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ABSTRACT 

This work involve  a boundary integral equation method to find the non-uniquely 

solvable numerical solution of the Interior Riemann-Hilbert problem on a region with 

corners.  The integral equation was derived based on the Fredholm integral equation  of 

the second kind with continuous kernel and the solvability of the integral equation  and   

its equivalence to the problem is reviewed the derived integral equation in this research 

for the non-uniquely solvable interior Riemann-Hilbert problem on a region with corners 

will be computed in achieving this aim, this study developed two numerical formulas 

where the Nystrom method with the Gaussian quadrature rule are implemented. So that, 

the singularities are eliminated during numerical integration. Numerical examples on 

four  test  regions with 0ff-corners are presented to demonstrate the effectiveness of this 

formulation. 
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ABSTRAK 

Kerja ini membangunkan satu kaedah sempadan persamaan kamiran untuk 

penyelesaian berangka masalah Interior Riemann-Hilbert di rantau dengan off-sudut 

berasal dalam disertasi ini berdasarkan persamaan Fredholm penting jenis kedua dengan 

kernel berterusan. Kelarutan persamaan kamiran dikaji dan bukti kesetaraan kepada 

masalah ini disediakan. Persamaan kamiran yang diperolehi kemudiannya digunakan 

untuk menyelesaikan berangka bukan unik larut dalaman Riemann-Hilbert masalah. 

Dalam mencapai matlamat ini, tepat skim berangka maju di mana kaedah Nystrom 

dengan peraturan kuadratur Gaussian dilaksanakan. Oleh itu, singularities dihapuskan 

semasa kamiran berangka. Di samping itu, satu formula digunakan untuk penyelesaian 

menyisipkan pada setiap titik sudut luar yang menggunakan nilai-nilai yang diperolehi di 

luar penjuru mata, iaitu formula interpolasi Nystrom. Contoh berangka kepada empat 

kawasan ujian dengan 0ff-sudut dibentangkan untuk menunjukkan keberkesanan 

penggubalan ini. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

 

 

The theory of boundary value problems for analytic functions is one of the major 

important branches of complex analysis. It has wide application because a lot of 

practical problems in physics, mechanics, and engineering can be modeled as such, 

problems or integral equations which are closely linked to the boundary value problems 

for analytic functions. 

 

Generally, a boundary value problem of applied mathematics is a problem of 

finding a function satisfying certain equations in a specified region and satisfying more 

than a few prescribed conditions on the boundary of the region, and the well-known 

classical boundary value problem is Dirichlet problems and Neumann problems. 

Boundary value problems of this type are of great practical importance and they are 

called boundary value problems of the first kind, and of the second kind, respectively 

(Henrici, 1977; Jeffre, 2006).  

 

 A class of fundamental boundary value problems for analytic functions is 

Riemann problem, later known as the Riemann–Hilbert problem, briefly RH problem. 

The first formulation of the RH problem appeared in Bernhard Riemann’s Doctor of 



2 

 

 

Philosophy (Ph.D.) Thesis in 1851 (Wegert, 1992) and it turns out to be one of the basic 

subjects in the theory of analytic functions. It is a living subject with a fascinating 

history and interesting applications. It has a rich theory, interrelation to functional 

analysis, quite a lot of fields of complex analysis of one and quite a lot of variables, 

Solutions were derived using complex functions for particular problems such as 

potential, plane electrostatic, Platter problem. Other applications of the RH problem are 

in fluid dynamics and gas dynamics (Nasser, 2007; Munakhov1986). An important 

example where the need for RH problem arises in a mixed boundary value problem. For 

example plane potential problems consisting of Dirichlet and Neumann conditions given 

on the boundary can be reduced to a RH problem (Hass, 1991).   

 

The RH problem on a region with corners i.e., An arbitrary simply connected 

region bounded by a curve having a continuously turning tangent except possibly at a 

finite number of corners whose interior angle are well defined, where there may occur a 

jump discontinuously of the first derivative in the complex plane. Can be solved by the 

integral equation method, and the integral equation that has been derived are classified 

as a linear Fredholm integral equation of the second kind with continuous kernels on 

region with corners is the union of a finite number of non-intersecting smooth arcs with 

contiguous ends forming corner points. The boundary value problem in a closed region 

is solved through the boundary integral equation. The unknown function      occurs 

both inside and outside of the integral and is classed as a Fredholm integral equation of 

the second kind, which has the form 

 

 

b

a

xfdtttxKx )()(),()(                                                                   (1.1) 

 

Where a and b are constants,   is a constant which, when the value is known is 

sometime engrossed into K(x, t),  a function of two variables called the Kernel or 

nucleus of the integral equation, while  f(x)  is known as the forcing function or the 

driving term of the equation. 
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1.2 Background of the problem 

 

The earlier methods for solving the RH problem are mostly limited to the RH 

problem on circular regions. And that the RH problem is invariant under the conformal 

transplantation. The RH problems on simply connected regions other than the circular 

regions were solved by reducing it, by means of conformal mappings, to a RH problem 

in circular regions. 

 

The two most frequently encountered methods for RH problem are the (Gakhov, 

1966) and (Muskhelishvili, 1977) methods which are not based on the integral equation. 

Muskhelishvili’s method provided a direct reduction of the RH problem to the Hilbert 

problem and the solution of the Hilbert problem in the circular regions are known; hence 

the solution of the RH problem can then be constructed from the solution of the Hilbert 

problem, Gakhov’s method gives the solution of the RH problem in closed form in terms 

of the real regularizing factor and the Schwarz operator and a practical determination of 

regularizing factors seemed to be desired (Gakhov, 1966). 

 

The first two methods based on integral equations for the RH problem are Hilbert 

and Sherman methods, Sherman’s method is related to the RH problem on simply 

connected region, while Hilbert’s method is limited to the circular region, and it has 

serious difficulties in terms of its solvability, these difficulties and limitations make 

them, not the preferred methods for solving the RH problem. The first full method based 

on boundary integral equation, avoiding these difficulties in the Hilbert and Sherman 

methods for solving RH problem on a smooth arbitrary simply connected region for 

general indices was developed by Murid et al. (2003),(Murid, 2006) and (Nasser, 2006), 

and they  implemented  the Nystrӧm   method for the numerical solution of the problem. 

 

 Recently, a method for solving the interior and the exterior RH on  region with 

corners briefly, RHC; were developed by (Ismail, 2007) and (Zamzamir, 2011), 

respectively derived integral equation for both unique  and non-uniquely solvable  
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interior and exterior RHC and their solvability and equivalence to was established 

theoretically, Hence the solution of the integral equation is the solution of the RHC. 

They constructed numerical formula by Picard iteration method and Nystrӧm 

method for these problems.The exciting  singularities of their integral equation must be 

eliminated during numerical implementation and this successfully done for both unique  

and non unique interior and exterior RHC by using the Picard Iteration in Ismail (Ismail,  

2007) and Zamzamiar (Zamzamiar,  2011) respectively .Nystrӧm  method was also 

implemented by Zamzamiar’s Doctor of Philosophy (Ph.D)(Zamzamiar, 2011) for both 

uniquely and non-uniquely solvable RHC. 

 

While Ismail’s Doctor of Philosophy (Ph.D)(Ismail,  2007) employed the 

Nystrӧm method only for the uniquely solvable integral equation of the interior RHC. 

Hence, in this  research  we will  implement  the Nystrӧm Method for the non-uniquely 

solvable integral equation for the interior RHC.     

 

 

1.2      Statement of the Problem 

This research will construct two numerical formulas by Nystrӧm method for the 

non-uniquely interior RHC. The first formulas will be constructed following the non-

uniquely solvable integral equation for the exterior RHC.  (Zamzamiar,  2011) and the 

second will be constructed  the same was as for the uniquely solvable integral equation 

for the interior  RHC.  (Ismail,  2007).  Some numerical experiment will be performed to 

investigate the accuracy of the result. 
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1.3     Objectives of the study 

The objectives of this research are as follows: 

 To  construct examples of interior  non-uniquely solvable RHC. 

 To construct two numerical formulas based on Nystrӧm  method for the non-

unique          interior RHC. 

 To perform numerical experiment for the solution of non-uniquely solvable 

RHC. 

 

 

1.5       Scope of the Research 

The recent available method for solving RHC are Nystrӧm method  and 

numerical formulas by Picard Iteration Method has been done in uniquely and non-

uniquely solvable integral equation for both interior and exterior RHC by (Ismail, 2007) 

and (Zamzamiar, 2011).  While the formula for non-uniquely solvable integral equation  

for interior RHC has not been done.  Hence, this research aims to construct this formula 

based Nystrӧm method as well as perform some numerical example,  and will not 

consider the Picard iteration method.  

 

 

1.6       Significance of the Research 

 

Zamzamiar completed the study for the uniquely and nonuniquely solvable 

integral equation for exterior RHC wheis both  Picard itration method and Nystrӧm  

method, were employed (Zamzamiar,  2011). Previously Ismail (Ismail,2007) employed 

the Picard iteration method for both uniquely and non-uniquely solvable interior RHC 

and only employed the Nystrӧm  Method for the uniquely solvable interior RHC (Ismail, 

2007).   
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Hence, based on (Ismail, 2007)and (Zamzamiar,2011) The significance of this 

research is to employed Nystrӧm  method for non-uniquely solvable interior RHC and 

some numerical formulas.   So this work will be given a complete study for solving 

exterior and interior RHC via integral equations by  the Nystrӧm method.
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