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ABSTRACT 

 

 

 

 

 Most of machine learning classifiers such as Neural Network (NN), Naïve 

Bayes, and Decision Tree Method C4.5 are failed to classify the data when it deals 

with imbalanced data set. This is because; most of classifiers are biased to the 

majority class, tend to ignore minority class and treat the minority class as a 

noise/disturbance/variance. Generally, to tackle the imbalanced data set problem it 

consists of two strategies which are data level and algorithm level. The data level 

method consist of features selection and re-sampling the data such as undersampling, 

oversampling and combination of both undersampling and oversampling, while for 

algorithm level it consist internal modification of learning program. In this project, 

the Support Vector Machine (SVM) classifier is proposed in order to investigate the 

imbalanced data set problem. The investigation is obtained by measured the 

performance based on SVM classifier. This investigation will cover and measure the 

performance SVM classifier by measuring the g-mean value. The performance of 

SVM classifier is measured by measuring the g-mean value .Therefore, in order to 

increase the performance of SVM classifier oversampling methods called SMOTE is 

introduced and combine with it and the g-mean value is calculated. Experimental 

validation on the proposed algorithm is performed and demonstrated on various set 

of imbalanced data sets. Some experiment have been design to validate the proposed 

algorithm and performed it with various set of imbalanced data sets. Finally, the 

result is for each proposed algorithm is being compared and analyze. 
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ABSTRAK 

 

 

 

 

 Hampir kesemua sistem mesin pengelas seperti Neural Network (NN), Naïve 

Bayes, serta Decision Tree Method C4.5 gagal untuk mengelaskan data apabila 

berdepan dengan masalah ketidakseimbangan data. Hal ini kerana, pengelas 

memihak kepada kelas majoriti dan cenderung mengabaikan kelas minoriti malah 

menganggapnya sebagai gangguan. Secara amnya, untuk menyelesaikan masalah 

ketidakseimbangan data ia meliputi dua strategi iaitu tahap data dan tahap algoritma. 

Bagi, tahap data ianya meliputi pemilihan input dan re-sampling seperti 

undersamplin, oversampling dan juga kombinasi undersampling dan oversampling, 

sementara itu, tahap algoritma meliputi perubahan learning program. Dalam projek 

ini, pengelas Support Vector Machine (SVM) telah diperkenalkan untuk mengkaji 

masalah ketidakseimbangan data. Kajian ini diperolehi berdasarkan pengiraan 

prestasi SVM. Prestasi SVM di ukur dengan mengukur nilai g-mean. Selepas itu, 

teknik oversampling iaitu SMOTE di perkenalkan dengan harapan untuk 

meningkatkan bilangan kelas minoriti. Eksperimen untuk pengesahan terhadap 

algoritma yang di cadangkan telah dilakukan ke atas pelbagai ketidakseimbangan 

data. Akhir sekali, hasil daripada setiap algoritma yang di cadangkan, di banding dan 

dianalisis. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction to Support Vector Machine (SVM) in Brief 

 

 

Support Vector Machine (SVM) is a computer algorithm that learns by 

example to assign labels to object and have been developed by Vapnik and co- 

worker [3] and one of the most attractive development in classifier design. In 

general, there are two types of Support Vector Machine (SVM) which are Support 

Vector Machine Classification and Support Vector Machine Regression. In this 

thesis only Support Vector Machine Classification will be focused on. During 

classification process, the SVM classifier constructs the hyperplane or set of 

hyperplanes in a high or infinite dimensional space. The vector that lies near the 

hyperplane is called support vector.  

 

 Generally, there are three main concepts for SVM classifier called Maximal 

Margin Classifier (MMC), Soft Margin and also Kernel Approach. In SVM the 

MMC is the simplest and the main block for more complex SVM, while for Soft 

Margin, it allow some misclassification of training data plotting. For Kernel 

Approach, it normally used to change the dimensional of the training data.  
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 SVM classifier has been applied in many applications such as face detection 

[24], image retrieval [23] and text categorization [25] and shown remarkable success 

in classification better than other classifiers. 

 

 

 

 

1.2 Introduction to Imbalanced Datasets 

 

 

In general the data set problem can be grouped into two types which called 

balanced data set and imbalanced data set. Balanced data set is occurs when the 

distribution in the dataset for each class are same. For the real world problems, the 

data set that occurs is not really balanced, called imbalanced data sets. Imbalanced 

data sets can be defined as data sets that the distributions of majority class which is 

larger than minority class.  

 

In recent years, the class imbalance problem has been one of the emergence 

challenges in machine learning and can be found in various fields such as biomedical 

[4], remote-sensing [5], and engineering [6], computer-security [7], and 

manufacturing industries [8]. Generally, the imbalance can be grouped into the multi-

class classification and binary class classification. For the binary class problem, the 

output consist two class which called positive class and negative class. 

 

 Generally, there are two types of imbalance data set can be found in binary 

classification. First is called as between-class imbalance and the other one is named 

within-class imbalance. For the type one, the imbalance data is defined as one class 

has much more example than the other class. Meanwhile, for the within-class some 

subset of the class has more example than the other subset of the same class [16]. 
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1.3 Problem Statements 

 

 

Recently, the imbalance data set problem has received a lot of interest of 

researchers in the Machine Learning community by the virtue of the fact that the 

performance of the learning algorithm degrades significantly when it deals with the 

imbalance data set. This is because; most of classifier that available is not able 

efficiently learns the imbalanced data set. The decision boundary establish by the 

classifier is tends to favor the majority class and tends to ignore the minority class 

and treat it as noise. Hence, to overcome this problem a learning algorithm called 

Support Vector Machine (SVM) will be introduced in order to deal the imbalanced 

data set problems  

 

 

 

 

1.4 Objectives of Project 

 

 

 The goals of this project are: 

 
 To investigate the imbalanced data set problem based on Support Vector 

Machine (SVM) classifiers. During the investigation, the performance 

measure is calculated.  

 
 To investigate the imbalanced data set problem when Support Vector 

Machine (SVM) is combining with Synthetic Minority Oversampling 

Technique (SMOTE) algorithm. Then the performance measure is evaluated. 
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1.5 Scopes of Project 

 

 

 In the design of a Support Vector Machine (SVM) for solving imbalanced 

data set problem, the scope of the projects has been defined as follows: 

 

1. The algorithm of SVM is computed into Matlab. 

 
2. There are four types that will be considered as case study like Haberman’s 

Survival Dataset, Pima Indian Diabetes, German Credit and Liver Disorder. 

This data is taken from UCI Machine Learning Repository [17]. 

 
3.  Geometric mean (g-mean) will be used in order to measure the performance 

of this imbalance classier. 

 

 

 

 

1.6 Outlines of the Thesis 

 

 

 Chapter 1 presents an overview of Support Vector Machine (SVM), the 

imbalanced data set, the objective of this project, the scope of the project and the 

problem statements. Chapter 2 gives an insight to the research and development 

classifier to solve the imbalance data set done by various researchers.  

 

 Chapter 3 will explain the methodology of how the investigation of 

imbalanced classifier is being proposed. 

 

Chapter 4 mainly devoted for demonstrating the experimental results of the 

project, performance and discussion.  
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Chapter 5 deals with the summary and conclusions of the project. Some 

recommendation and suggestions for the future development of the project are also 

discussed. 

 

 

 

 

1.7 Summary 

 

 

 This chapter is briefly introduced a SVM and imbalanced data set. Then the 

problem statements, objectives, scope of project and outlines of the thesis are 

presented and discussed. It is important to have those before attempting to start the 

project. The idea on the project has been briefly overviewed.  
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