PLASTIC BEHAVIOUR OF STRENGTHENED COLD-FORMED STEEL SECTION

PRABOWO SETIYAWAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > MARCH 2012

To my God, Allah '*azza wa jalla* Then to my beloved parents, parents in law, wife and children

ACKNOWLEDGEMENTS

In preparing this thesis, I was in contact with many people, researchers, and academicians. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Assoc. Prof. Dr. Ir. Mohd Hanim Osman, for his encouragement, guidance, critics and friendship. I am also indebted to Sultan Agung Islamic University (UNISSULA) and Universiti Teknologi Malaysia (UTM) for funding my PhD study.

My fellow friends from the Indonesian Student Association (PPI) should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

To date, the use of cold-formed steel on single storey industrial buildings particularly as structural element of a portal frame is restricted. Mostly, its application is as roof and wall framing, cladding, purlins and rails. Compared with hot-rolled steel, the use of cold-formed steel on a building has advantages such as light self-weight and corrosion-free problems, even though these are weaknesses to be overcome. The main problems are local buckling and low connection capacity. From the previous study, it was shown that cod-formed rectangular hollow portal frame using thick section indicated the plastic behaviour. This section is uneasy to be derived at site. Besides, some connection methods have also been suggested by previous researchers using bolts, rivets, press and weld but such the connections cannot reach rigid connection as needed for plastic design of portal frame. This research intends to study strengthening methods of cold-formed steel section and the connection performance improvement using cover plate. From this study, it is expected that cold-formed steel section can achieve plastic section and the rigid connection can be reached. The study was performed in two stages. In the first stage, the study on small cold-formed steel beams was done, while in the second stage, the study investigated a full scale of cold-formed steel beams and the connections. Specimens of this research consist of strengthened cold-formed closed beams and the moment connections. The beams are strengthened using a splice of hot rolled plate attached to the original section by screws and weld. The beams are in various design strength, thickness, screw spacing and number of web screw rows. Three types of connection i.e. welded, unbraced cover and braced cover connections were constructed for the specimens. Self-drilling screws for the section strengthening were applied on the connected members outside the cover plate. The experimental results were compared to the theoretical one. From this study, it can be concluded that the applied strengthening method significantly increase the moment capacity of the cold-formed steel sections. Similarly, the braced cover connection improves the connection to be rigid connection.

ABSTRAK

Sehingga kini, penggunaan keluli terbentuk sejuk pada binaan-binaan perindustrian satu tingkat khasnya sebagai elemen struktur kerangka portal belum banyak dibuat. Penggunaannya pada binaan majoriti digunakan sebagai kekuda, kerangka bumbung, dinding dan bahagian-bahagian penyokong binaan lain. Dibandingkan dengan keluli tergelek panas, penggunaan keluli terbentuk sejuk pada struktur binaan mempunyai kelebihan-kelebihan antara lain berat diri kecil dan tak ada soalan kakisan, namun ada kelemahan yang perlu dibaiki agar boleh digunakan secara lebih luas lagi. Permasalahan utama yang menghalang adalah terjadinya lengkokan tempatan dan keupayaan sambungannya yang rendah. Penvelidik sebelumnya menyatakan bahawa kerangka portal yang mengggunakan keratan segiempat tepat geronggang yang tebal dapat menunjukkan kelakuan plastik. Keratan seperti ini tidak mudah diperolehi di lapangan. Disamping itu pelbagai penyambungan yang dicadangkan penyelidik sebelumnya kaedah dengan mengunakan bolt, rivet, tekanan mahupun kimpal, bagaimanapun tidak boleh berkelakuan sebagai sambungan tegar seperti yang diperlukan pada reka bentuk plastik kerangka portal. Penyelidikan ini bermaksud menyiasat perkuatan keratan keluli terbentuk sejuk dengan cara menambah ketebalan elemen-elemen keratan yang tertekan serta meningkatkan keupayaan sambungannya dengan penambahan plat penutup. Dari hasil kajian ini diharapkan keratan-keratan keluli terbentuk sejuk dapat mencapai kategori keratan plastik serta sambungan tegar anggota-anggota keluli terbentuk sejuk dapat dicapai. Penyelidikan ini dilakukan dua tahap iaitu kajian berskala pada rasuk-rasuk keluli terbentuk sejuk dan penyelidikan dengan spesimen skala penuh rasuk-rasuk keluli terbentuk sejuk yang diperkuat serta sambungan momennya. Keratan rasuk diperkuat dengan menambah keluli tergelek panas yang dikimpal dan diperkuatkan dengan skru gerudi-diri dengan pengaturan yang berbeza. Tiga jenis sambungan iaitu sambungan kimpal, sambungan penutup tanpa penguat dan sambungan penutup dengan penguat dibuat sebagai spesimen. Skru gerudi-diri dipasang pada batang-batang sambungan diluar kawasan plat penutup. Hasil penyelidikan tersebut kemudian dibanding dengan hasil pengiraan Dari penyelidikan ini dapat disimpulkan bahawa kaedah perkuatan yang teori. dilakukan dapat meningkatkan keupayaan keratan keluli terbentuk sejuk secara nyata meskipun belum mencapai keratan plastik. Begitu juga dengan kaedah penyambungan yang dicadangkan dapat menambah ketegaran sambungan sehingga mencapai kriteria sambungan tegar.

TABLE OF CONTENTS

CHAPTER				TITLE	PAGE
	DEC	LARATI	ON		ii
	DED	ICATIO	N		iii
	ACK	NOWLE	DGEME	NTS	iv
	ABS'	ГКАСТ			V
	ABS'	ГRAK			vi
	TAB	LE OF C	ONTENI	ſS	vii
	LIST	OF TAE	BLES		xiii
	LIST	OF FIG	URES		xviii
	LIST	OF SYN	ABOLS		xxvi
	LIST	OF APP	PENDICE	S	xxxii
1	INTI	RODUCT	TION		1
	1.1	Overvie	ew		1
	1.2	Backgr	ound of R	esearch	2
	1.3	Probler	n Stateme	nt	3
	1.4	Objecti	ves of Stu	dy	4
	1.5	Scope	of Study		4
	1.6	Organiz	zation of T	Thesis	6
2	BAS	IC THEC	ORY AND	PREVIOUS STUDIES	7
	2.1	Introdu	ction		7
	2.2	Basic T	Theory		7
		2.2.1	Portal F	rame Structure	7
			2.2.1.1	Analysis of Pinned Base Portal	
				Frame	8

	2.2.1.2	Behaviour of a Portal Frame at	
		Failure	13
	2.2.1.3	Types of Connection of Portal	
		Frame Structure	15
	2.2.1.4	Analysis Diagrams of Portal Frame	
		Structure	16
2.2.2	Cold-Fo	rmed Steel Members Subject to	
	Bending		19
	2.2.2.1	Classification of Sections	20
	2.2.2.2	Material Properties	21
	2.2.2.3	Effect of Local Buckling	22
	2.2.2.4	Capacity of CFS Sections Subject to	
		Bending	23
	2.2.2.5	Stability of CFS Sections Subject to	
		Bending	26
2.2.3	Strength	ening of Steel Sections	30
	2.2.3.1	Types of Strengthening	30
	2.2.3.2	Classification of Strengthened Steel	
		Sections	32
	2.2.3.3	Properties of Strengthened Steel	
		Sections	35
	2.2.3.4	Capacity of Strengthened Steel	
		Sections	37
2.2.4	Moment	Connection on Steel Portal Frame	
	Structur	e	37
	2.2.4.1	Types of Moment Connection	38
	2.2.4.2	Classification of Moment	
		Connections	38
	2.2.4.3	Rigidity of Moment Connection	40
	2.2.4.4	Capacity of Moment Connection	43
Previous	s Studies		45
2.3.1	Applicat	ion of CFS Sections in Frame	
	Structur	e	45

2.3

	2.3.2	Behaviour of CFS Sections Subject to	
		Bending	51
	2.3.3	Strengthening of Cold-Formed Steel	
		Sections	58
	2.3.4	Connections on CFS Structures	62
2.4	Conclu	sion Remarks	77
ANA	LYTICA	AL STUDY OF STRUCTURE AND	
ELE	MENTS	OF COLD-FORMED STEEL	
POR	TAL FR	AME	80
3.1	Introdu	iction	80
3.2	Analys	is Curves of Pinned Base Portal Frame	80
3.3	Analys	is of Portal Frame Based on Elastic and	
	Simple	Plastic Theory	87
3.4	Stabilit	y of Cold-Formed Open and Closed Sections	
	Rafter	in PF Design	93
3.5	Effect	of Section Thickness to the Plastic Section	
	Classif	ied of Cold-Formed Rectangular Hollow	
	Section	ns in Various Width to Depth Ratios	112
3.6	Propert	ties of Cold-Formed Rectangular Hollow	
	Membe	ers in Bending	116
3.7	Capaci	ty of Cold-Formed Rectangular Hollow	
	Membe	ers in Bending	118
3.8	Perform	nance of Welded Cover Connections	120
3.9	Conclu	sion Remarks	128
STR	ENGTHI	ENING OF COLD-FORMED STEEL	
SEC'	TION A7	F PLASTIC BEHAVIOUR	130
4.1	Introdu	action	130
4.2	Materia	al and Geometrical Properties of Specimens	131
4.3	Types of	of Section Strengthening	132
4.4	Plastic	Section Classification	133
4.5	Section	n Properties	135
4.6	Design	Capacity	141

ix

4.7	Experin	nental Program	143
	4.7.1.	Objective	143
	4.7.2.	Specimen	143
	4.7.3.	Test Procedure	147
	4.7.4.	Result	148
4.8	Discuss	ion	154
	4.8.1	Plastic Section Classification	154
	4.8.2	Properties of Section	155
	4.8.3	Moment Capacity	157
	4.8.4	Mode of Failure	158
	4.8.5	Failure Location	159
	4.8.6	Effect of Screw Spacing	161
	4.8.7	Effect of Numbers of Flange Screws Row	161
4.9	Conclus	sion Remarks	162
ei ev	TIDAT D	DELLAVIOUD OF STDENCTUENED	
	UKAL I	ELAVIOUR OF STRENGTHENED	162
5 1	Introdu	ation	163
5.1	Tancila	Test of Cold Formed/Hot Polled Steel Plates	164
5.2	5 2 1	Objective	164
	5.2.1	Specimens	164
	5.2.2	Test Procedure	166
	524	Test Result	160
53	Section	Plasticity	168
5.4	Properti	ies of Section	180
5.5	Momen	t Capacity	182
5.6	Experin	pental Program	184
	5.6.1	Objective	184
	5.6.2	Specimen	185
	5.6.3	Test Procedure	187
	5.6.4	Test Result	188
5.7	Discuss	ion	194
	5.7.1	Plasticity of Section	194

5

	5.7.3	Moment Capacity	199
	5.7.4	Mode of Failure	204
	5.7.5	Failure Location	206
5.8	Conclu	sion Remarks	208

6 PERFORMANCE OF WELDED COVER

CONNECTION

7

209

6.1	Introduc	tion	209
6.2	Theoreti	cal Analysis of Connection	210
	6.2.1	Material and Geometrical Properties	210
	6.2.2	Members of Connection	212
	6.2.3	Properties of Connection Members	215
	6.2.4	Capacity of Connection Members	216
	6.2.5	Limit Slope of Connection Rigidity	218
	6.2.6	Design Capacity of Connection	222
6.3	Experim	ental Work	228
	6.3.1	Objective	228
	6.3.2	Specimen	228
	6.3.3	Test Procedure	231
	6.3.4	Test Result	232
6.4	Discussi	on	234
	6.4.1	Mode of Failure	234
	6.4.2	Location of Failure	236
	6.4.3	Rigidity of Connection	237
	6.4.4	Capacity of Connection	239
6.5	Conclus	ion Remarks	241
RESU	LTS AN	D DISCUSSION	242
7.1	Introduc	tion	242
7.2	Plasticity	y of Strengthened Cold-Formed Steel	
	Sections		243
7.3	Bending	Stiffness of Strengthened Cold-Formed	
	Steel See	ctions	245

	7.4	Moment Capacity of Strengthened Cold-Formed	
		Steel Sections in Bending	246
	7.5	Capacity of Connection	247
	7.6	Rigidity of Connection	248
	7.7	Predominant Parameters in the Strengthening of	
		Cold-Formed Beam	249
	7.8	Dominant Parameters Influencing the Connection	
		Capacity	255
	7.9	Conclusion Remarks	258
8	CON	ICLUSIONS	259
	8.1	Introduction	259
	8.2	Conclusions	259
	8.3	Further Study	260
EFEREN	CES		262

REFERENCES	262
Appendices A-L	267-335

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Limiting width to thickness ratios for sections other than CHS and RHS	33
2.2	Components of the connection capacity check	44
3.1	Types of the portal frame	87
3.2	Material and section properties of the rafter	94
3.3	Types and dimensions of the portal frame	94
3.4a	Reactions and moments for various span of portal frame PF-1	95
3.4b	Reactions and moments for various span of portal frame PF-2	96
3.4c	Reactions and moments for various span of portal frame PF-3	96
3.4d	Reactions and moments for various span of portal frame PF-4	96
3.4e	Reactions and moments for various span of portal frame PF-5	97
3.5a	Stability check of open section rafter of portal frame PF-1	106
3.5b	Stability check of open section rafter of portal frame PF-2	107
3.5c	Stability check of open section rafter of portal frame PF-3	107
3.5d	Stability check of open section rafter of portal frame PF-4	108
3.5e	Stability check of open section rafter of portal frame PF-5	108
3.6a	Stability check of closed section rafter of portal frame PF-1	109
3.6b	Stability check of closed section rafter of portal frame PF-1	109
3.6c	Stability check of closed section rafter of portal frame PF-1	110
3.6d	Stability check of closed section rafter of portal frame PF-1	110

3.6e	Stability check of closed section rafter of portal frame PF-1	111
3.7	Maximum. span and critical parameter of stability of the portal frames	111
3.8	Plastic section classification of rectangular hollow sections	114
3.9	Data of the connection models	122
3.10	Theoretical capacity of connection models	127
4.1	Properties of the beam specimen	131
4.2	Types of beam specimens	132
4.3	Plastic section classification of the specimens	134
4.4	Calculation of section area	137
4.5	Calculation of moment of inertia of the idealized section	137
4.6	Calculation of moment inertia of the effective section	145
4.7	Calculation of the effective plastic modulus	139
4.8	Section properties of the beam sections	140
4.9	Moment capacity of the beam specimens	142
4.10	Types of beam specimen	145
4.11	Experimental moment of inertia	156
4.12	Ratios of moment capacity	157
5.1	Coupon specimens	165
5.2	Tensile test results	167
5.3	Types of specimen used	170
5.4a	Assumed thickness, <i>t</i> of the strengthened sections	174
5.4b	Assumed width, <i>B</i> and effective width, <i>B</i> ' of the compression flange	174
5.4c	Assumed depth, D and effective depth, D' of the web	174

5.5a	Theoretical plastic section classification of the specimen CRBS-T1.5 ($f_y = 450$ MPa)	176
5.5b	Theoretical plastic section classification of the specimen CRBS-T1.9 ($f_y = 550$ MPa)	177
5.5c	Theoretical plastic section classification of the specimen CRB $(f_y = 400 \text{ MPa})$	S- T2.4 178
5.6	Plastic section classification of the specimens	179
5.7a	Section properties of the specimen CRBS-T1.5	181
5.7b	Section properties of specimen CRBS-T1.9	181
5.7c	Section properties of specimen CRBS-T2.4	182
5.8a	Moment capacities of the specimen CRBS-T1.5	183
5.8b	Moment capacities of the specimen CRBS-T1.9	183
5.8c	Moment capacities of the specimen CRBS-T2.4	184
5.9	Details of the beam specimens	187
5.10	Maximum moment and corresponding deflection and rotation	189
5.11	Maximum moment and theoretical plastic moments	195
5.12	Experimental second moment of inertia	196
5.13a	Ratios of second moment of inertia $(t = ts)$	197
5.13b	Ratios of second moment of inertia $(t = tp)$	197
5.13c	Ratios of second moment of inertia $(t = ts + ts)$	197
5.14	Second moment of inertia of the equivalent sections	198
5.15	Experimental moment capacity	199
5.16a	Ratios of moment capacity $(t = ts)$	200
5.16b	Ratios of moment capacity $(t = tp)$	200
5.16c	Ratios of moment capacity ($t = ts + tp$)	200
5.17	Ratios of the equivalent to total thicknesses	201

5.18a	Experimental moment capacity to plastic moment ratios $(t = t_s)$	202
5.18b	Experimental moment capacity to plastic moment ratios $(t = t_p)$	202
5.18c	Experimental moment capacity to plastic moment ratios $(t = t_s + t_p)$	202
5.19	Ratios of the equivalent to total thicknesses	203
6.1	Material properties of the specimens	210
6.2	Detail of connection members	214
6.3	Approached moment of inertia of the connected members	216
6.4	Approached moment capacity of the connected members	218
6.5	Slopes of the dividing line refer to Steel Construction Institut (1995)	e 220
6.6	Slopes of the dividing line refer to Steel Construction Institut (1995)	e 221
6.7	Theoretical connection capacity	225
6.8	Theoretical maximum force	227
6.9	Ratios of theoretical connection capacity	228
6.10	Detail of the connection specimens	229
6.11	Rotation at maximum moment	233
6.12	Experimental slope of the dividing line	238
6.13	Theoretical and experimental rigidity of the specimens	239
6.14	Maximum moment of the connections	239
6.15	Experimental maximum forces	240
6.16	Maximum force ratio	240
7.1	Moment ratio of the beams	246
7.2	Moment ratio of the connections	247
7.3	Slope ratio of connections	249

7.4	Ratios of strengthening moment	250
7.5	Ratios of section thickness and strengthening moment	251
7.6	Ratios of $\frac{D}{n+1}$ and strengthening moment	252
7.7	Ratios of screw spacing and strengthening moment	253
7.8	Ratios of the design strength and the strengthening moment	254
7.9	Ratios of cover plate thickness and moment	256
7.10	Ratios of cover plate length and moment	257

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Pinned base portal frame	8
2.2	Bending moment and shear force diagrams of pinned base portal frame	9
2.3	Determination of plastic moment of pinned base portal frame	11
2.4	Determination of plastic hinge locations	12
2.5	Plastic hinge locations at haunched portal frame	13
2.6	Portal frame with uniformly distributed load	14
2.7	Types of eaves connection	15
2.8	Types of apex connection	16
2.9	Diagrams of plastic analysis for pinned base portal frame (Righniotis, 1996)	18
2.10	Diagrams of plastic analysis for pinned base portal frame (Joannides and Weller, 2002)	19
2.11	Typical compound beams	31
2.12	Typical sections of plate girder	31
2.13	Stiffener plate of cold-formed steel C section	32
2.14	Cold-formed combined sections	32
2.15	Dimension of compound flanges(BSI, 2000)	34
2.16	Dimension for section classification of plate girders	34
2.17	Typical strengthened sections with welding	35
2.18	Connector holes on I section	36

2.19	Combined section of cold-formed steel and gypsum board	36
2.20	Dimension of equivalent combined sections	37
2.21	The moment-rotation of connection	39
2.22	Connections classification curves	40
2.23	Classification of joints by stiffness (BS EN 1993: 1-8: 2005)	42
2.24	Classification of joints by stiffness (Bjorhovde, 1990)	42
2.25	Connection checking zones	43
2.26	Components of the connection capacity check	44
2.27	Truss structure subject to point load panel	45
2.28	Lipped channel and hat sections	46
2.29	Section geometry	47
2.30	Bending test set-up	47
2.31	Failure mode of truss elements	48
2.32	A typical of cold-formed steel portal frame	49
2.33	Dimension and section geometry of the proposed section	49
2.34	Schematic drawing of portal frame test by Kwon et. al. (2006)	50
2.35	Schematic drawing of the portal frame test (Wilkinson, 2006)	50
2.36	Variables involved in design of hat, I and Z beams	52
2.37	Sections of beam specimens	53
2.38	Schema of end loading test	54
2.39	Dimension of Z and C sections	55
2.40	Simple, inside angled and outside angled returns lips of Z sections	55
2.41	Beam model and cold-formed steel sections	56
2.42	Built-up column using batten plate	58
2.43	Box beam edge loading	59

2.44	Schematic drawing of section, screw spacing and test of built up stud	60
2.45	Built-up closed column	61
2.46	Typical joint using press join method	62
2.47	Moment-rotation connection model of press joining method	62
2.48	Types of screw fastener	63
2.49	Dimensions of screwed connection specimens	64
2.50	Schematic drawing of column-base connection test	65
2.51	Setup of beam-column connection tests	66
2.52	Schematic drawing of portal frame test	66
2.53	Schema of single bolt specimens	67
2.54	Schema of double bolt specimens	68
2.55	Typical failure of bolted connections	68
2.56	Bearing failure of single shear single bolt connection	69
2.57	Double-lap fillet connections specimens	70
2.58	Single-lap fillet welded connection specimens	70
2.59	Double-lap flare-bevel welded connection specimens	71
2.60	Stiffened welded connection specimen	72
2.61	Unstiffened welded connection specimen	72
2.62	Screw patterns	73
2.63	Flexural failure of external beam-column sub-frame	74
2.64	Typical purlin arrangement	74
2.65	Lateral-torsional buckling of purlin	75
2.66	Setup of eaves connection test	76
3.1	Pinned base portal frame with uniform load	81
3.2	Dimension of purlin section (C 40030)	81

3.3	Elastic analysis curves	84
3.4	Plastic analysis curves	85
3.5	Configuration of the portal frames	88
3.6	Horizontal force at the base	88
3.7	Moment in the rafter	89
3.8	Moment in the column	90
3.9	Horizontal force and moments ratios	92
3.10	Typical configuration of portal frame suitable for the plastic design	93
3.11	Typical double C-sections	93
3.12	Types of portal frame used in the study	95
3.13	Portal Frame PF-5	98
3.14	Typical rectangular hollow section	112
3.15	Relation of B/D ratio and section thickness	115
3.16	Typical rectangular hollow section	116
3.17	Moment of inertia	117
3.18	Elastic modulus	117
3.19	Plastic modulus	117
3.20	Moment capacity	119
3.21	Plastic moment capacity	119
3.22	Types and details of the connection models	121
3.23	Tension and compression force in beam flange	123
3.24	Resistance of column flange in tension	124
3.25	Resistance of column web in tension	124
3.26	Force dispersion for web crushing	125
3.27	Length for web buckling	126

	X
Column web panel in shear	126
Dimension of the beam sections	131
Screw arrangements of the beam section	132
Dimension of the C channel section	136
Dimension of effective section	138
Schematic drawing of the strengthened beam	143
Photos of the beam specimen	145
Types of screw arrangement on flange and web of the stiffener	146
Drawing sketch of the beam-bending test	147
Determination of beam rotation	148
Determination of moment maximum	149
Load-deflection diagram of the specimens	151

4.12	Moment-rotation diagram of the specimens	154
4.13	Deflection of simply supported beam	155
4.14	Experimental load-deflection curve	156
4.15	Local deformation at mid span of specimens C1, C2 and CRS	159
4.16	Local deformation of specimens CRS-S1, S2 and S3	159
4.17	Failure location of specimens	160
5.1	Dimension of coupon specimen	164
5.2	Photos of some coupon specimens	165

3.28

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.3	Test of the coupon specimen	166
5.4	Assumed thickness for strengthened cold-formed sections	169
5.5	Assumed width and depth of the strengthened sections	169
5.6	Numbers of screw rows of specimen CRBS-T1.5	171
5.7	Numbers of screw rows of specimen CRBS-T1.9	171

5.8	Numbers of screw rows of specimen CRBS-T2.4	172
5.9	Specimen CRBS-T1.5	185
5.10	Specimen CRBS-T1.9	186
5.11	Specimen CRBS-T2.4	187
5.12	Schematic drawing of bending test	188
5.13	Determination of moment maximum	190
5.14	Test results of the specimen CRBS-T1.5	191
5.15	Test results of the specimen CRBS-T1.9	192
5.16	Test results of the specimen CRBS-T2.4	193
5.17	Test results of the specimens	194
5.18	Determination of experimental moment capacity	199
5.19	Failure of specimen CRBS-T1.5	205
5.20	Failure of specimen CRBS-T1.9	205
5.21	Failure of specimen CRBS-T2.4	206
5.22	Failure location of specimen CRBS-T1.5	207
5.23	Failure location of specimen CRBS-T1.9	207
5.24	Failure location of specimen CRBS-T2.4	207
6.1	Eaves location in portal frame	209
6.2	Schematic drawing of welded moment connection	210
6.3	Dimension of single C channel section	211
6.4	Hot-rolled stiffener plates	211
6.5	Cover plate of connection	212
6.6	Welded connection of single C section	212
6.7	Internal sleeve	213
6.8	Internal stiffeners	213

6.9	Stiffener attachment with self-drilling screws	214
6.10	Screws arrangement of connected members	215
6.11	Classification of moment connection based on the rotational (BS EN 1993: 1-8: 2005)	stiffness 219
6.12	Determination of the connection length	219
6.13	Classification of moment connection based on the rotational stiffness (Bjorhovde, 1990)	221
6.14	Distribution of force in connection members	226
6.15	Specimen CRBC-T1.5	230
6.16	Specimen CRBC-T1.9	230
6.17	Specimen CRBC-T2.4	231
6.18	Schematic diagram of connection tests	232
6.19	Moment-rotation curves of specimen CRBC-T1.5	233
6.20	Moment-rotation curves of specimen CRBC-T1.9	233
6.21	Moment-rotation curves of specimen CRBC-T2.4	234
6.22	Failure mode of specimen CRBC-T1.5	234
6.23	Failure mode of specimen CRBC-T1.9	235
6.24	Failure mode of specimen CRBC-T2.4	235
6.25	Failure location of specimens	237
6.26	Slope of moment-rotation diagram of the specimen CRBC-T1.5	238
7.1	Thickness limit of plastic section classification of assumption D2	245
7.2	Relation of strengthening moment and thickness ratios	251
7.3	Relation of strengthening moment and number of web screw rows ratios	252
7.4	Relation of strengthening moments and screw spacing ratios	253
7.5	Relation of strengthening moment and design strength ratios	254

Relation of cover plate length to moment ratios 257

7.6

7.7

7.8

LIST OF SYMBOLS

Α	-	section area
b	-	flange or section width; haunch length; flat width of the compression
		element
$b_{ m p}$	-	internal width of web plate
$b_{ m o}$	-	outstand of plate width
b_1	-	stiff bearing length
В	-	overall section width; constant of elastic analysis of portal frame;
		flange width for unstiffened or edge stiffened flanges, or half the
		overall flange width for stiffened flanges
B_{b}	-	beam flange width
$B_{\rm c}$	-	column flange width
B_1	-	section width
B_2	-	section depth
$B_{\rm eff}$	-	effective section width
С	-	distance from the end of the beam to the load or the reaction
С	-	constant of elastic analysis of portal frame; compression force
C_{b}	-	coefficient which may be conservatively assumed to be unity
$C_{\rm exp}$	-	experimental compression force
$C_{ m th}$	-	theoretical compression force
C_3	-	constant
C_4	-	constant
C_{12}	-	constant
d	-	section or web depth; haunch depth; deflection at mid-span
D	-	overall section depth; overall web depth
$D_{\rm e}$	-	equivalent depth of an intermediately stiffened web
D_2	-	distance between the centre line of the intermediate stiffener web and
		the tension element

е	-	height to hinge location at the bottom of haunch
Ε	-	modulus of elasticity
$E_{\rm s}$	-	modulus of elasticity of steel
$E_{ m g}$	-	modulus of elasticity of gypsum board
f	-	rise of portal frame roof
f_{a}	-	average stress
$f_{\rm av}$	-	average shear stress
f_v	-	shear stress
f_c	-	compressive stress of effective element
F_{v}	-	shear force
$F_{ m vexp}$	-	experimental shear force
$F_{ m v \ th}$	-	theoretical shear force
F_w	-	concentrated web load or reaction
g	-	roof height from base
G	-	shear modulus
h	-	eaves height of portal frame; constant which is equal to B_2/B_1
Η	-	horizontal force at base
$H_{\rm e}$	-	elastic horizontal force at base
H_{p}	-	plastic horizontal force at base
I_{app}	-	approach moment of inertia
$I_{ m g}$	-	moment of inertia of gypsum board section
Is	-	moment of inertia of steel section
I_{th}	-	theoretical moment of inertia
I_x	-	moment of inertia
I_{xr}	-	moment of inertia of reduced section
$I_{\rm xx}$	-	moment of inertia referring to X axis
I_1	-	moment of inertia of column
I_2	-	moment of inertia of rafter
k	-	constant of elastic analysis of portal frame; constant which is equal
		to $p_y/228$
K	-	local buckling coefficient; buckling coefficient of the compression
		flange
l	-	length of lip of C-section

L	-	span length; connection length
$L_{\rm c}$	-	cover plate length
L_{E}	-	effective length
т	-	constant of elastic analysis of portal frame
М	-	bending moment for a loading system; bending moment acting at the
		action as F_{v}
$M_{\rm b}$	-	buckling resistance moment
M_{c}	-	moment capacity of section
$M_{c}^{'}$	-	actual moment capacity
M_{cr}	-	critical bending moment
$M_{\rm exp}$	-	experimental moment
$M_{ m th}$	-	theoretical moment
M_{E}	-	elastic lateral buckling resistance moment
M_r	-	moment in portal frame rafter
M _{re}	-	elastic moment in portal frame rafter
M_{rp}	-	plastic moment in portal frame rafter
M_l	-	moment in portal frame column
M_{le}	-	elastic moment in portal frame column
M_{lp}	-	plastic moment in portal frame column
$M_{ m p}$	-	plastic moment
$M_{\rm x}$	-	moment at point X
M_{c}	-	moment capacity of section
$M_{\rm cr}$	-	critical bending moment
n_1	-	length obtained by a 45° dispersion through half the depth of column
n_2	-	length obtained by a 1:2.5 dispersion through the column flange and
		root radius
Ν	-	constant of elastic analysis of portal frame; actual length of bearing;
		axial force
$N_{\rm exp}$	-	experimental axial force
$N_{ m th}$	-	theoretical axial force
p_{cr}	-	local buckling stress of element
p_{y}	-	design strength

p_o	-	limiting compressive stress in a flat web
p_v	-	design strength
p_{vc}	-	design strength of column
$P_{\rm c}$	-	resistance of column web in compression zone
Р	-	applied point load
$P_{\rm c}$	-	column web capacity in crushing/ bearing; column web capacity in
		buckling
$P_{\rm cf}$	-	beam flange capacity in compression
P_{exp}	-	experimental ultimate load
$P_{ m th}$	-	theoretical ultimate load
P_{th}	-	theoretical ultimate load
$P_{\rm max}$	-	ultimate load
$P_{\rm s}$	-	theoretical ultimate load
$P_{\rm t}$	-	tension capacity of unstiffened column web
$P_{\rm tc}$	-	column web capacity in bending
$P_{ m tf}$	-	beam flange capacity in tension
P_{th}	-	ultimate load
P_{ν}	-	shear capacity or shear buckling resistance
$P_{\rm w}$	-	concentrated load resistance of a single web
q	-	constant generally $0.6 - 0.7$
$q_{ m cr}$	-	shear buckling stress of a web
r	-	inside bend radius
r _c	-	column root radius
r_y	-	radius of gyration of section about Y axis
$R_{ m mb}$	-	moment ratio of beam
$R_{\rm mc}$	-	moment ratio of connection
$R_{\rm ms}$	-	ratio of strengthening moment
$R_{\rm s}$	-	ratio of slope
$R_{\rm t}$	-	ratio of section thickness
S	-	rafter length
sf	-	fillet weld leg length to beam flange
S	-	plastic modulus of section
Sexp	-	experimental curve slope

S_{x}	-	experimental curve slope about X-axis
$S_{\rm xr}$	-	experimental curve slope
t	-	flange or web thickness; material thickness; compression element
		thickness
t _b	-	beam web thickness
<i>t</i> _{br}	-	thickness of bracing plate
t _c	-	thickness of cover plate; column web thickness
t _{eq}	-	equivalent thickness of section
tp	-	thickness of stiffener plate
ts	-	thickness of original section
Т	-	flange thickness; tension force
$T_{\rm b}$	-	beam flange thickness
$T_{\rm c}$	-	column flange thickness
$T_{\rm exp}$	-	experimental tension force
T_{th}	-	theoretical tension force
и	-	deflection of the centre of the flange towards the neutral axis
$U_{\rm s}$	-	minimum ultimate tensile strength
V	-	vertical reaction of support; shear force
W	-	uniformly distributed load
x	-	points distance
\overline{y}	-	distance of flange from neutral axis
$Y_{\rm s}$	-	minimum yield strength
Ζ	-	section modulus
Z_{c}	-	bending compression modulus for full cross section
Z _x	-	elastic modulus to X axis
α	-	coefficient of linear thermal expansion
β	-	ratio of the smaller end moment to the larger end moment M in the
		unbraced length of a beam
Δ	-	deflection for given loading system
Δ_c	-	deflection corresponding to M_c
Δ_{cr}	-	deflection of beam corresponding to M_{cr}
Е	-	constant
Ø	-	constant of elastic analysis of portal frame; rotation

- η Perry coefficient
- θ angle (in degrees) between plane of web and plane of bearing surface
- v Poisson's ratio

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Table 11 and Table 12 of BS 5950 Part 1: 2000	267
В	Minimum yield strength of CFS sections, Y_s	269
С	Local buckling coefficient, K	270
D	Ratio of moment coefficient, β	272
E	Calculation of <i>w</i>	273
F	Calculation example of H , M_r and M_l	276
G	Section properties of section 2LL25430	281
H1	Stability check of open rafter	283
H2	Stability check of closed rafter	294
Ι	Test results of the small beam specimens	304
J	Tensile test results	307
Κ	Calculation example of M_c and M_p	320
L	Test results of the strengthened beams (CRBS)	329
М	Test results of the welded cover connections	
	(CRBC)	333

CHAPTER 1

INTRODUCTION

1.1 Overview

To date, the majority use of cold-formed steel on buildings is for roof and wall framing, cladding, purlins and railing with C channel, Z and I are the frequently used sections. As cold-formed steel sections are composed of thin elements, usually such sections are categorized as slender section due to the width to thickness b/T of the flange and depth to thickness d/t of the web ratios are relatively large. Thus, generally the sections are vulnerable to local buckling particularly on those compression elements subjected to bending or in axial compression.

In single storey industrial buildings, portal frames are a widely used typical structure because of their cleanliness, good overhead clearance and relatively low cost. Commonly, such frames are designed using plastic method to obtain an economical structure although the detailed stability check is required. So far, hot–rolled steel is the material which satisfies the requirement for such structures because of having ability to yield perfectly in tension as well as in compression. In addition, the hot-rolled connections have a sufficient rotational stiffness to form plastic hinge.

To expand the application of cold-formed steel in buildings, its use as portal frame members for replacing the hot-rolled needs to be considered. This is because cold-formed steel sections have advantages such as its light self-weight and corrosion-free problems. Otherwise, these are some weaknesses needed to be solved mainly due to the local buckling and low rotational stiffness connection.

1.1 Background of Research

The use of cold-formed steel sections as portal frame members of single storey industrial buildings is very rare. This mainly is due to their insufficient stability to withstand the large forces (i.e. horizontal force at the base, moment in the rafter and moment in the column) normally induced in portal frame structure. Previous studies (Vos and Rensburg, 1977; Lim and Nethercot, 2004; Kwon *et al.*, 2006; Wilkinson, 2006) on this matter have not been performed extensively. Most existing research studied the cold-formed open sections subjected to bending or in compression of C channel, Z, L or I section (Adeli and Karim, 1997; Schafer and Pekoz, 1999; Pan and Yu, 2001; Corte *et al.*, 2003; Young and Hancock, 2003; Yu and Schafer, 2003; Nguyen *et al.*, 2006; Madry and Ignatowitcz, 2008). In addition, some researchers (LaBoube and Yu, 1998; Nuttayasakul and Easterling, 2006; Wood and Dawe, 2006; Dawe *et al.*, 2009) have conducted researches on cold-formed steel sections for roof truss structure using a cold-formed lipped channel open section. In addition, a hat section was also used in the study by another researcher (Tahir *et al.*, 2006).

The use of cold-formed closed section is an alternative to derive a better stability of section. A study on stability of the closed section had been performed by previous researchers but it was limited to the members subjected to bending (Serrette, 2004; Young and Chen, 2008; Xu *et al.*, 2009). The only investigation on behaviour of cold-formed closed sections in portal frame had been carried-out. The study used cold-formed rectangular hollow sections with a relatively large thickness (Wilkinson, 2006). In fact, this type of section cannot be easily found in market. Therefore, it is a need to consider constructing a closed section by combining the existing and common sections.

A main weakness of applying cold-formed steel sections as portal frame members is the local buckling problem. This is because such sections are composed of thin elements in which the width to thickness b/T of the flange and depth to thickness d/t of the web ratios are relatively large. Consequently, in general coldformed steel sections are categorized as slender section which causes buckling on the compression elements of the section at a stress level lower than the material yield strength. In order to prevent the local buckling, adding the thickness of the compression elements may be required.

In addition, another problem of applying cold-formed steel sections in portal frame besides the local buckling is low rotational stiffness of the connection. Although, all the types of the connections commonly used in hot-rolled steel structure can be applied to cold-formed steel, bolted connection is the type often used for the cold-formed moment connection. However, such connections can not be classified as rigid connection.

1.2 Problem Statement

This study is performed in order to enhance the use of cold-formed steel sections in buildings particularly for portal frame members. The main problems of applying such sections as portal frame members to be designed plastically are the local buckling and low rotational stiffness of the connection due to the local buckling.

Therefore, this research emphasize on how to prevent the local buckling of cold-formed steel sections so increasing the section capacity and how to improve the rotational stiffness of the connection. Thus, the problems to be solved of this study are the suitable section strengthening and connection methods of cold-formed steel particularly for portal frames have not been found.

The idea to strengthen cold-formed steel sections by adding the thickness of compression elements of the section in order to increase the section capacity is a relatively original concept. Likewise, the rigid connection of cold-formed members proposed by using cover plate is. Thus, this research is expected to increase the capacity of cold-formed steel sections. In addition, it is also expected that the proposed rigid connection can be achieved.

1.3 Objectives of Study

The objective of this study is to investigate the possibility of applying coldformed steel sections in portal frame to be designed plastically. In detail, the objectives of this study are as follows:

- (i) To generate design charts of pinned base portal frames;
- (ii) To investigate analytically behaviour of cold-formed steel sections and its stability in portal frame;
- (iii) To investigate experimentally effect of section strengthening and screw arrangements to the properties and capacity of small coldformed steel beams;
- (iv) To derive the design strength Y_s of the cold-formed and hot-rolled steel coupons;
- (v) To investigate experimentally effect of the section strengthening method to the plastic section classification, section properties and capacity of strengthened cold-formed steel beams;
- (vi) To investigate experimentally effect of the connection method to rigidity and capacity of the strengthened cold-formed steel connections.

1.4 Scope of Study

The scope of this research includes theoretical analysis and experimental test,

which encompasses the following items:

- (i) Elastic and plastic analysis diagrams of pinned base portal frame; Portal frames with simply supported at the base, single storey and subjected to a uniformly distributed load were analyzed base on the elastic and plastic methods. The horizontal force at the base, moment in the rafter and moment in the column curves for elastic and same parameters for plastic with respect to rise/span and span/eaves height were generated.
- (ii) Plasticity behaviour of cold-formed steel sections;

Six analytical studies were performed to investigate behaviour of cold-formed steel sections applied as portal frame members which were elastically and plastically analyzed. Stability of the rafter of open and closed sections was also checked. Effect of the B/D ratio to the plastic section classification of the cold-formed rectangular hollow section was determined. Properties and capacities of the cold-formed steel section and connections were calculated based on BS 5950 Part 5: 1998.

(iii) Capacity of strengthened cold-formed beams;

Three section types were used which are C channel, rectangular hollow and strengthened rectangular hollow sections. Plastic section classification, section properties and design capacity of the sections were calculated based on the design standard, BS 5950 Part 1: 2000 and BS 5950 Part 5: 1998. The experiment on six beams on C channel, rectangular hollow without strengthening and strengthened with hot-rolled plate was also performed. Form six beams, three rectangular hollow sections were strengthened by increasing the thickness of the web and compression flange using a splice of hotrolled plate of 1 mm thickness. The plates were attached to the original section using self-driven screws. And the different number of screw and screw spacing were adopted. The results from theory and experimental were compared.

(iv) Performance of moment connection of the strengthened cold-formed members;

Three moment connections had been tested in this study i.e. welded, unbraced cover and braced cover connections. All the connections were strengthened by internal sleeve made of hot-rolled steel of 5 mm thickness. The connection members were closed sections formed of two channel sections which were face-to-face welded. The members were strengthened referring to the result of the strengthened coldformed steel beam test. The connections were tested by applying horizontal point load on the rolled point on the connections edge. Maximum load, deflection and rotation adjacent to the observed point of the connection were recorded. Moment-rotation diagrams, rigidity and capacity of the connections were obtained. The experimental and theoretical results were compared.

1.5 Organization of Thesis

This thesis is structured as follows: Chapter 2 contains a literature review which covers basic theory and previous studies on portal frame analysis, cold-formed steel stability, strengthening of cold-formed steel sections and portal frame connections. The chapter provides the basis to draw the portal frame analysis diagrams and overall review of cold-formed steel members subjected to bending. In addition, some methods of steel section strengthening and rigid connection concept are described. Chapter 3 discusses the analytical study on structure and elements of cold-formed steel portal frame. Chapter 4 outlines the experimental study using model while Chapter 5 and Chapter 6 explain the full-scale study has been performed. Results obtained from this research and the discussion is presented in Chapter 7. Finally, Chapter 8 provides some conclusions and suggestions for further study.

REFERENCES

- Adeli, H.and Karim, A. (1997). Neural Network Model for Optimization of Cold-Formed Steel Beams. *Journal of Structural Engineering*, ASCE. 123 (11): 1535-1543.
- Beng, K. F. C. (1993). Building Design using Cold-Formed Steel Sections: Work Examples to BS 5950: Part 5: 1987. Berkshire: The Steel Construction Institute.
- Bjorhovde, R., Colson, A., Brozzetti, J. (1990). Classification System For Beam-To-Column Connections. *Journal of Structural Engineering*, ASCE. 116 (11): 3059-3076.
- British Standarts Institution (1987). BS 5950: Structural Used of Steelwork in Building Part 5: Code of Practice for Design of Cold Formed Section. London: The Steel Construction Institute.
- British Standards Institution. (2000). BS 5950: Structural Used of Steelwork in Building Part 1: Code of Practice for Design in Simple and Continuous Construction: Hot-Rolled Section. London: The Steel Construction Institute.
- British Standards Institution. (2010). BS EN 1993-1-8:2005 Eurocode 3: Design of Steel Structures Part 1-8: Design of Joints. London: The Steel Construction Institute.
- Cheung, H. H. (2005). *Structural Behaviour of Lapped Cold-Formed Steel Z Sections*. Doctor Philosophy, The Hongkong Polytechnic University, Hongkong.
- Chung, K. F. and Lau, L. (1999). Experimental Investigation on Bolted Moment Connections Among Cold-Formed Steel Members. *Engineering Structures*. 21 (1999): 898-911.
- Corte, G. D., Martino, A. D., Fiorino, L., Landolfo, R. (2003). Numerical modelling of Thin-Walled Cold-Formed Steel C-Sections in Bending. *The International Conference on Advances in Structures (ASSCCA'03)*.22-25 June: 379-385.
- Davison, B. and Owens, G. W. *Steel Designer's Manual* (5th ed.). (311-321). London: Blackwell Science Publishing.

- Dawe., J. L., Liu, Y., Li, J. Y. (2010). Strength and Behaviour of Cold-Formed Steel Truss Offset. *Journal of Constructional Steel Research*. 66 (2010): 556-565.
- Dundu, M. and Kemp, A. R. (2006). Plastic and Lateral Torsional Buckling Behaviour of Single Cold-Formed Channels Connected Back to Back. *Journal* of Structural Engineering, ASCE. 132 (8): 1223-1233.
- Joannides, F. and Weller, A. (2002). *Structural Steel Design to BS 5950: Part 1*. London: Thomas Telford Publishing.
- Kwon, Y. B. and Chung, H. S. (2006). Experiments of Cold-Formed Steel Connections and Portal Frames. *Journal of Structural Engineering, ASCE*. 132 (4): 600-607.
- LaBoube, R. A. and Yu, W. W. (1998). Recent Research and Developments in Cold-Formed Steel Framing. *Thin-Walled Structures*. 32 (1998): 19-39.
- LaBoube, R. A., Yu, W. W., Deshmukh, S. U., Uphoff, C. A. (1999). Crippling Capacity of Web Elements with Openings. *Journal of Structural Engineering*, *ASCE*. 125 (2): 137-141.
- LaBoube, R. A. and Sokol, M. A. (2002). Behaviour of Screw Connections in Residential Construction. *Journal of Structural Engineering*, ASCE. 128 (1): 115-118.
- Lam, D., Ang, T. C., Chiew, S. P. (2004). Structural Steelwork Design to Limit State Theory (3th ed.). Oxford: Elsevier Butterworth-Heinemann.
- Lim, J. B. P. and Nethercot, D. A. (2004). Finite Element Idealization of a Cold-Formed Steel Portal Frame. *Journal of Structural Engineering*, ASCE. 130 (1): 78-94.
- Madry, D. and Ignatowicz, L. (2008). Experimental and Analytical Studies on Local Instability and Collapse of Thin-Walled Beams. *Studia Geotechnica et Mechanica*. XXX (2-4): 3-16.
- Mikhelson, I. (2004). Structural Engineering Formulas. New York: McGraw-Hill.
- Mills, J. E. (2003). Knee Joints in Portal Frames Constructed from Thick Cold-Formed Channel Members. *The International Conference on Advances in Structures (ASSCCA'03)*.22-25 June: 269-274.
- Moena, C. D., Schafer, B. W. (2009) Elastic buckling of cold-formed steel columns and beams with holes. *Engineering Structures*. *ScienceDirect* 31: 2812-2824.

- Moss, S. R. and Mahendran, M. (2003). Structural Behaviour of Self-Piercing Riveted Connections in G300 and G550 Thin Sheet Steels. *The International Conference on Advances in Structures (ASSCCA'03)*.22-25 June: 275-280.
- Nguyen, N. T. B., Fung, T. C., Young, B. (2006). Strength and Behaviour of Cold-Formed Steel Z Section Subjected to Major Axis Bending. *Journal of Structural Engineering*, ASCE. 32 (10): 1632-1640.
- Nuttayasakul, N. and Easterling, W. S. (2006). Behaviour of Complex Hat Shapes
 Used as Truss Chord Members. *Journal of Structural Engineering, ASCE*. 132 (4): 624-630.
- Osman, M.H. Saim, A. A. Saleh, A. L. (2006). Strength Test on Stainless Steel Purlins (Final Report) for Yick Hoe Metal Industries Sdn Bhd. Skudai: CETU UTM.
- Owens, C. W. and Cheal, B. D. (1989). *Structural Steelwork Connections*. London: Butterworths.
- Pam, M. M, Mills, J. E., Zhuge, Y. (2003). Finite Element Analysis of Strucutral Knee Joints for Cold-Formed Portal Frame. *The International Conference on Advances in Structures (ASSCCA'03)*.22-25 June: 263-274.
- Pan, C. L. and Yu, W. W. (2001). Yield Moment of Cold-Formed Steel Beams under Different Strain Rates. *Journal of Structural Engineering, ASCE*. 127 (3): 264-270.
- Pedreschi, R. F., Sinha, B. P., Davies, R. (1997). Advanced Connection Techniques for Cold-Formed Structures. *Journal of Structural Engineering*, ASCE. 123 (2): 138-144.
- Ramseyer, C. C. E. (2006). *Axial Load Capacity of Cold-Formed Steel Sections*. Doctor Philosophy, Graduate College University of Oklahoma, US.
- Rasmussen, K. J. R. and Hancock, G. J. (1993). Design of Cold-Formed Stainless Steel Tubular Members II: Beams. *Journal of Structural Engineering, ASCE*. 119 (8): 2368-2386.
- Rogers, C. A. and Hancock, G. J. (1993). Bolted Connection Tests of Thin G550 and G300 Sheet Steels. *Journal of Structural Engineering, ASCE*. 124 (7): 798-806.
- Rogers, C. A. and Hancock, G. J. (1999). Screwed Connection Tests of Thin G550 and G300 Sheet Steels. *Journal of Structural Engineering*, ASCE. 125 (2): 128-136.

- Salem, A. H., Aghoury, M. A. E., Hassan, S. K., Amin, A. A. (2004). Post-Buckling Strength of Battened Columns Built from Cold-Formed Lipped Channels. *Emirates Journal for Engineering Research*. 9 (2): 117-125.
- Schafer, B. W. and Pekoz, T. (1999). Laterally Braced Cold-Formed Steel Flexural Members with Edge Stiffened Flanges. *Journal of Structural Engineering*, *ASCE*. 125 (2): 118-127.
- Serrette, R.L. (2004). Performance of Edge-Loaded Cold-Formed Steel Built-Up Box Beams. Practice Periodical on Structural Design and Construction, ASCE. 9 (3): 170-174.
- Serrette, R.L., and Peyton, D. (2009). Strength of Screw Connections in Cold-Formed Steel Construction. *Journal of Structural Engineering*, ASCE. 135 (8): 951-958.
- Shan, M. Y., LaBoube, R. A., Yu, W. W. (1996). Bending and Shear Behaviour of Web Element with Openings. *Journal of Structural Engineering*, ASCE. 122 (8): 854-859.
- Stone, T. A. and LaBoube, R. A. (2005). Behaviour of Cold-Formed Steel Built-Up I-Sections. *Thin-Walled Structures*. 43 (2005): 1805-1817.
- Sum, N. Z. (2006). Performance of Stainless Purlin in Bending. Master of Science, Universiti Teknologi Malaysia, Skudai.
- Tahir, M. Md., Siang, T. C., Ngian, S. P. (2006). Typical Tests on Cold-Formed Steel Structures. *The 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006)*. 5-6 September. Kuala Lumpur, A246-A258.
- Teh, L. H. and Hancock, G. J. (2005). Strength of Welded Connections of G450 Sheet Steels. *Journal of Structural Engineering, ASCE*. 131 (10): 1561-1569.
- The Steel Construction Institute (SCI). (1983). Steel Designer's Manual Fourth Edition (Revised Edition). New York: Granada.
- The Steel Construction Institute (SCI) (1995). *Joints in Steel Construction: Moment Connections*. London: The Steel Construction Institute.
- Vos, G. P. D. and Rensburgh, B. W. J. V. (1997). Lightweight Cold-Formed Portal Frames for Developing Countries. *Building and Environmental*. 32 (5): 417-425.
- Walker, A.C. (Ed.). (1975). Design and Analysis of Cold-Formed Sections. London: International Textbook Company.

- Wallace, J. A., LaBoube, R. A., Schuster, R. M. (2001). Calibrations of Bolted Cold-Formed Steel Connections in Bearing (with and without Washers), Final Report. Washington: American Iron and Steel Institute.
- Wilkinson, T. J., Hancock, G. J. (1998). Test of Stiffened and Unstiffened Welded Knee Connections in Cold-Formed Rectangular Hollow Sections. *The 8th International Symposium in Tubular Structure*. August. Singapore: 177-186.
- Wilkinson, T. J. (2006). *The Plastic Behaviour of Cold-Formed Rectangular Hollow Sections*. Doctor Philosophy, University of Sydney, Australia.
- Wood, J. V. and Dawe, J. L. (2006). Full-Scale Test Behaviour of Cold-Formed Steel Roof Trusses. *Journal of Structural Engineering, ASCE*. 132 (4): 616-623.
- Xu, L., Sultana, P., Zhou, X. (2009). Flexural Strength of Cold-Formed Steel Built-Up Box Sections. *Thin-Walled Structures*. 47 (2009): 807-815.
- Young, B. and Hancock, G. J. (2003). Cold-Formed Steels Channels Subjected to Concentrated Bearing Load. *Journal of Structural Engineering*, ASCE. 129 (8): 1003-1010.
- Young, B. and Chen, J. (2003). Design of Cold-Formed Steels Built-Up Closed Sections with Intermediate Stiffener. *Journal of Structural Engineering*, ASCE. 134 (5): 727-737.
- Yu,W. W. (2000). Cold-Formed Steel Design (3th ed.). Canada: John Wiley & Sons, Inc.
- Yu, C. and Schafer, B. W. (2003). Analysis and Testing of Cold-Formed Steel Beams. *The International Conference on Advances in Structures (ASSCCA'03)*. 22-25 June: 387-395.
- Yu, C. and Schafer, B. W. (2003). Local Buckling Tests on Cold-Formed Steel Beam. Journal of Structural Engineering, ASCE. 129 (12): 1596-2606.
- Yu, W. K., Chung, K. F., Wong, M. F. (2005). Analysis of Bolted Moment Connections in Cold-Formed Steel Beam-Column Sub Frames. *Journal of Constructional Steel Research*. 61 (2005): 1332-1352.
- Yu, C., Xu, K. and Sheerah, I. (2011). Bearing Strength of Cold-Formed Steel Bolted Connections Using Oversized Holes Without Washers. *Journal of Structural Engineering, ACSE.* 137 (1): 156–159.