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ABSTRACT 

 

 

 

 

 Nanocrystalline silicon thin film is a promising material potentially used in 

the optoelectronic field due to its improved and unique properties.  In this work, 

nanocrystalline silicon thin films were grown by using a 150MHz VHF-PECVD to 

study the effect of  deposition times, substrate temperatures and RF powers on their 

structural and optical properties.  The thicknesses of the films were found to be in the 

range of 100 nm to 300 nm.  Surface analysis from FESEM and AFM showed the 

existence of  grain-like morphology which was later determined by EDX as silicon 

grains.  The average grain diameter given by AFM analysis was around 50 nm.  

Surface roughness was found to be strongly dependent on the grain diameter where 

larger grain sizes showed a rougher surface.  In average, surface rms roughness was 

1.00 nm.  Analysis from Raman showed that the films comprised of two phases, 

namely amorphous and nanocrystalline as revealed by a peak at 510 cm
-1

 with 

pronounced shoulder on lower frequency.  The presence of nanocrystalline silicon 

was evident from the red-shift of peak frequency from those of pure crystalline 

silicon at 520 cm
-1

.  The average grain size as obtained from Raman was around 3 

nm.  Optical energy band gap, Eg
opt

 deduced from Tauc’s plot and energy band gap, 

Eg obtained from PL were found to be higher than 1.12 eV within the range of 1.66 – 

2.51 eV.  All analysis showed that the properties of nc-Si were size dependent and 

followed the quantum confinement effect.  
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ABSTRAK 

 

 

 

 

 Filem tipis silikon nanokristal merupakan satu bahan yang menjanjikan 

potensi untuk digunakan dalam bidang optoelektronik disebabkan penambahbaikan 

dan keunikan sifatnya.  Dalam kajian ini, filem tipis silikon nanokristal telah 

ditumbuhkan dengan menggunakan 150MHz VHF-PECVD untuk melihat kesan 

masa pertumbuhan, suhu substrat dan kuasa RF ke atas sifat struktur dan optik 

mereka.  Ketebalan filem adalah dalam julat 100 nm hingga 300 nm.  Analisis 

permukaan dari FESEM dan AFM menunjukkan kehadiran struktur seperti butiran 

yang kemudian ditentukan oleh EDX sebagai butiran silikon.  Purata diameter 

butiran yang diberi oleh analisis AFM ialah sekitar 50 nm.  Kekasaran permukaan 

didapati adalah sangat bergantung kepada diameter butiran di mana butiran yang 

lebih besar memberikan permukaan yang lebih kasar.  Secara purata, kekasaran 

permukaaan ialah 1.00 nm.  Analisis dari Raman menunjukkan filem terdiri daripada 

dua fasa, iaitu amorfus dan nanokristal seperti ditunjukkan melalui puncak pada 510 

cm
-1

 dengan bahu pada frekuensi yang lebih rendah.  Kehadiran silikon nanokristal 

adalah terbukti melalui peralihan-merah frekuensi puncak daripada puncak silikon 

kristal tulen pada 520 cm
-1

.  Purata saiz butiran yang diperolehi daripada Raman 

ialah di sekitar 3 nm.  Tenaga jurang optik, Eg
opt

 seperti disimpulkan oleh plot Tauc 

dan tenaga jurang, Eg yang diperolehi daripada PL adalah lebih tinggi daripada 1.12 

eV di dalam julat 1.66 – 2.51 eV.  Semua analisis menunjukkan sifat silikon 

nanokristal adalah bergantung kepada saiz dan memenuhi kesan pengurungan 

kuantum. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

In 1959, Richard Phillips Feynman highlights a topic that has change the 

world as we know it today.  His talk, “There’s Plenty of Room at the Bottom” has 

become the starting point on the manipulation and control of things at a small scale.  

Many decades after his inspiring talk, we are now able to manipulate and control 

materials so small, that we cannot even see it with naked eyes.   

 

 

Nanomaterials, ranging from a few to a couple hundred nanometres in size, 

have offered a whole new perspective on the properties of material at atomic scale.  

It is of interests that as size of materials are comparable to that of exciton Bohr 

radius, its properties are different from their bulk due to the domination of quantum 

confinement effect. 

 

 

 Nanostructured materials can be produced in two ways; top-down and 

bottom-up approach.  As the name implies, in top-down approach, large scale 
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materials are made smaller and smaller until it reaches nanoscale while in bottom-up 

approach, nanostructure materials are build from the bottom: atom-by-atom, 

molecule-by-molecule, or cluster-by-cluster.  Top-down approach gives a control of 

the manufacturing of smaller and more complex object.  However, it has a 

disadvantage of possible imperfection of the surface structure that would have a 

significant impact on its properties.  Meanwhile, the nature of self-assembly in 

bottom-up approach gives advantage of a more homogenous chemical composition 

with fewer defects to the surface morphology.  This approach also made the 

formation and structure of material much easier (Cao, 2004).  Techniques that have 

been developed for bottom-up approach includes sputtering, plasma-enhanced 

chemical vapor deposition (PECVD) and ion implantation.  

 

 

 There are three forms of nanostructure, quantum well, quantum wire and 

quantum dots (also referred to as nanocrystals or nanoparticles).  The classification 

of the nanostructures is based on the dimensions that are reduced.  If there is only 

one dimension being reduced to nanoscale, it is called quantum well.  If two 

dimensions are on nanoscale, it is called quantum wire while quantum dot is referred 

to materials that are made nanoscale in all three dimensions.  

 

 

 Silicon (Si) is the principal component in most semiconductor devices.  Its 

unique properties allow Si to remain a semiconductor at a higher temperature 

compared to germanium.  Si also has the ability to form a native oxide layer to create 

a better semiconductor/dielectric interface than any other material.  However, Si is 

also known as a poor light emitter, a result of its indirect energy gap.  When a report 

is made on visible photoluminescence (PL) from porous silicon in 1990, it has 

triggered the hope of developing Si as a component in the optoelectronic devices 

(Jutzi and Schubert, 2003; Kumar, 2008).  Reports on the shifting of 

photoluminescence peak to a higher energy as silicon is reduced to nanoscale has 

further increase the interest in nanostructure silicon. 
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 Nanocrystalline silicon (nc-Si) has been a widely studied structure because of 

the discoveries that its properties can be tuned just by controlling the size of the 

crystals.  There are also the advantages of enhanced carrier mobility, very low light-

induced degradation and light absorption in infrared region of solar spectrum which 

further increase the possibility of using it as a leading material in optoelectronic 

devices (Chowdhury et al., 2008).   

 

 

 With all these new, improved and unique properties reported as being 

possibly owned by nanostructure Si, more and more studies are need to be conducted 

in order to better understand the wonder of this material.  The understandings of its 

structural and optical properties are important for future research activities. 

 

 

 

 

1.2 Problem Statement 

 

 

Recently, nanoscale crystalline materials have been the most talked about 

material especially in the field of optoelectronics.  It triggered such interest because 

of the emergence of new, unique an interesting properties compared to those of its 

bulk material.  nc-Si in different sizes, shape and quality are produced through 

different physical vapour deposition (PVD) and chemical vapour deposition (CVD) 

growth techniques.  Among the techniques, plasma enhanced CVD (PECVD) has 

been the one widely used due to its ability to grow high quality nc-Si at high 

deposition rate and at lower cost.  A conventional PECVD operates at plasma 

excitation frequency of 13.56 MHz.  Over the decades, a variety of plasma excitation 

frequencies have been developed to increase the quality of nc-Si films grown by 

PECVD. However, most of them are in the medium high frequency range (MHF) 

such as 50MHz, 54.24MHz and 60MHz.  The idea of using a very high frequency 

(VHF) PECVD to grow nc-Si films has not captured the attention of many 

researchers so far despite the piling reports on better quality of the films obtained by 

increasing the plasma excitation frequency.  Therefore, this research seek to gain an 
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insight on the growth of nc-Si films by PECVD at the highest plasma excitation 

frequency ever reported, which is 150MHz.   The growth process is then controlled 

by varying three specified growth parameters which are deposition time, substrate 

temperature and RF power to see their effect on its structural and optical properties. 

 

 

 

 

1.3 Objectives of the Research 

 

 

(i) To grow nanocrystalline silicon (nc-Si) using 150MHz Plasma 

Enhanced Chemical Vapor Deposition (PECVD) 

(ii) To characterize the structural properties (surface morphology, 

crystallinity, grain size) of nc-Si under different growth parameters 

(deposition time, substrate temperature, RF power) 

(iii) To characterize the optical properties (absorption coefficient, energy 

band gap) of nc-Si under different growth paramaters (deposition 

time, substrate temperature, RF power) 

 

 

 

 

1.4 Scope of the Research 

 

 

This research focused on the characterization of nc-Si grown by 150 MHz 

PECVD technique developed at Ibnu Sina Institute, Universiti Teknologi Malaysia, 

Skudai.  Substrate temperature, plasma power and deposition time are being varied to 

see the effect it has on the structural and optical properties of nc-Si.  The following 

setting parameters has been identified: Substrate temperatures vary from 100°C to 

400°C, deposition times between 5 to 20 minutes and RF power ranging from 12-

24W.  Samples of nc-Si thin films were fabricated on three different substrates for 

specific characterization measurements; corning glass 7059 for structural studies, 
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quartz for optical studies and, crystalline Si wafer for Fourier Transform Infrared 

(FTIR) studies.   

 

 

Film thickness is obtained by using spectroscopic ellipsometer (SE).  Field 

Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy 

(AFM) were then used to probe the surface morphology of nc-Si thin films.  The 

elemental composition is characterized by Energy Dispersive X-ray (EDX) and 

Fourier Transform Infrared spectroscopy (FTIR).  Photoluminescence spectroscopy 

(PL) and UV/Vis spectrophotometer were used to obtain the information on 

absorption coefficient and energy gap of the nc-Si thin films.  

 

 

 

 

1.5 Significance of the Research 

 

 

Before 1990, less attention were given to Si as a promising material in the 

field of optoelectronic.  Only after the Canham report on visible photoluminescence 

of porous-Si did scientist starts to have interest in this particular material.  With the 

emerging of nanoscience, there have been more reports on Si at nanoscale as having 

interesting properties which starts to make it the centre of attention.  Among many Si 

nanostructures, intensive studies on nc-Si has lead to promising potential in 

optoelectronic applications such as in thin film solar cells, thin film transistors and 

single electron transistors (Tamir and Berger, 2000; Shen et al., 2003; Ali, 2006; 

Chowdhury et al., 2008; Dalal et al., 2008).  The properties of nc-Si thin films are 

strongly affected by its growth techniques and growth parameters. Research on the 

structural and optical properties can enhance the understanding of the relation 

between growth parameters and properties of nc-Si thin films.  Furthermore, the 

application of an improved PECVD method in nc-Si thin films growth is expected to 

give interesting results on the surface morphology, grain size distribution and energy 

band gap as compared to previous PECVD method.  Results analyzed from this study 
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can also be used in further research to determine the optimum parameters needed to 

grow high quality nc-Si thin films.   
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