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ABSTRACT 

 

 

 

 

The design of an alpha V-type Stirling engine converted from Yamaha four-

stroke diesel engine was realized with few major modifications on the engine 

housing, heater head, swirl burner, regenerator, oil lubrication system, auxiliary 

cooler and flywheel. The methodology of developing a 25 W alpha V-type Stirling 

engine that is simple in design, low cost and multi-fuel potential due to its easy 

integration with external heat sources had been successfully established and it is 

proven practicable. The engine can be marked as a closed regenerative cycle engine 

that pioneers the research of high temperature differential (HTD) alpha V-type 

Stirling engine operating in self-pressurized mode using air as a working gas. The 

engine is featured with 90
o
 phase angle, bore and stroke of 53 mm and 44 mm 

respectively, total swept volume of 194 cc., total dead volume of 115 cc., volume 

compression ratio of 2.2, 4 mm spherical bed regenerator and Liquefied Petroleum 

Gas (LPG) as fuel. At heat input of 1100 J/s, the engine performance was 

successfully tested. For mechanical shaft power assessment, torque, output-power 

and thermal efficiency variations were obtained at different engine speeds, hot and 

cold cylinder temperatures. The engine approximately produced a maximum brake 

power of 7 Watt, brake thermal efficiency of 0.6% at 717 rpm speed, 811
o
C hot 

cylinder temperature and 96
o
C cold cylinder temperature. For electrical power 

assessment, the engine is capable of generating a maximum electrical output power 

of 1.7 Watt, system thermal efficiency of 0.15% at 657 rpm, 855
o
C hot cylinder 

temperature and 98
o
C cold cylinder temperature. The investigation of engine seal, oil 

lubricant, flywheel size and configuration, regenerator tube diameter, total dead 

volume and auxiliary cooler have significantly contributed to a successful 

performance of the engine in self-pressurized mode. 
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ABSTRAK 

 

 

 

 

Rekabentuk bagi enjin Stirling jenis-V alpha diubahsuai dari enjin Yamaha 

disel empat-lejang direalisasikan dengan pengubahsuaian utama pada rumah enjin, 

kepala pemanas, pembakar pusar, penukar haba, sistem minyak pelincir, pendingin 

tambahan dan roda tenaga. Metodologi pembangunan bagi enjin Stirling jenis-V 

alpha 25 W yang berciri ringkas dalam rekabentuk, murah dan berupaya dalam 

penggunaan pelbagai bahan api disebabkan penyambungannya yang mudah dengan 

sumber haba luaran telah berjaya dibentuk dan ianya terbukti berkesan.. Enjin ini 

ditanda-aras sebagai enjin kitaran penukaran haba tertutup sebenar sebagai pelopor 

terhadap kajian enjin Stirling jenis-V alpha bersuhu bezaan tinggi yang beroperasi 

dalam mod bertekanan-diri menggunakan udara sebagai gas bekerja. Enjin ini 

diperincikan dengan sudut fasa 90
o
, 53 mm x 44 mm lubang dan lejang,  194 cc. 

jumlah isipadu sapuan, 115 cc. jumlah isipadu mati, 2.2 nisbah mampatan isipadu,  4 

mm penukar haba lapisan sfera dan Gas Petroleum Cecair sebagai bahan bakar. Pada 

haba masukan 1100 J/s, prestasi enjin berjaya diuji. Untuk penilaian kuasa aci 

mekanik, variasi tork, kuasa terhasil dan kecekapan terma diperolehi pada kelajuan 

enjin, suhu silinder panas dan suhu silinder sejuk yang berbeza. Enjin menghasilkan 

7 Watt kuasa brek maksimum, 0.6% kecekapan terma brek pada kelajuan 717 ppm, 

suhu silinder panas 811
o
C dan suhu silinder sejuk 96

o
C. Untuk penilaian kuasa 

elektrik, enjin mampu menghasilkan 1.7 Watt kuasa terhasil elektrik maksimum dan 

0.15% kecekapan terma sistem pada kelajuan 657 ppm, suhu silinder panas 855
o
C 

dan suhu silinder sejuk 98
o
C. Penyelidikan terhadap penutup enjin, minyak pelincir, 

saiz dan bentuk roda tenaga, diameter tiub penukar haba, jumlah isipadu mati dan 

pendingin tambahan secara ketara telah menyumbang pada kejayaan operasi enjin ini 

dalam mod bertekanan-diri. 
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Radius, m 

 

S 

Sg 

SgT 

- 

- 

- 

Swirl number, Constant, Spring load, N 

Geometric swirl number 

Non-isothermal geometric swirl number 

 

T 

TDV 

TDC 

U 

Umax 

u 

- 

- 

- 

- 

- 

- 

Temperature, 
o
C or Kelvin 

Total dead volume, m
3
 

Top dead center 

Average exit velocity, m/s 

Maximum torque, Nm 

Rubbing velocity, m/s 

 

V 

V0 

Vb 

Ve 

Vc 

VD 

Vm 

Vswept 

Vvessel 

VCR 

Vmax 

Vmin 

 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Volume, m
3 

Displacement volume, m
3
 

Volume of spherical ball, m
3
 

Volume of the expansion space, m
3
 

Volume of the compression space, m
3
 

Dead volume, m
3 

Matrix metal volume, m
3 

Swept volume, cm
3 

Volume of regenerator vessel, m
3 

Volume compression ratio 

Maximum volume, m
3 

Minimum volume, m
3 

Volume flow rate, m
3
/s 

 

W 

w 

X 

- 

- 

- 

Amount of work, J; Weight, kg 

Angular speed, rad/s 

Dead-volume ratio 

 

�̇� 
 



 xxii 

x 

 

 

- 

- 

- 

Piston displacement, m 

Piston velocity, m/s 

Piston acceleration, m/s
2
 

τ 

λ 

v 

- 

- 

- 

Temperature ratio 

Engine stroke, mm 

Kinematics viscosity 

 

k 

ψ 

ε 

- 

- 

- 

Swept-volume ratio 

Regenerator matrix porosity 

Regenerator effectiveness 

 

ρ 

γ 

μ 

- 

- 

- 

Density, kg/m
3 

Material density, N/m
3
 

Coefficient of friction 

 

η 

ηbt 

ηst 

ηhs 

ηC 

ηS 

- 

- 

- 

- 

- 

- 

Efficiency of heat engine, % 

Brake thermal efficiency, % 

System thermal efficiency, % 

Combustion system efficiency, % 

Carnot efficiency, % 

Stirling engine efficiency, % 

 

δ 

δL 

θ 

∆T 

∆R 

σy 

σ0 

ky 

- 

- 

- 

- 

- 

- 

- 

- 

Constant 

Thermal expansion rate 

Crank angle 

Temperature difference 

Uncertainty limit, % 

Yield strength 

Material constant 

Material constant 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Since its conception in the early 1800s, the Stirling engine has periodically 

enchanted engineers and physicists since theoretically, Stirling engines have the 

same efficiency as the Carnot engines. Today, interest in the Stirling engine is again 

on the rise. Among the reasons for this are great advances in materials technology, 

inherent environmental advantages of Stirling engine and the fact that, as an 

externally heated engine, it can be powered by a number of energy sources [Blank 

and Wu, 1995]. 

 

 

 

 

1.2 Background of the problem 

 

 

Stirling engines are eminent for their prospect of high efficiency, safe 

operation, long life, fuel flexibility, low emissions, low pollution, low vibration and 

low noise level (Scott et al., 2003) compared to internal combustion engine. 
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However, a wide spread utilization of Stirling engines has not yet become a reality 

due to commercial and economical factors (Raggi et al., 1997). Issues such as low 

specific power and high manufacturing cost of Stirling engines are main challenges 

that make mass production of Stirling engines not feasible at present. Up-to-date, the 

cost of 1 kW free piston Stirling engine as reported by Sun Power Inc. is about 

USD120,000 or equivalent to RM480,000 (Crawford, 2007). The cheapest and 

nearest available Stirling engine within Asia is 3HP ST5 beta-type Stirling engine 

from Stirling Technology, Japan at the cost of USD45,000 or equivalent to 

RM180,000. (Tezuka, 2007). Apparently, the unit cost of both beta-type and free 

piston Stirling engine is 4 to 10 times higher than the cost of four-stroke diesel or 

gasoline engines in the market.  

 

 

Modifying an internal combustion engine into the Stirling engine has been the 

preferred alternative especially for academic and experimental purposes (Raggi et al., 

1997). Apparently, the manufacturing cost of the modified engine can be very much 

reduced since the ready engine components have the quality in terms of material 

strength and parts precision. The engineering time (design and fabrication) can be 

shortened and the spare parts can be easily sourced if the engine is subjected to wear 

and tear. The numerous investigations made by scientists and engineers since the 

invention of the engine have made good base line information for designing engine 

system, but more insight is essential to design systems together for thermo-fluid-

mechanical approach. It is seen that for successful operation of such system a careful 

selection of drive mechanism and engine configuration is essential. An additional 

development is needed to produce a practical engine by selection of suitable 

configuration; adoption of good working fluid and development of better seal may 

make Stirling engine a real practical alternative for power generation (Thombare and 

Verma, 2006). Due to the cost factor and simplicity in design, alpha-type Stirling 

engine is typically selected because many parts from the industrial mass production 

can be used. The necessary maintenance and repair work of this engine can also be 

done by a standard car workshop (Podesser, 1999).  
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In developing practical Stirling engines, the design consideration of efficient 

fuel burning system is very important. Efficiency of the fuel burning system will be 

determined by the capability of the external heat source system to provide sufficient 

heat input and the capability of the engine heater head to store the heat supply for the 

working cylinder and to minimize heat loss. Many researchers had incorporated 

electrical heater as part of the engine pre-heating or heating head section, particularly 

for the alpha V-type Stirling engine, since it is easier to assemble the electrical heater 

to the engine body as compared to other means of heating systems due to its sloped 

position. The electrical heater acts as heat interface between fuel burner and the 

engine hot working cylinder. Undeniably, it is good for continuous, stable and easy 

to regulate heating purposes but there are a few other alternatives that can also 

potentially be utilized especially in the development of a low cost and multi-fueled 

Stirling engine for power production. 

 

 

 

 

1.3 Statement of the problem 

 

 

Alpha engines have two pistons in separate cylinders, which are connected in 

series by a heater, regenerator and cooler. Alpha engine is conceptually the simplest 

Stirling engine configuration; however, it suffers from the disadvantage that both 

pistons need to have seals to contain the working gas (Thombare and Verma, 2006). 

Development of alpha-configuration Stirling engine is rarely seen in the most recent 

publications particularly due to its sealing problem that affects the engine 

performance. Technical problems arise when the working gas inside the cylinders is 

not sealed properly. Firstly, pressure inside the hot working cylinder will reduce as 

gas leaks out from the engine. Secondly, engine power will drop with decrease of   

internal pressure and eventually, stop the engine. Numerous efforts had been done by 

many researchers to overcome sealing problem on alpha-configuration Stirling 

engine. Among them are; the use of moving sealer in the gap clearance between 

piston and cylinder wall and the manufacture of a highly precise piston to cylinder 

wall materials with a gap clearance less than 0.1 mm.  Typically, these types of 
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sealing requirements substantially increase manufacturing cost of the engine and the 

use of piston and cylinder with the nearest gap clearance is still insufficient to 

overcome pressure drop inside the engine (Walker, 1980). And the use of moving 

sealer or sliding seal in high pressure, high temperature engine working cylinder is 

rather difficult to maintain. Many companies and individual researchers have 

declared their successful Stirling engines operations by operating their engines at 

some degree of pressurization of the working fluid where the flow is controlled by 

valves. In fact, only a few experimental investigations of Stirling engines deal with 

working fluid charging into the engine (pressurization of working fluid) for both 

assessment and improvement of the engine performance. Conceptually, these engines 

are no longer closed regenerative cycle engines and referring them as ‘Stirling 

engine’ is rather misleading. Walker (1980) stated that distinction between a closed 

regenerative cycle engine and an open regenerative cycle engine is not widely 

established in practice and the name ‘Stirling engine’ is frequently indiscriminately 

applied to all types of regenerative machines. He emphasized that clear distinction 

should always be made between Stirling engines that apply constant volume system 

and Ericsson engines that apply constant pressure system, because they have 

radically different characteristics.    

 

 

Stirling engine designs including alpha-configuration require a regenerator 

for heat storage (input) and heat release (output), and these must contain the pressure 

of the working gas, where the pressure is proportional to the engine power output. In 

addition, the engine heater head section and hot end regenerator are continuously at 

very high temperature. Thus, the part materials must require resistance to corrosive 

effects of the heat source and must have low thermal creep effect due to successive 

heating and cooling processes. Again, requirements of such materials considerably 

escalate manufacturing cost. As an evidence, sintered wire screens made of material 

typically stainless steel make a good regenerator for high performance engines, with 

a typical effectiveness of 95%-98%, but the unit is expensive to build (West, 1986). 

There are other alternatives and less costly regenerators have been sought including 

knitted wires (Spatz, 1981), ceramic sponge (Vincent et al., 1982) and quartz tubes or 

plates (Schneider et al., 1984), but they are hardly available in the local market and 
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must be custom made. Therefore, an exploration of a low cost, readily and easily 

available regenerator material is desired.    

 

 

 

 

1.4    Objectives 

 

 

    The objectives of this research are: 

 

1. To develop an external combustion system for the Stirling engine operation. 

2. To design 53 mm bore x 44 mm stroke with 97 cc., develop and operate an alpha 

V-type Stirling engine converted from diesel engine for 25 Watt power. 

3. To determine the power and torque of high temperature differential (HTD) 

Stirling engine operation in self-pressurization mode and to profile critical 

operating parameters such as temperatures of hot cylinder, cold cylinder, 

regenerator and fuel burner. 

4. To analyze the optimum operating parameters and correlation for design engine 

for an optimal power production. 

 

 

 

 

1.5    Scopes of the study 

 

 

          The purpose of this study is to develop a simple, portable, low-cost, multi-

fueled characteristic and high temperature differential (HTD) alpha V-shaped Stirling 

engine by using custom-made components of YAMAHA four-stroke diesel engine 

and industrial mass production materials. An in-depth understanding of Stirling cycle 

and its working principle is demanded in developing converted diesel to Stirling 

engine since internal combustion engine applies a totally different cycle from Stirling 

engine. Pure experimental investigations are critical to study both characteristics and 
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performance of the engine in self-pressurization mode. Finally, the engine 

performance will be characterized and optimized in order to fulfill the expectation of 

delivering a small-scale power production. 

 

 

Scope 1: The research will commence with the selection process of the most suitable 

type or configuration of the Stirling engine to be developed. At this stage, 

understanding of thermodynamics principle of the Stirling cycle is demanded. The 

main criteria for the selection process include the engine cylinder 

layout/arrangement, drive mechanism, type of heater or burner, cylinder and piston 

forms of coupling, type and size of regenerator and crankcase construction. Design 

considerations of the Stirling engine to be developed must also notice major output 

characteristics such as net power output, thermal and mechanical efficiency, cost-

effectiveness and simplicity in design.  

 

 

Scope 2: The research will proceed with design, fabrication and development of   

Stirling engine based on the most suitable configuration to be developed. The 

expectation of low manufacturing cost Stirling engine will be realized by utilizing 

common materials from the local foundries and by adopting common spare parts of 

internal combustion engines. Technical specifications of the manufactured Stirling 

engine that complies with the thermodynamics principle of Stirling engine cycle will 

be originated at the end of this stage via preliminary investigations. 

 

 

Scope 3: The research will then continue with the performance testing of the Stirling 

engine workability and operation. At this stage, critical design features of the Stirling 

engine such as crank mechanism, heater or burner, cylinder-piston coupling and 

sealing, regenerator, flywheel, working gas etc. will be examined for their 

operability. Measurement of critical operating parameters such as heater temperature, 

hot temperature of the expansion working cylinder, cold temperature of the 

compression working cylinder, regenerator temperature, cooling temperature of the 

cooling system and so forth will be measured and profiled. Thermal heat input into 

the engine heater head section will be controlled via a fuel flow rate measurement. 
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The engine power output (both mechanical shaft power and electrical power) will be 

determined experimentally via various tests.  

 

 

Scope 4: The final stage of this research will cope with the performance 

characterization of the Stirling engine operation. Specifically, size and/or type of 

material for the engine critical parts such as flywheel, piston, piston ring or sealer, 

regenerator, lubrication oil etc. will be characterized for determining any significant 

effect on the engine output characteristics. Variation study of the engine critical 

operating parameters such as fuel flow rate, heater and cooling temperature will be 

performed as well to determine any potential improvement on the engine power 

production. Ultimately, Stirling engine performance curves will be established. 

 

 

 

 

1.6    Significance of the study 

 

 

          A successful development of a small-scale, portable, low cost, self-pressurized 

and fuel flexible Stirling engine will help to contribute another alternative for power 

generation system particularly in rural or remote areas. The Stirling engine with 

multi-fueled capability will create options in utilizing lower cost and highly available 

source of fuel. Consequently, it will help to reduce operational cost of the Stirling 

engine. Using common materials from local foundries and common spare parts from 

internal combustion engines will help to minimize manufacturing cost and to realize 

commercialization of Stirling engines.    
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1.7    Expected findings and summary 

 

 

The possible outcomes of the research project are as per following:- 

 

 Capability of Stirling engine to produce a small-scale power output can be 

demonstrated. 

 Understanding of the effect or relationship of each process parameters in 

contributing a successful operation of the Stirling engine to produce power can 

be accomplished. 

 Performance characterization of the overall Stirling engine system including the 

external combustion process can be established. 

 Potential application of the overall Stirling engine system for a small-scale power 

generation can be analyzed and corroborated. 

 

 

 

 

1.8 Organization of the thesis 

 

 

The thesis is organized in such a way that it provides a continuous and 

smooth flow of information to the reader in regards to development and performance 

characterization of alpha V-Stirling engine converted diesel engine for a small scale 

power production. 

 

 

Chapter 1 presents a brief background of Stirling engine development, its 

major problems that hinder mass production of the engine for active 

commercialization and challenges for solving the problems. 
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Chapter 2 deals with literature review pertaining to both historical and 

technological development of Stirling engine in various configurations, the pros and 

cons of different types of Stirling engine configuration with respect to both specific 

power and thermal efficiency, selection process of Stirling engine critical parts and 

components and decision making of the suitable Stirling engine to be developed. 

 

 

Chapter 3 describes the methodology for design, development and operation 

of the Stirling engine. Key considerations in designing the Stirling engine are 

elaborated and that includes material selection for the engine critical components, 

dimensioning of the engine size and volume, dimensioning of the engine critical 

parts, setting-up of the external combustion system, cooling system and heat 

regeneration system, selection of flywheel for the energy storage system, selection of 

the working medium, selection of the engine lubricant and so forth. All the relevant 

mathematical formulations for designing and operating the Stirling engine are 

presented and discussed in this chapter.       

 

 

Chapter 4 presents the Stirling engine performance curves at both no load and 

load conditions. The engine performance at load condition consists of two main 

sections. The first section presents and discusses the experimental results of the 

engine mechanical shaft power assessment. In this section, variation of engine 

characteristics as a function of the critical operating parameters comprises of engine 

speed, hot cylinder temperature, cold cylinder temperature and operation time are 

presented and discussed. The second section deals with experimental results of the 

engine electrical power assessment where variation of engine characteristics 

primarily current load, voltage output and electrical power at different engine speeds, 

hot cylinder temperatures and cold cylinder temperatures are elaborated. 

Characterization of critical parameters of the engine for its optimal performance is 

also discussed in this chapter that affects the engine performance significantly.         

 

 

Chapter 5 accentuates key achievements of the study with reference to the set 

of objectives outlined in Chapter 1. Both theoretical and experimental results as 
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discussed in the previous chapters are justified in this chapter. One of the objectives 

of this study is to identify areas where more research work is needed in order to 

improve methodology and techniques for overall performance and power production 

capability of the developed engine. These potential areas are pointed up under work 

recommendations. 
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