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ABSTRACT 

 

 

 

 

 A geometrically inspired matrix algorithm is derived for the identification of 

state space models for multivariable linear time-invariant systems and using possibly 

noisy input- output measurements data only. In this project, only a limited number of 

input and output data are required for the determination of the system matrices. The 

algorithm can be best described and also understood in the matrix formalism and 

consists in the following two steps. First step, a state vector sequence is realized as 

the intersection of the row spaces of two block Hankel matrices which is constructed 

by apply input - output data. Then, the system matrices are obtained at once from the 

least squares solution of a set of linear equations. When dealing with noisy data, this 

algorithm draws its excellent performance from repeated use of the numerically 

stable and accurate singular value decomposition. The algorithm is easily applied to 

slowly time-varying systems using windowing or exponential weighting.  
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ABSTRAK 

 

 

 

 

 Geometri yang di ilhamkan daripada algoritma matrik di terbitkan untuk 

pengenalpastian model state space untuk sistem pelbagai parameter linear masa-

invariant dengan hanya menggunakan input-output kebisingan. Dalam projek ini, ia 

hanya memerlukan number input-output yang di hadkan untuk mendapatkan sistem 

matrik. Algoritma ini boleh dijelaskan dan di fahami dalam bentuk matrik dan 

mempunyai dua langkah. Langkah pertama, susunan state vector di ketahui sebagai 

pertemuan ruang baris oleh dua blok Hankel matrik di mana ia dibina dengan 

menggunakan input-output data sahaja. Kemudian, sistem matrik ini sekali gus di 

perolehi daripada penyelesaian persamaan linear least square. Apabila berhadapan 

dengan data kebisingan, algoritma ini menghasilkan prestasi yang sangat baik 

daripada pengulangan penggunaan angka stabil dan kejituaan Singular Value 

Decomposition. Lebih-lebih lagi algoritma ini mudah diaplikasikan pada sistem masa 

perlahan dan menggunakan teknik tetingkap atau keberatan exponential. 
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CHAPTER 1 

 

 

 

 

1INTRODUCTION 

 

 

 

 

1.1 An overview 

 

 

Identification aims at finding a mathematical model from the measurement 

record of inputs and outputs of a system. A state space model is a most obvious 

choice for a mathematical representation because of its widespread use in system 

theory and control. Still, reliable general purpose state space identification schemes 

have not become standard tools so far, mostly due to the computational complexity 

involved (Ho and Kalman 1965, Kung 1978, Zeiger and Mc Ewen 1974). The theory 

of canonical correlation analysis, independently developed in the midthirties by 

Hotelling (Hotelling 1936) and Obukhov, the idea of using SVD to compute the 

principal angles and vectors being due to Bjorck and Golub (Golub and Van Loan 

1983), has been intensively applied to the stochastic identification problem, where as 

a major departure canonical variate analysis is used to choose linear combinations of 

the past of the random process to optimally predict the future of the process. The 

analysis of a system in terms of past and future naturally leads to a state space 

description (Akaike 1974, Akaike 1975, Baram 1981, Ramos and Verriest 1984, 

Larimore 1984). Nevertheless, the intensive use of covariance information is a major 
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drawback when it comes to practice, since finite data records reveal only poor 

approximations for covariance matrices. 

 

 

 

 

1.2  Objective of Project 

 

 

The objective of this project comprises of the following: 

 

i. To analyze the differences between On- and Off-line identification of a linear 

state space models by apply subspace algorithm. 

ii. Implement the algorithm to the suitable system. 

 

 

 

 

1.3 Scope of Study 

 

 

 Scopes of the project are listed: 

 

i. To study On-line and Off-line identification algorithm.  

ii. Two methods of the subspace algorithm are used which is N4SID (numerical 

algorithm for Subspace State Space System Identification) and MOESP 

(Multivariable Output-Error State-Space model identification) 

 

 

 

 

 

 

 



3 

1.4 Thesis outline 

 

 

Chapter 1 discusses on the objective and scope of this project. It also covers an 

overview of this project. 

 

Chapter 2 introduces a several literature reviews that have been done for this project.   

 

Chapter 3 includes the methodology of this project with basic knowledge of subspace 

based algorithm, Off- and On-line algorithm and global best of PSO. 

 

Chapter 4 presents the results and analysis for this project. It covers on Off- and On-

line identification results. 

 

Chapter 5 discusses the conclusion that can be made from the results and 

recommendations for future work. 

 

 

 

 

1.5 Summary 

 

 

 In this chapter is, well planning is very important to make this project 

success. Every planning that is planned should be follow to make the project finished 

on the dateline or earlier before the dateline. The objective of the project is also 

important to make the project successfully and as aim of the project. In addition, the 

scope of the project needs to recognize before start the project.  
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