EFFECT OF SILICA FUME TO THE STRENGTH AND PERMEABILITY OF HIGH PERFORMANCE GROUND GRANULATED BLASTFURNACE SLAG CONCRETE

AZLI SHAH BIN ALI BASHAH

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECT OF SILICA FUME TO THE STRENGTH AND PERMEABILITY OF HIGH PERFORMANCE GROUND GRANULATED BLASTFURNACE SLAG CONCRETE

AZLI SHAH BIN ALI BASHAH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

ABSTRACT

A durable concrete is one that has the ability to withstand the damaging effects of the environment and of its service conditions without undue deterioration and excessive unforeseen maintenance over the design life of a structure. The used of high performance concrete is an alternative in producing high – strength concrete, durable and construction friendly. This paper study the effect of silica fume to the properties of high performance ground granulated blastfurnace slag concrete to reveal the potential outmost. It was found by compressive strength test, that high-strength concrete can be achieved. At the age of 28 days, concretes containing 5, 7.5, and 10% silica fume gave compressive strengths of 65.6, 64.6, and 67.1 Mpa, respectively. At aged 56 days concrete containing 10% of silica fume had the highest strength. However the concrete containing 5% of silica fume had low permeability thus may enhance the durability.

ABSTRAK.

Konkrit yang tahan lasak adalah kebolehan konkrit tersebut daripada mengalami kerosakan akibat dari kesan alam sekitar dan kemerosotan semasa perkhidmatan serta penyelenggaran yang kurang sepanjang hayat rekabentuk sesuatu struktur. Penggunaan konkrit berprestasi tinggi digunakan sebagai bahan alternatif untuk menghasilkan konkrit yang tahan lasak, berkekuatan tinggi dan memudahkan kerja pembinaan. Sehubungan itu kajian kesan bahan tambah silika peluwap terhadap sifat konkrit sangga relaubagas berbutir untuk mendedahkan potensi yang wujud. Dalam kajian ini melalui ujian mampatan, konkrit berkekuatan tinggi boleh dicapai. Pada konkrit berusia 28 hari yang mengandungi 5, 7.5 dan 10 % silika peluwap mencapai kekuatan mampatan 65.6, 64.6 dan 67.1 Mpa. Manakala konkrit pada usia 56 hari yang mengandungi 10% silika peluwap mencapai kekuatan yang paling Walaubagaimanapun konkrit yang mengandungi 5% silika peluwap tinggi. mempunyai ketelapan yang rendah dan secara tidak lansung ianya menambah nilai ketahanlasakan.

TABLE OF CONTENT

CHAPT	ER TIT	LE		PAGE
	Title Page			
	Declaration			ii
	Dedica	ntion		iii
	Acknowledgement			iv
	Abstra	ct		V
	Abstrak			vi
	Table of Content			vii
	List of Tables			X
	List of Figure			xii
	List o	f Symbols	S	xiv
1	INTRODUCTION			
	1.1	Forew	vord	1
	1.2	Objec	tives	2
	1.3	Scope	of study	3
2	LITERATURE REVIEW			
	2.1	Introd	uction	4
		2.1.1	Definitions Of High Performance Concrete (HPC)	4
	2.2	Devel	opment Of High Performance	5
		Concr	rete	
	2.3	Mater	ials For High Performance	6
		Concr	rete	
		2.3.1	Supplementary Cementing Materials	7

		2.3.2 Silica Fume	8
		2.3.3 Ground Blastfurnace Slag Cements	10
	2.4	Aggregates	15
	2.5	Superplastizer/High Range Water Reducers	16
		2.5.1 Superplasticizer Dosage	18
	2.6	Water	19
	2.7	Supplementary Cementing Materials For	19
		Proposal Concrete Mix	
		2.7.1 Mix Selection For High Performance	e 19
		Concrete	
2	MIN	THOROLOGY	
3		HODOLOGY	20
	3.1	Introduction Experimental For The High Performance	30
	3.2	Experimental For The High Performance	30
	2.2	Concrete	21
	3.3	Material for testing	31
	3.4	Water	31
	3.5	Admixtures Cuba Communicative Strength	32
	3.6	Cube Compressive Strength	32
		3.6.1 Preparation of Concrete Cube	33
	2.7	Grade 60 with Free W/ C Ratio 0.32	
	3.7	Permeability Testing	34
4	DEG	THE AND AND AND ENGINE	
4	RES	ULT AND ANALYSIS	
		4.1 Introduction	47
		4.2 The Results of Concrete Cubes Stren	
		4.2.1 Analysis from the Results	48
		4.2.1.1 Analysis in respect to	
		4.3 The Results of Permeability Test (IS	AT) 50

81

5	DESIGN RECOMMENDATION			
	5.1	Introduction	68	
	5.2	Discussion about the Concrete Cube		
		Strength.	68	
		5.2.1 1 day cube strength	69	
		5.2.2 3 and 7 days cube strength	69	
		5.2.3 28 and 56 days cube strength.	70	
	5.3	Permeability of Concrete Cube.	71	
6	SUMMA	RY AND CONLUSION		
	6.1	Conclusion	75	
	6.2	Recommendation	76	
	REFERE	ENCES	77	

APPENDIX A

LIST OF TABLES

TABI	LE NO. TITLE	PAGE
2.1	Typical Composition	21
2.2	Some Major Projects That Used Blastfurnace Slag Cement In	
	Malaysia	22
2.3	Mix Proportions of Some High Performance Concrete	23
3.1	Mixture Proportions	36
3.2	Program for casting and testing of Concrete Cube	37
4.1	The Results Of Cubes Test	52
4.2	Comparison the compressive strength of Y2, Y3, Y4 for I day to YI	53
4.3	Comparison the compressive strength of Y2, Y3, Y4 for 3 days to Y	I 54
4.4	Comparison the compressive strength of Y2, Y3, Y4 for 7 days to Y	I 55
4.5	Comparison the compressive strength of Y2, Y3, Y4 for 28 days to Y	YI 56
4.6	Comparison the compressive strength of Y2, Y3, Y4 for 56 days to	YI 57
4.7	The Result Of Cube Strength Grade 60 Relate To JKR Specification	58
4.8	The Test Result Of Permeability ISAT For The Cube Y1	
	At Age 28 Days	60
4.9	The Test Result Of Permeability ISAT For The Cube Y2	
	At Age 28 Days	61
4.10	The Test Result Of Permeability ISAT For The Cube Y3	
	At Age 28 Days	62
4.11	The Test Result Of Permeability ISAT For The Cube Y4	
	At Age 28 Days	63
4.12	The Test Result Of Permeability ISAT For The Cube Y1	
	At Age 56 Days	64
4.13	The Test Result Of Permeability ISAT For The Cube Y2	
	At Age 56 Days	65
4.14	The Test Result Of Permeability ISAT For The Cube Y3	
	At Age 56 Days	66

LIST OF TABLES

TAB	LE NO. TITLE	PAGE
4.15	The Test Result Of Permeability ISAT	
	For The Cube Y4 At Age 56 Days	67
4.15	The result for Comparisons Relative To Permeability	
	And Compressive Strength For The Same Specimen	68
5.1	Reference For Permeability (ISAT) Test	74

LIST OF FIGURES.

FIGURE	NO TITLE	PAGE
2.1	Factors which influences high performance concrete	24
2.2	Typical Strength Development	25
2.3	Higher Resistance to Chloride Diffussion	26
2.4	Higher resistance to sulphate attack	27
2.5	Protection Against Alkali-Silica Reaction	28
2.6	Temperature Profile Of Slagcem (contain 70 % ggbs& OPC)	29
3.1	Silica Fume(SF)	38
3.2	Ground Granulated Blast-Furnace Slag(GGBS)	38
3.3	Admixtures P322N And R1100H	39
3.4	Step for preparation the 150x150x150 concrete cube	40
3.5	Procedure In Preparation Of Concrete Cube	41
3.6	Compacting The Fresh Concrete	41
3.7	Measuring The Slump Of Fresh Concrete	42
3.8	Preparation of Concrete Cube for compressive testing	43
3.9	Cubes In The Tank For Curing Purpose	44
3.10	The procedures carried for the cubes test as in accordance to B 1881:Part 116	S 45
3.11	Initial Surface Absorption Apparatus	46
3.12	Plastic Cap	46
4.1	Concrete cube strength in normal water for I day	53
4.2	Concrete cube strength in normal water for 3 days	54
4.3	Concrete cube strength in normal water for 7 days	55
4.4	Concrete cube strength in normal water for 28 days	56
4.5	Concrete cube strength in normal water for 56 days	57
4.6	Comparison Between The Cube Strength At 1,3,7,28,56 Days	59
4.7	The Graph Pattern For The Cube Y1 At Age 28 Days	60
4.8	The Graph Pattern For The Cube Y2 At Age 28 Days	61

LIST OF FIGURES.

FIGURE	NO TITLE	PAGE
4.0		
4.9	The Graph Pattern For The Cube Y3 At Age 28 Days	62
4.10	The Graph Pattern For The Cube Y4 At Age 28 Days	63
4.11	The Graph Pattern For The Cube Y1 At Age 56 Days	64
4.12	The Graph Pattern For The Cube Y2 At Age 56 Days	65
4.13	The Graph Pattern For The Cube Y3 At Age 56 Days	66
4.14	The Graph Pattern For The Cube Y4 At Age 56 Days	67

LIST OF SYMBOLS

BS - British Standard

HPC - High Performance Concrete

ACI - American Concrete Institute

w/c - water/cement

Mpa - Mega pascal

ISAT - Initial Surface Absorption Test

C-S-H - Calcium Silicate Hydrates

AASHTO - American Association of State Highway

and Transportation Officials

MS - Malaysian Standard

OPC - Ordinary Portland Cement

C₃A - Tricalcium Aluminate

Psi - Pound/square inch

GGBS - Ground Blastfurnace Slag Cements

SF - Silica Fume

ASTM - American Society for Testing And Materials

S.O. - Superintendent Officer

UTM - University Technology Malaysia

JKR - Jabatan Kerja Raya

mm - millimeter

N/mm² newton per millimetres square

ml/m2/s - milliliters per square metre per second

SiO₂ Silicon Dioxide

Ca(OH) - Calcium Hydroxide

FM - Figgs Method

m²/kg - metre square per kilogram

> - More than

< - Less than

CHAPTER 1

INTRODUCTION

1.1 Foreword

Most conventional concrete structures deteriorate rapidly and require costly repairs before their expected service life is reached. Four major types of environmental distress affect concrete structures. They are corrosion of the reinforcement, alkali-aggregate reactivity, freeze-thaw deterioration, and attack by sulfates (Ozyildirim, 1998). In each case, water or chemical solutions may penetrate the concrete and initiate or accelerate damages. By using high-performance concrete (HPC), durability and are enhanced strength, resulting in long-lasting and economical structure (Lerning and Ahmed, 1993).

American Concrete Institute(ACI) defined high performance concrete as: "High performance concrete (HPC) defined as concrete which meets special performance and uniformity requirements that cannot always be achieved routinely by using only conventional materials and normal mixing, placing and curing practices"

The high performance concrete mixes designed for low permeability resist this infiltration of aggressive liquids and, therefore, are more durable. One important issue need to be addressed in the use of high performance concrete are the development of the mixes.

Low-permeability concretes are made with a low (0.45 and less) water-cementations material ratio (w/cm). Pozzolanic material such as fly ash, silica fume, or slag be used as cementation materials. These modifications to the mixes results in higher compressive strengths than conventional concretes, above 41 Mpa (6,000 psi). The initial economic benefit arises from the ability to use fewer borepiles, colums, beams resulting in lower costs in materials, labour, transportation, and construction. The structural benefits include increased rigitidy because of the increased elastic modulus and increased concrete strength that raise the allowable design stresses (Lane, S.N, and Podolny, W. 1993). This project paper emphasis will be directed mainly to the applications of ground granulated blastfurnace slag and silica fume.

1.2 Objectives

- To develop the concrete mix and study the effect of silica fume between the matrix which consist of ground granulated blastfurnace slag with gradually added percentage f silica fume with minimum cube strength of 60 Mpa.
- ii) To develop concrete early age strength of more than 1 Mpa within 24 hour.
- ii) To test concrete mix for compressive strength and preliminary study on permeability by Initial Surface Absorption Test (ISAT).

1.3 Scope of study

This study focuses on investigating the properties of the proposal concrete mix of high performance concrete. Among the properties investigated for such designed mixes are compressive strength, and permeability for durability while maintaining the high workability.