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ABSTRACT 

 

 

 

 

This project exploits subspace prediction methods in order to apply a novel 

direct "predictive" control design technique, which can be viewed as an extension of 

model free subspace based linear quadratic Gaussian (LQG) control, and in the class 

of adaptive control. The main purpose of this study is to design a much simpler 

control approach for a wastewater treatment plant using a data driven direct adaptive 

predictive controller based on subspace identification of prediction matrices. The 

general direct control design problem requires the engineer to collect experimental 

data, and choose a performance objective. With these design choices, it is then 

possible to calculate a control law that optimizes expected future performance. 

Recently, there has been significant interest in developing a direct control design 

methodology producing a more reliable and automated control design technique. 

Effective control of wastewater treatment plants (WWTPs) has been receiving rising 

attention during the last decade due to increasing concern about environmental 

issues.  In this sense, the importance of studies concentrating on control and 

simulation of WWTP is remaining intact. Activated sludge process is commonly 

used in biological wastewater treatment. The applied methodology of this project is 

supposed to regulate the substrate concentration and dissolved oxygen concentration 

to specified values, compensate the disturbances may occur in the load influents as 

well as to track any mechanistic or kinetic parameter variation immediately in the 

shortest possible time. Hence, direct adaptive predictive control (DAMPC) can 

provide  simplicity,  good  performance  and  stability  robustness of  an  activated 

sludge process. 
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ABSTRAK 

 

 

 

 

Tujuan  penyelidikan  ini  dijalankan  adalah  untuk  menghasilkan  teknik  

kawalan  yang  lebih  mudah  bagi  loji  rawatan  kumbahan  air. Laporan  ini 

mencadangkan  kawalan  dengan  ramalan  adaptasi  terus  atau  juga  dikenali  

sebagai kawalan dengan ramalan subspace  sebagai  alternatif kepada kaedah  yang 

sedia  ada. Struktur  kawalan  adaptasi  adalah  berdasarkan  kepada  model  berkadar  

terus  sistem tersebut  dan  digabungkan  bersama  algoritma  angka  untuk  sistem  

subspace  state space  yang  berperanan  sebagai  pengesan  untuk  anggaran  

langsung  matriks  ramalan dan  matriks  kawalan  dalam  proses-bio, serta  model  

kawalan  ramalan  bagi mendapatkan  jujukan  kawalan  yang  optimum. Prestasi  

kedua-dua  algoritma anggaran  dan  kawalan  digambarkan  menerusi  keputusan  

simulasi. Analisis kestabilan  dijalankan  bagi  menyiasat  tindak  balas  sistem  yang  

dicadangkan  apabila wujudnya  perubahan  parameter. Projek  ini  membuktikan  

bahawa  kaedah  adaptasi subspace  memiliki  banyak  kelebihan  yang  penting  dan  

berguna,  terutama  aplikasi keupayaannya dikendalikan bersama sistem pelbagai 

masukan dan pelbagai keluaran serta  keperluan  yang  rendah  mengenai  maklumat  

sistem. Berdasarkan  kelebihan tersebut, bidang aplikasi yang sesuai bagi algoritma 

yang dicadangkan adalah proses dengan  pembulehubah  berbagai, di  mana  hanya  

sedikit  info  diketahui  seperti  loji rawatan  kumbahan  air  ini. Dengan  itu,  

pendekatan  baru  teknik  kawalan  dengan ramalan adaptasi terus mampu 

menyediakan kaedah yang mudah, prestasi yang baik serta kestabilan yang teguh 

dalam mengawal proses larutan aktif.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

This project presents a method of control approach which combines the 

functions of traditional system identification with that of control design, enabling 

synthesis of Model Predictive Controllers (MPC) in a single direct process. The 

method utilizes principles from the recently developed field of subspace identification 

in order to reduce huge amounts of experimental data to a much smaller "subspace 

predictor", which is then applied to apply a control law. The approach is referred to as 

"model free" because at no time in the process is an explicit model of the plant 

formulated. In addition, an efficient method of recursively updating the subspace 

predictor is developed, thereby allowing online adaptation of the controller as new 

experimental data are collected. 

 

 In the first section, a general overview of the project is given; showing the 

main characteristics of the applied techniques and when it is necessary to use such 

advanced methods. The problem statement is illustrated in the second section of this 

chapter. The objectives and scope of this research study are presented in the third and 

fourth sections, respectively. The methodology adopted is outlined in points and as a 

project flow chart in the sections 1.5 and 1.6. 
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1.1 Background of the Project: 

 

 

For a class of nonlinear systems whose current states can be reconstructed 

with N past measurements, a new subspace-based predictive controller is designed 

based directly on input-output data. This technique combines the characteristics of 

subspace identification method with predictive control, such as the minimum request 

of prior knowledge, applicability for multi-input multi-output (MIMO) process, and 

the minimization of multi-step prediction errors, to result in the model-free subspace 

predictive controller. To add an adaptive mechanism to predictive control, this project 

uses receding window mechanism to capture nonlinear dynamic characteristics, 

updates subspace predictor at every time step, and implements the predictive control. 

Activated Sludge process of Wastewater Treatment Plants is used to prove the 

efficiency of the proposed algorithm. 

 

There are many types of systems where experimental data are particularly 

valuable in obtaining knowledge of process behavior. Examples include cases where 

the process is difficult or expensive to model, where the process is time-varying, or 

where the plant is well modeled but certain parameters must be determined 

experimentally. Examples of difficult or expensive plants to model include solid 

oxide fuel cells (X. Wang et al., 2007) and blast furnace ironmaking process (Zeng et 

al., 2010). Examples of time-varying processes include evaporator process (Yang, Li, 

2005), and the process studied in this project in details the Activated Sludge Process 

(Nejjari et al., 1999) (Koumboulis et al., 2008). Which is an example of a plant that 

has features that can be well modeled from first principles, yet requires experimental 

data in order to obtain appropriate model parameters.  

 

Methods of using experimental data can roughly be divided into four 

categories, as shown in Table 1.1. The techniques are distinguished by whether they 

operate "on-line" or "off-line", and whether a plant model is explicitly (Indirect) or 

implicitly (Direct) used to perform the control design. Plant model identification is 

perhaps the most popular method of using experimental data in the control design 
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process. The engineer usually performs a number of experiments, and then uses the 

experimental data in conjunction with various optimization techniques to form a 

model of the plant. The plant model is then used with one of the well-known model 

based control design techniques to formulate a control law.  

 

Typical identification techniques include the classical prediction error (PE), 

auto regressive with exogenous input (ARX), auto regressive moving average with 

exogenous input (ARMAX), output error (OE), and Box Jenkins (Ljung., 1987) 

techniques. More recently, subspace techniques such as eigensystem realization 

analysis (ERA) (Juang., 1994) and numerical algorithms for subspace state space 

system identification (N4SID) (VODM., 1996) have gained popularity.  

 

The control design literature is vast, and includes simple proportional integral 

derivative (PID) as well as more advanced modern and postmodern techniques e.g. 

linear quadratic Gaussian (LQG), and  -synthesis. When model based design is used 

"on-line", it is usually referred to as indirect adaptive control. The process typically 

begins by assuming a nominal plant model. As new experimental data are collected, 

the outputs are compared to the outputs predicted by the nominal plant model, 

producing a nominal error. The gradient of the error with respect to the plant 

parameters is used to modify the plant parameters to improve the plant model. 

Periodically, the control law is updated using the most recently developed plant 

model as the basis for control synthesis. An example of this approach is model 

reference adaptive control (MRAC) (Astrom & Wittenmark., 1995). 

 

Table 1 Control System Design Techniques 

 Plant Model No Plant Model 

Off-line Model Based Design Direct Control 

Design 

On-line Indirect Adaptive Direct Adaptive 
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The "no plant model" column in Table 1.1 is somewhat of a misnomer: in 

some sense, a data set can be considered an empirical plant model, thus any 

simplified representation of the data set is also a plant model. The defining property 

of model free techniques is that a single integrated procedure derives the control law 

directly from experimental data and a performance specification. If the technique has 

a sufficiently low computational burden, it is generally straightforward to implement 

the "no plant model" design technique on-line. This produces a "direct adaptive" 

control technique where the controller attempts to improves its performance in 

response to newly available experimental data. Examples of direct control techniques 

include model free subspace based LQG control (Favoreel., 1998) (Favoreel., 2000), 

adaptive inverse control, LMS, and, FxLMS and its alternatives. The next two 

subsections describe the properties and main features of ‗model free‘ direct control 

design and outline conditions under which it might be advantageous to apply these 

techniques. 

 

 

 

 

1.1.1 Properties of Direct Techniques 

 

 

The most important property of direct control design techniques is the close 

coupling of the ''plant identification" and the "control design" steps.  

 

In traditional model based control design, the development of a plant model 

requires great simplifications of the experimental data set in order to obtain a plant 

model.  

 

In the direct technique, much more of the experimental information is retained 

throughout the control design process. If the controller is then simplified, the 

simplifications that are made are with respect to the controller's input-output 

relationship, rather than with respect to the plant input-output relationship. The 

simplifications of the controller are made with respect to what is important to the 

control law, rather than what is important to the plant model. Closer coupling of the 



5 
 

identification and control design process should lead to increased automation of the 

control design process, however, this conjecture can only be confirmed by the 

experiences of control engineers who are able to try both model based and model free 

techniques in the field. The increased automation is expected to result from the 

removal of the intermediate design steps, thereby requiring the engineer to make 

fewer arbitrary choices of parameters during the design process. An additional 

advantage is realized in the iterative process between designing "identification" 

experiments and performing closed loop tests: the direct control design process 

naturally provides the engineer with an immediate estimate of closed loop 

performance. 

 

Due to the increased automation, direct techniques are easily implemented as 

part of an adaptive framework. It is believed that direct techniques will be of great 

utility when solving adaptive control problems. 

 

 

 

 

1.1.2 When One Might Use Direct Techniques 

 

Control issues with certain attributes are likely to receive the most benefit 

from direct method. These attributes include: 

• Experimental data are plentiful, are representative of the important system 

dynamics, and are inexpensive to obtain. 

 

• Iteration between design and closed loop experiment is possible. 

 

• Some aspects of the system are difficult to quantify by analytic modeling, 

e.g. time- varying nonlinearities. 

 

• The plant has many inputs and many outputs, such that modeling each 

input-output relationship might be prohibitively tedious. 
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The adaptive methodologies are of course applicable to cases where the plant 

is time-varying. In many time-varying problems, the control law adapts to 

compensate for changing system parameters, such as the kinetics parameters of a 

process. However, if the plant structure is changing, such as addition of new modes, a 

model free technique may be better suited than a model based adaptive controller in 

which the model structure is determined a priori. 

 

 

 

 

1.2  Problem Statement: 

 

 

Generally, nonlinear system‘s control design has many problem statements. 

Moreover, for this study the main difficulties are: 

 

1. The dynamic model obtained for real plants is most often highly complex and 

high order non-linear system which makes the prediction of process behavior 

into the future is quite difficult. 

2. Selecting a method of extrapolation of plant behavior into the future is not an 

easy task due to the lack of cheap and reliable sensors for on-line 

measurement of the key state variables.  

3. Laboratory analysis with delays of several days cannot be used for on-line 

monitoring which require the proper development of a disturbance uncertainty 

model. 

4. Selection process of the appropriate performance objective function should be 

applied in order to meet the low effluent quality and high energy consumption 

of wastewater treatment plants. 

5. The model-free design approach presented in the literature so far does not 

include all the important predictive control features such as inclusion of an 

integrator for offset-free control, constraint handling, feedforward option and 
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a means of tuning the controllers through the disturbance model; these 

features are important for practical applications. 

 

 

 

 

1.3  Objectives of the project: 

 

 

The main objectives of this project are: 

 

1. To study the operation of Activated Sludge Process (ASP) in wastewater 

treatment plants (WWTP). 

2. To estimate Prediction Matrices and Control Matrices. 

3. To design Subspace Predictive Controller (SPC). 

4. To analyse the stability issues occur on the system proposed. 

 

 

 

 

1.4 Scope of the project: 

 

 

1. To control ASP, in order to provide good performance and stability robustness 

in controlling: biomass X (t), substrate S (t), dissolve oxygen C (t) and 

recycled biomass Xr (t) concentrations in the activated sludge process. 

2. To study on-line identification using N4SID.   In this case, the prediction 

matrices and controller matrices can be retrieved on-line and used for MPC 

controller.  
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3. To design adaptive model predictive controller, this would have the ability to 

adjust its control order signal for any parameter variations occurring in a plant 

model.  

4. To use the direct method only.  This project only focuses on the direct method 

which gives better performance with respect to input disturbance and also 

gives better tracking properties as well as disturbance rejection, with less 

design and computational efforts compared to the indirect method. 

5. Stability analysis to investigate the effects of the user defined parameters such 

as Hankel matrices block sizes on identification results. 

 

 

 

 

1.5  Methodology 

 

 

With those issues discussed in problem statement section (1.2) in mind, the 

following design choices were made for this project. 

 

 The predictive control applied is completely data based, since it only requires 

a set of input–output open-loop data. 

 Through online updating of predictor using receding window, a nonlinear 

process is approached in the surrounding of working points and adaptive 

control is implemented.  

 In addition, unlike other data-driven predictive control designs, the proposed 

approach can deal with systems without complete on-line measurement of all 

output variables.  

 

These design choices result in what has been termed direct subspace based 

adaptive predictive control. 
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As a member of a class of controllers known as predictive control (Qin & 

Badgwell., 2003), (Clarke., 1996) Predictive control refers to any technique that 

employs the following steps: 

 

1.  A predictor is used to determine the plant input that will optimize a specified 

cost function over a future time horizon. 

2.  The first time step of the control is implemented. The plant output at this time 

step is recorded. 

3.  The new input-output data are added to the predictor, and steps 1-3 are 

repeated. 

These steps are collectively known as a "receding horizon" implementation. 
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1.6  Project Flow chart  

 

 

 

Figure 1.1 The Project Flow Chart 
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