in RTL code, which is well

suited in SOC design.

3. Synthesizable System Verilog assertions in components

4. Detail examples on how SVA components help to model complex temporal

expressions

5

1.11 Research Methodology

This research work starts off with literature review regarding System Verilog

in RTL modeling and assertions. A lot of readings and analysis have been done to

understand the new language better. This research involves mostly the effort to figure

out the proper and standard algorithm to convert non-synthesizable assertions to

synthesizable RTL code, how to use System Verilog in RTL modeling efficiently and

how the cascading synthesizable System Verilog assertions components help to

model complicated assertion systematically. The remaining effort will be spent to

develop the macro to assist designers and verification engineers in System Verilog

coding, also including the effort spent in doing test case design and verifications

using new proposed flow. In order to make the research successful, planning of the

work, procedures and methodology is essential. The methodology will be discussed

in detail in the coming chapter to demonstrate how the objectives being achieved.

1.12 Report Organization

Chapter I is the introduction to this new idea. The chapter gives an overall

picture and brief summary of what will be discussed in this research. Chapter II

discusses understanding of materials and information regarding System Verilog RTL

modeling and assertions to enable the new methodology to run. Chapter III talks

about the methodology and approach used to achieve the objectives, how the

synthesizable assertions algorithm is developed includes detail descriptions. Chapter

IV consists of software development work carried out in this project. Chapter V

discusses some design examples using System Verilog and synthesizable assertions.

Chapter VI summarizes the work has been done in this project and suggests some

future works and enhancements.

67

REFERENCES

1. Peter Jensen, Wolfgang Ecker, Thomas Kruse, System Verilog Interface

Based Design, Infineon Techonologies.

2. Stuart Sutherland, A Proposal for a Standard Synthesizable Subset for System

Verilog 2005, What the IEEE Failed to Define, Sutherland HDL, Inc,

Portland Oregon, 2006

3. Don Mills, System Verilog Assertions are for Design Engineers too,

Sutherland HDL, Inc, Portlahnd Oregon, 2006

4. Stuart Sutherland, Modeling with System Verilog in a Synopsys Synthesis

Design Flow, Sutherland HDL, Inc, Portland Oregon, 2006

5. Micheal Pellauer, Mieszko Lis, Donald Blatus, Synthesis of Synchronous

Assertions with Guarded Atomic Actions, Massachisetts Institute of

Technology, BlueSpec Inc, 2005

6. ALon Gluska, Lior Libis, Shortening the Verification Cycle with

Synthesizable Abstract Models, Intel MMG, MATAM, Haifa, Israel, 2009

7. Mark Litterick, Using System Verilog Assertions for Functional Coverage,

Verilab, 2005

8. System Verilog 3.1 language reference manual, Accellera

 68

9. Steve Haynal, Timothy Kam, Micheal Kishinevsky, Emily Shriver, Xinning

Wang, A System Verilog Rewriting System for RTL Abstraction with Pentium

Case Study, Strategic CAD Labs, Intel Corporation, 2008

10. Shu-Hsuan Chou, Che-Neng Wen. Yan-Ling Luie, Tien-Fu Chen, VeriC: A

Semi-Hardware Description Language to Bridge the Gap Between ESL

Design and RTL Models, Dept. Of CSIE, National Chung Cheng University,

Chia-Yi Taiwan, 2009

11. Ravi Surepeddi, System Verilog for Quality of Results, Magma Design

Automation Inc, 2008

12. Peter Jensen, Wolfgang Ecker, Thomas Kruse, System Verilog: Interface

Based Design, Syosil Consulting, Infineon Technology, 2004

13. Clifford E. Cummings, System Verilog Ports & Data Types for Simple,

Efficient and Enhanced HDL Modeling, Sunburst Design, Inc, 2002

