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ABSTRACT 

 

 

 

 

The main goal of this project is to design a digital filter which is compatible 

between simulation tool (software) and hardware implementation using Matlab and 

Quartuss II. The filter is realized in Direct Form II biquad architecture to achieve 

scalable and expandable design which can be cascaded if necessary. Filter 

quantization procedure is presented based on the finite word-length arithmetic to 

determine the bit length of the filter’s digital parameters as accurate as possible. 

With the resulting bit-true model, hardware design implementation using Verilog 

RTL for Altera FPGA is then performed. A biquad filter in FPGA, using numerous 

hardware realization methods, namely fully combinational, combinational-sequential 

and bit serial are designed and performance analysis is carried out by comparing 

their efficiency and area. The design is then optimized further to be more cost-

effective by implementing the bit-serial arithmetic architecture where multipliers are 

replaced with lookup table (LUT). According to the simulation result, fully-

combinational is the fastest and the most expensive approach with unconstrained 

resource utilization while combinational-sequential compromises between area and 

speed with limited resources. On the other hand, bit-serial model achieves highest 

maximum frequency with lowest propagation delay between registers. Optimization 

with LUT usage is a hybrid model of fully-combinational and bit-serial which it 

balances up the pros and cons by improving the maximum frequency of fully 

combinational and reducing the total execution time of bit-serial approach. 
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ABSTRAK 

 

 

 

 

Kajian ini dilakukan bertujuan mengkaji cara-cara untuk mereka-bentuk digit 

penapis moden yang serasi antara alat simulasi dan perlaksanaan perkakasan dengan 

menggunakan MATLAB dan Quartus II. Penapis itu akan direalisasikan dalam 

biquad seni bina untuk mencapai reka bentuk berskala yang dapat diperkembangkan 

secara lata sekiranya ada keperluan. Prosedur pengkuantuman penapis akan 

dicadang berdasarkan panjang-perkataan terhad aritmetik untuk menentukan 

panjang-oktet parameter digital penapis setepat mungkin. Dengan model-bit yang 

benar, reka bentuk perkakasan akan dilaksanakan dengan menggunakan Verilog 

RTL untuk Altera FPGA. Selain itu, penapis modular biquad akan dilaksanakan 

dengan menggunakan beberapa kaedah untuk merealisasikan perkakasan, iaitu logik 

gabungan, gabungan-berjujukan and bit-siri dengan membandingkan kecekapan dan 

luas permukaan mereka. Reka bentuk akan dioptimumkan supaya lebih kos efektif 

dengan melaksanakan bit-siri berseni aritmetik di mana pengganda akan digantikan 

dengan jadual lookup (LUT). Menurut hasil simulasi, logik gabungan adalah keadah 

yang paling cepat dan paling mahal dengan penggunaan sumber yang tidak dikekang 

manakala gabungan-berjujukan kompromi antara keluasan dan kelajuan dengan 

sumber yang terhad. Sebaliknya, bit-siri model mencapai frekuensi maksimum 

tertinggi dengan lengah perambatan yang terendah. Pengoptimuman dengan 

penggunaan LUT adalah satu model hybrid antara logik gabungan dan bit-siri 

dengan meningkatkan kekerapan maksimum daripada logic gabungan dan 

mengurangkan jumlah masa pelaksanaan daripada bit-siri. 
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  CHAPTER 1

 

 

 

 

1  INTRODUCTION 

 

 

  

 

Digital filter has been a subject of interest for Digital Signal Processing 

(DSP) systems due to its enormous technology impacts and limitless applications. 

With the advancement of silicon scaling and digital architecture, Field Programmable 

Grid Array (FPGA) is also no longer a stranger in the electronics field. In this 

chapter, an overview of digital filter and FPGA is presented. This is followed by the 

motivation, objectives and the scope of work that would be achieved in the project. 

 

 

 

 

 Introduction to Digital Filter 1.1.

 

 

A digital filter is a Linear Time Invariant (LTI) system, if it satisfies the 

properties below [1] : 

 

1) Linearity – If a scaled input )(nKx  produces an output )(nKy  (where   is 

any arbitrary constant), the system satisfies the condition of homogeneity. 

If the output is )()( 2211 nyKnyK   when the input is )()( 2211 nxKnxK  , 

then the system satisfies the superposition property. The system is said to 

be linear if it fulfills both homogeneity and superposition properties. 
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2) Time Invariant - If the output is )( Mny  when the input is delayed by   

samples, that is, when the input is )( Mnx  , the system is said to be time-

invariant. 

 

 

LTI digital filter system translates input-to-output relationship by performing 

numerical calculations on discretely sampled signals. A block diagram of a digital 

filter system is shown in  Figure 1.1. In order for the signals to work in the digital 

domain, first, the analog input signal x(t) must be sampled and digitized using 

Analog-to-Digital Converter (ADC). This digitized form is a binary representation of 

the input voltage at the instant of sampling, n. The model for digital filter system can 

then be described by a circuit diagram showing the interconnection of its 

components, which are the delay elements, multipliers, and accumulators. The digital 

filter will be capable of performing numerical calculations on resulting binary 

numbers, such as multiplying the input values by constants (coefficients) and sum up 

the products together to produce the output y(n). The output is finally converted back 

to analog via a Digital-to-Analog Converter (DAC).  

 

 

 

 Figure 1.1 Block Diagram of a Digital Filter 

 

Digital filters can be divided into two broad categories, namely FIR and IIR 

filters. For FIR filters, the filter output depends on present and previous input 

samples 𝑥  to 𝑥   . The inputs are delayed using delay elements in the circuit, 

multiplied by coefficients 𝑎 to 𝑎  and added together. Characteristic equation of a 

typical FIR filter is 

pn

p

nnn xaxaxay   ...1

10    (1-1) 
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Where p is the filter order, paa 0  are coefficients, nx  is the filter input at the time 

step n, and 
ny  is the filter output at the time step n. 

 

 

Meanwhile, for the IIR filter, output depends not just on a set of input 

samples, nx  to pnx  , but also on a set of previous output, 
1ny  to 

pny 
. These are 

multiplied by coefficients paa 0  and pab 1 before being added together. In other 

words, it is recursive as the output needs to feedback into the input for computation. 

This can be described by its characteristic equation as given by 

pn

p

npn

p

nnn ybybxaxaxay   ...... 1

1

1

10    (1-2) 

Compared to FIR, phase response of an IIR filter is non-linear, and the 

hardware implementation will be more complex. Most IIR filters can be designed 

using an analog filter model, such as Butterworth, Chebyshev, Elliptic. In this paper, 

main focus will be on IIR type digital filter. 

 

 

Digital filters are increasingly popular in digital processing applications as 

they offer numerous advantages [2] such as reproducible response, not temperature 

sensitive, and programmable, which is superior over the analog filters. Performance-

wise, digital filters offer lower passband ripple, faster transition, higher stopband 

attenuation, linear phase in time domain over its analog counterpart. Besides, digital 

filters are able to take full advantage of the advanced submicron technology that IC 

chip makers are able to offer today. Nevertheless, the downside of digital filter is the 

aliasing of digital signal caused by sampling effects. Unlike analog filter, digital 

filter are unable to pass power and requires a power supply. It might also encounter 

interference where out-of-band signals are frequency shifted and appear in the 

passband. Applications of digital filtering are enormous, including noise suppression 

in consumer electronics, selectively filtering electrical signals such as brain, heart, 

neurological signals from human body in biomedical applications, image 

enhancements of high frequency image elements, bandwidth limiting of intended 

television and radio signals in communications and many more.  
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 Introduction to FPGA 1.2.

 

 

Field-programmable gate array (FPGA) consists of [3] field-programmable 

logic (FPL) that offers programmability interconnection or ‘glue logic’ that can be 

customized for specialized purposes. Unlike Application-specific Integrated Circuits 

(ASIC’s), FPGA’s are not hard-coded and can be freely programmed using the 

myriads of hardware and software platform available. It is a great candidate for 

digital filtering hardware development and implementation as FPGAs are well 

catered for datapath design. 

 

 

An internal building block of a generic FPGA is shown in  Figure 1.2 [4]. It 

consists largely of programmable logic blocks that contain arrays of combinatorial 

blocks and flip-flops to be cond by the designer. In addition, large amounts of static 

Random Access Memory (RAM) are integrated as FPGA logic is often used in 

conjunction with memory based on consumer trends. Clock conditioning in the forms 

of Delay Locked Loops (DLLs) and Phase Locked Loops (PLLs) are also supported 

inside the same silicon chip. Flexibility of the input/output (IO) blocks behind the 

chip pads is another feature of FPGA, which means that the IO ports can be freely 

cond as input, output, or both at the same time. 
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 Figure 1.2 Internal structure of a generic FPGA (courtesy Xilinx, Inc.) 

 

 

 

 

Advantages of FPGA approach to digital filter implementation includes 

higher sampling rates than traditional DSP chips, lower cost than ASIC for moderate 

volume applications, and more flexibility than the alternate approaches, leading to a 

shorter time-to-market especially development time.  FPGA also allows the use of 

underlying FPGA fabric of localized memory in the form of lookup tables (LUTs) 

and flip-flops along with the logic LUT resource, allowing the user the choice for 

design optimization. On the contrary, limitations of FPGA are related to overhead 

imposed by programmability and constraints imposed by the architecture. Also, there 

are limitations on the logic function which may be implemented in each logic block 

based on the architecture. FPGA will also introduce routing delays in the array.  

 

 

 

 

 Project Motivations and Objectives 1.3.

 

 

Research on digital filter implementation over the years has concentrated on 

custom implementation using various ASIC technologies. Several potential 

shortcomings of custom Very-Large-Scale Integration (VLSI) ASIC approach 
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1. Lack of flexibility in custom approach – Custom devices are often suited only for 

use in particular application, not reconfigurable. 

2. Forestall the cost effective evaluation – Only high volume applications or 

extremely low volume applications can justify the expense of developing a full 

custom solution. 

3. Lack of adaptability – Does not allow user to modify the function of a device. 

 

Although these problems can be overcome with sufficient forethought, the 

costs in performance, design complexity, and additional design time often preclude 

flexible solutions. Field Programmable Gate Arrays (FPGAs) can be used to alleviate 

some of the problems with custom approach as they are programmable logic devices. 

In-system programmable allows modification of the operation of the device through 

simple reprogramming.  

 

 

Therefore, the objective of this project is to illustrate the approaches in 

designing modern digital filters in FPGA as listed below 

(i) Fully combinational 

(ii) Combinational-Sequential 

(iii) Bit-serial 

(iv) Bit-serial Arithmetic using LUT 

 

 

All design will be modeled and synthesized using Quartus II and quantitative 

measurement will be provided in terms of usability, area, and speed. In order to 

further improve the design and make full use of the capability of FPGA, multipliers 

are replaced with look-up s and adder-subtractor to achieve cost effectiveness in the 

filter implementation. 

 

 

 

 

 Scope of Work 1.4.

 

 

This project starts off with a brief introduction of digital filter and FPGA, 

followed by the motivations and objectives of this project in Chapter 1. In Chapter 2, 
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there will be literature research to understand the underlying principle of digital 

filtering and the limitations of digital quantization, before reviewing the proposed 

biquad hardware architecture methodologies and its FPGA implementation in this 

project. As progress into Chapter 3, the methodology and implementation plan to 

carry out the filter determination and hardware realizations will be discussed, at the 

same time explaining about the software tools, namely Matlab & Quartus II, which 

will be using extensively to aid the analysis and development. Based on the 

simulation, bit true model of sample digital filter will be extracted and the biquad 

hardware design will be implemented based on the proposed methodologies in 

Chapter 4. The methodologies are fully combinational, combinational-sequential, 

word serial, and bit serial. Besides, the filter design will be further optimized to be 

more cost-effective using bit-serial arithmetic approach to eliminate the usage of 

general purpose multipliers and substituting it with stored computed coefficients. 

Each hardware design will be explored by realizing its RTL designs. Subsequently, 

the results of the hardware implementation will be discussed, by comparing the 

performance and cost of each method in Chapter 5. Finally, the project is 

summarized with a conclusion and future recommendations in Chapter 6. 
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