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ABSTRACT 
 

 

 

 

Two new techniques for clustering data, namely the fuzzy c-regression 

truncated models (FCRTM) and fuzzy c-regression least quartile difference (LQD) 

models (FCRLM) were proposed in this thesis in analyzing a nonlinear model. These 

new models include their functions, the estimation techniques and the explanation of 

the five procedures. The stepwise method was used for variable selection in the 

FCRTM and FCRLM models. The number of clusters was determined using the 

compactness-to-separation ratio, NEWF . The various values of constant, k (k = 0.1, 

0.2, ..., ∞) in generalized distance error and various values of fuzzifier, w (1< w <3) 

were used in order to find the lowest mean square error (MSE). Then, the data were 

grouped based on cluster and analyzed using truncated absolute residual (TAR) and 

the least quartile difference (LQD) technique. The FCRTM and FCRLM models 

were tested on the simulated data and these models can approximate the given 

nonlinear system with the highest accuracy. A case study in health indicator 

(simplified acute physiology score II (SAPS II score) when discharge from hospital) 

at the intensive care unit (ICU) ward was carried out using the FCRTM and FCRLM 

models as mentioned above. Eight cases of data involving six independent variables 

(sex, race, organ failure, comorbid disease, mechanical ventilation and SAPS II score 

when admitted to hospital) with different combinations of variable types in each case 

were considered to find the best modified data. The comparisons among the fuzzy c-

means (FCM) model, fuzzy c-regression models (FCRM), multiple linear regression 

model, Cox proportional-hazards model, fuzzy linear regression model (FLRM), 

fuzzy least squares regression model (FLSRM), new affine Takagi Sugeno fuzzy 

models, FCRTM models and FCRLM models were carried out to find the best model 

by using the mean square error (MSE), root mean square error (RMSE), mean 

absolute error (MAE) and mean absolute percentage error (MAPE). The results 

showed that the FCRTM models were found to be the best model, having the lowest 

MSE, RMSE, MAE and MAPE. This new modelling technique could be proposed as 

one of the best models in analyzing mainly a complex system. Hence, the health 

indicator in the ICU ward could be monitored by managing six independent variables 

and other management quality variables in the hospital management. 
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ABSTRAK 
 

 

 

 

Dua teknik baru di dalam data kluster, yang dinamakan model terpangkas    

c-regresi kabur (FCRTM) dan model beza kuartil terkecil (LQD) c-regresi kabur 

(FCRLM) dicadangkan dalam tesis ini dalam menganalisis model tak linear. Model-

model baru ini meliputi fungsi-fungsi, teknik anggaran dan penjelasan tentang lima 

prosedur. Kaedah langkah demi langkah digunakan dalam pemilihan pembolehubah 

bagi model FCRTM dan FCRLM. Bilangan kluster ditentukan dengan menggunakan 

nisbah kepadatan-kepada-pemisahan, NEWF . Pelbagai nilai pemalar, k (k = 0.1, 0,2 , 

..., ∞) dalam ralat jarak umum dan pelbagai nilai pekali kabur, w (1 <w <3) telah 

digunakan untuk mencari nilai terendah ralat kuasa dua min (MSE). Kemudian, data 

dikumpulkan berdasarkan kluster dan dianalisis menggunakan kaedah ralat mutlak 

terpangkas dan kaedah beza kuartil terkecil. Model FCRTM dan FCRLM diuji ke 

atas data simulasi dan model ini boleh menganggar sistem tak linear yang diberikan 

dengan ketepatan yang lebih tinggi. Satu kajian kes terhadap penunjuk kesihatan 

(skor II bagi ringkasan akut fisiologi (SAPS II) apabila keluar dari hospital) di wad 

Unit Rawatan Rapi (ICU) menggunakan model FCRTM dan FCRLM seperti yang 

dinyatakan di atas telah dijalankan. Lapan kes data yang melibatkan enam 

pembolehubah tak bersandar (jantina, bangsa, kegagalan organ, penyakit sedia ada, 

pengudaraan mekanikal dan skor SAPS II apabila dimasukkan ke hospital) dengan 

gabungan pembolehubah berlainan jenis dalam setiap kes dipertimbangkan untuk 

mencari data diubahsuai yang terbaik. Perbandingan di antara model c-purata kabur 

(FCM), model c-regresi kabur (FCRM), model regresi linear berganda, model Cox 

kadaran-bahaya, model regresi linear kabur (FLRM), model regresi kuasa dua 

terkecil kabur (FLSRM), model baru kabur hubungan Takagi-Sugeno, model 

FCRTM dan FCRLM telah dijalankan untuk mencari model terbaik dengan 

menggunakan MSE, ralat punca kuasa dua min (RMSE), ralat mutlak min (MAE) 

dan peratus ralat mutlak min (MAPE). Keputusan menunjukkan bahawa model 

FCRTM menjadi model yang terbaik dengan nilai MSE, RMSE, MAE dan MAPE 

yang terendah. Teknik pemodelan yang baru ini boleh dicadangkan sebagai salah 

satu model yang terbaik dalam menganalisis terutamanya sistem yang kompleks. 

Oleh itu, penunjuk kesihatan di wad ICU boleh dipantau oleh enam pembolehubah 

tak bersandar dan lain-lain pembolehubah pengurusan kualiti di dalam pengurusan 

hospital.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 

 
 

 
 

1.1 Introduction 

 

This chapter presents the introduction to this thesis. It begins by describing 

the overall research background followed by a brief history of the intensive care unit 

(ICU) in Malaysia. Problem descriptions, research objectives, scope of the study, 

research importance and research contribution are also given. Finally, a brief 

description of each chapter is stated. 

 

 

1.2 Research Background 

 

Lotfi A. Zadeh from University of California at Berkeley was the first to 

propose fuzzy logic in 1965 with a fuzzy set theory. Fuzzy logic, when interpreted in 

a wider sense, is the theory of fuzzy sets. The concept of fuzzy sets provides a 

convenient way to represent various notions with imprecision, vagueness, or 

fuzziness, e.g. young, tall, cold, etc., which we frequently employ in our everyday 

life. As such, fuzzy logic has the rationale of more closely resembling than 

traditional logic the way human beings actually think, where alternatives are not 

black and white but shades of gray. Fuzzy logic has had notable success in various 

engineering applications. 

 

When interpreted in a narrower sense, fuzzy logic is an extension of ordinary 

two-valued logic in such a way that the points in interval units are allowed as truth-
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values. As the truth-values are generalized in such a way, usual truth-functional 

operations are generalized accordingly. Fuzzy logic is controversial in some circles, 

despite wide acceptance and a broad track record of successful applications. It is 

rejected by some control engineers for validation and other reasons, and by some 

statisticians who hold that probability is the only exact mathematical description of 

uncertainty. Critics also argue that it cannot be a superset of ordinary set theory since 

membership functions are defined in terms of conventional sets. 

 

Fuzzy logic is a form of many-valued logic or probabilistic logic; it deals 

with reasoning that is approximate rather than fixed and exact. In contrast with 

traditional logic theory, where binary sets have two-valued logic: true or false, fuzzy 

logic variables may have a truth value that ranges in degree between 0 and 1. Fuzzy 

logic has been extended to handle the concept of partial truth, where the truth value 

may range between completely true and completely false. Furthermore, when 

linguistic variables are used, these degrees may be managed by specific functions. 

 

Fuzzy logic has been applied to many fields, from control theory to artificial 

intelligence. The reasoning in fuzzy logic is similar to human reasoning. It allows for 

approximate values and inferences as well as incomplete or ambiguous data (fuzzy 

data) as opposed to only relying on crisp data (binary choices). Fuzzy logic is able to 

process incomplete data and provide approximate solutions to problems other 

methods find difficult to solve. 

 

Fuzzy logic and probabilistic logic are mathematically similar. Both have 

truth values ranging between 0 and 1, but conceptually distinct, due to different 

interpretations. Fuzzy logic corresponds to “degrees of truth”, while probabilistic 

logic corresponds to “probability and likelihood”. As these values differ, fuzzy logic 

and probabilistic logic yield different models of the same real-world situations. 

Fuzzy logic and probability are different ways of expressing uncertainty. While both 

fuzzy logic and probability theory can be used to represent subjective belief, fuzzy 

set theory uses the concept of fuzzy set membership (i.e., how much a variable is in a 

set), and probability theory uses the concept of subjective probability (i.e., how 

probable/ possible do I think that a variable is in a set). 
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In statistics, fuzzy model was initiated by Tanaka (1982) who introduced 

fuzzy linear regression model. In his study, he concentrated on the application of 

fuzzy linear function to a regression analysis in a vague phenomenon. In the usual 

regression model, deviations between the observed values and the estimated values 

are supposed to be due to observation errors which must meet the normal 

distribution. However, Tanaka assumed that these deviations or these fuzziness of 

system parameters depend on the vagueness of the system structure. In other words, 

the deviations are closely related to fuzziness of system parameters rather than 

observation errors. We consider our data as input-output relations whose vagueness 

of the system structure expressed by fuzzy parameters. 

 

A significant advantage in the use of fuzzy model is that it can be used 

without the need for early assumptions. If the error for a certain data is not normally 

distributed, fuzzy model can still be used. In fact, many of the actual data around us 

do not have a normal distribution. This contrasts with the multiple linear regression 

model in which normality assumption of the residuals should be met first before 

using multiple linear regression model. Therefore, all data types can be used in the 

fuzzy model. 

 

Here are other uses of fuzzy logic in our everyday life such as air 

conditioners, cameras, digital image processing, rice cookers, dishwashers, elevators, 

washing machines and other home appliances, video game artificial intelligence, 

language filters on message boards and chat rooms for filtering out offensive text, 

pattern recognition in Remote Sensing, automobile and other vehicle subsystems 

(such as ABS and cruise control e.g. Tokyo monorail) and the massive engine used 

in the new films, which helped show huge scale armies.  

 

There are many advantages of using fuzzy model. Fuzzy model is 

conceptually easy to understand. The mathematical concepts behind fuzzy reasoning 

are very simple. What makes fuzzy interesting is the naturalness of its approach and 

not its far-reaching complexity. Fuzzy logic is flexible. With any given system, it is 

easy to manage it or layer more functionality on top of it without starting again from 

scratch. Fuzzy logic is tolerant of imprecise data. Everything is imprecise if you look 

closely enough, but more than that, most things are imprecise even on careful 
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inspection. Fuzzy reasoning builds this understanding into the process rather than 

tacking it onto the end.  

 

Fuzzy logic can model nonlinear functions of arbitrary complexity. You can 

create a fuzzy system to match any set of input-output data. This process is made 

particularly easy by adaptive techniques like ANFIS (Adaptive Neuro-Fuzzy 

Inference Systems), which are available in the Fuzzy Logic Toolbox. Fuzzy logic 

can be built on top of the experience of experts. In direct contrast to neural networks, 

which take training data and generate opaque, impenetrable models, fuzzy logic lets 

you rely on the experience of people who already understand your system. Fuzzy 

logic can be blended with conventional control techniques. Fuzzy systems do not 

necessarily replace conventional control methods. In many cases fuzzy systems 

expand them and simplify their implementation. Fuzzy logic is based on natural 

language. The basis for fuzzy logic is the basis for human communication.  

 

 Fuzzy modelling is applicable and a very vital computational model for a 

wide variety of problems. These include pattern recognition, function approximation, 

image processing, clustering, prediction and forecasting. It is a common practice to 

use the trial and error method to find an appropriate fuzzy modelling for a given 

problem. Modelling helps to make predictions more precise. There is no doubt that 

modelling will preserve its importance in medical research as the problems become 

more complex and difficult. 

 

 

1.3 A Brief History of Intensive Care Unit in Malaysia 

 

Intensive care for the critically ill patients is a necessary component of acute 

hospital care. Although intensive care unit patients account for only 5% of in total 

patients, it contributes a significant amount of health care resources. In the United 

States, it accounts for 1% of the Gross National Product (GNP) and 15-20% of whole 

hospital cost. This economic and institutional cost has increased the needs for 

outcome evaluation and quality assurance. Clinical audits can provide a purpose 

assessment of performance, effectiveness of therapy and utilisation of resources. 
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The first ICU in Malaysia was established in 1968. Since then, intensive care 

unit has grown rapidly and it is now available in all tertiary care hospitals and 

selected secondary care hospitals in the Ministry of Health. Rapid development of 

medical and surgical subspecialties in the last decade resulted in increasing demands 

for more ICU beds and provides momentum for its development. In a recent national 

mortality audit, the lack of intensive care beds has been cited as a major contributing 

factor in perioperative deaths (mortality in relation to surgery, often defined as death 

within two weeks of a surgical procedure) in the Ministry of Health hospitals. 

 

The condition in the United Kingdom in the early 1980’s was similar to what 

we are currently experiencing in Malaysia. There was a great stress on the hospital 

services as the demand for intensive care beds increases. More ICU beds were 

opened up and high dependency units increased rapidly without proper assessment 

for their needs. This chaotic development and the resulting of unequal distributions 

of the facilities and poor patient outcome encouraged a call for a national audit. 

 

Therefore in 1994, the Intensive Care National Audit & Research Centre 

(ICNARC) was established in UK. It was sponsored by the intensive Care Society 

and the Department of Health. Its major mission was to conduct a review on 

intensive care practice using a Case Mix Programme (CMP) and to make suggestion 

to the relevant health authorities. The findings of ICNARC and that of the National 

Expert Group for the Department of Health prompted the British government to 

spend £142.5 million in year 2000 to further improve intensive care throughout the 

country. Through the CMP, the ICNARC also created a national database made 

available to the clinicians and hospital managers for clinical review and planning 

purposes. 

 

In Australia and New Zealand, clinical indicators in intensive care were 

developed by representatives of the Australian and New Zealand Intensive care 

professional bodies and the Australian Council on Healthcare Standards (ACHS) to 

assess key aspects of intensive care functions within a hospital. In Malaysia, The 

National Audit on Adult Intensive Care Units is organized in 2002 and modelled on 

the UK experiences. It is a quality improvement activity supported by the Bahagian 

Perkembangan Perubatan and organized by a national committee comprising of 
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senior intensive care specialists in the Ministry of Health. This audit consists of two 

parts. Part 1 is a review of the clinical practice of intensive care by way of 

developing a national database. Part II is to assess three fundamental aspects of 

intensive care functions within a hospital. They are the sufficiency of the intensive 

care resource to meet hospital requirements, the comparison of patient outcome with 

a national and/or international standard and the evaluation of complications of 

treatment. 

 

Assessment of the three fundamental aspects in intensive care unit is 

important to the practitioners and function of an intensive care unit within a hospital. 

Selection of indicators that address them is hard. There are many indicators that 

could assess each of these areas. For the sake of ease and simplicity, we accept the 

clinical indicators developed by ACHS (The Australian Council on Healthcare 

Standard). A clinical indicator is a measure of the clinical management and outcome 

of care and should be a useful instrument for clinicians to flag potential problems 

and areas for improvement (The Committee for National Audit on Adult Intensive 

Care Units, 2002).  

 

 

1.4       Problem Statement 

 

Intensive care practice is well established in Malaysia. The study on the ICU 

was conducted in detail in 2002 by The Committee for National Audit on Adult 

Intensive Care Units. Clinical practice, performance and outcome have been 

published. The outcomes of intensive care in Ministry of Health ICUs have been 

compared with other parts of the world. A clinical indicator developed by ACHS is 

used in Malaysian hospitals to identify potential problems and for improvement of 

service. ICU mortality rates are predicted using the logistic model in which the main 

factor contributing to mortality is simplified acute physiology score II (SAPS II) 

when discharge from hospital (s2sdisc). However, it serves only as a medical report 

with no further action taken to reduce the death rate based on the conclusions from 

the data analysis. For example, the motto in treating the patients who are really in 
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critical condition. So far, no mechanism is used to identify and treating high-risk 

patients first.  

 

In fuzzy c-regression models (FCRM), there are two important factors, 

namely the fuzzy model (fuzzification and defuzzification) and the multiple linear 

regression (MLR) model. Both factors are closely associated in producing the final 

fuzzy c-regression models (FCRM). In this case, the MLR model used is the basic 

model without considering the problem of outlier data. So, FCRM models common 

issue is that it is vulnerable to outlier data. In any statistical studies, researchers want 

to find the latest methods in reducing the value of the error. Several current methods 

of addressing outlier in the MLR model which are robust against outliers can be 

adapted in FCRM models. 

 

 

1.5 Research Objectives 

 

This research is an attempt to present a proper methodology and analysis of 

modelling health indicator in the ICU. The objectives of this study are detailed as 

below; 

 

(i) To apply the data mining technique, that is, the analytical hierarchy 

process (AHP) method in order to fuzzify binary health indicator data into 

continuous data. 

(ii) To identify the critical point of health indicator using fuzzy c-means 

(FCM) model so as to categorize patients into “high risk” or “non-high 

risk” patients.  

(iii) To apply the existing models such as multiple linear regression (MLR) 

model and fuzzy models specifically fuzzy linear regression model 

(FLRM), fuzzy least squares regression model (FLSRM), fuzzy c-

regression models (FCRM) and new affine Takagi Sugeno fuzzy models 

for the health indicator in the ICU. 

(iv) To propose two new models which are fuzzy c-regression truncated 

models (FCRTM) and fuzzy c-regression LQD (least quartile difference) 
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models (FCRLM) for the health indicator in the ICU. 

(v) To make comparison among the models in order to find the best model in 

modelling health indicator.  

 

These objectives will be achieved by following the research framework as shown in 

Figure 1.1 and Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1     Flow chart of research framework 
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Eight Cases of Data Based on MLR and FCRM Models 
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Figure 1.2     Eight cases of data and eleven models using the best modified data 
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1.6 The Scope of The Study  

 

 The scope of the study will be divided into two subsections. The first section 

discusses the scope of the data and followed by a discussion on the scope for the 

model. 

 

 

1.6.1 Data Scope 

 

In this research, the data were obtained from the intensive care unit (ICU) of a 

general hospital in Johor. The data collected by nurses were classified using cluster 

sampling. It involves 1314 patients in the ICU from 1
st
 January, 2001 to 25

th
 August, 

2002. The dependent variable is the patients’ status with 0 and 1 codes are used 

where 0 is coded for patients who are alive in the hospital or the ICU, whereas 1 is 

coded for patients who died in the hospital or the ICU. There are seven independent 

variables i.e. sex, race, organ failures (orgfail), comorbid diseases (comorbid), 

mechanical ventilator (mecvent), score of SAPS II admit (s2sadm) and score of 

SAPS II discharge from hospital (s2sdisc). 

 

In this thesis, we excluded the patients’ status from the dependent variable 

since the fuzzy clustering for binary data cannot be used. The s2sdisc score is 15 

accumulated values for heart rate, blood pressure, age, body temperature, oxygen 

pressure, urine result, urea serum level, white blood count, potassium serum level, 

sodium serum level, bicarbonate serum level, bilirubin level, glasgow coma score, 

chronic illness and type of admittance that have been proposed by Le Gall in 1993. 

The level of health or health indicator in hospital is measured by the score of s2sdisc. 

Then, s2sdisc variable is taken as the dependent variable since the s2sdisc and 

patients’ status are determined at the same time. In fact, the highest correlation 

among independent variables and patients’ status is between the patients’ status and 

s2sdisc. 
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Table 1.1 : An explanation of the dependent and independent variables 

 

No. Variable 
Name 

Variable Type  Note 

1 sex  Qualitative binary with 1= 

‘Female’ and 2= ‘Male’ 

Gender of the patient 

2 Race Qualitative category with 1= 

‘Malay’, 2= ‘Chinese’, 3= 

‘Indian’, 4= ‘Orang Asli, Sabah 

& Sarawak Indigenous, citizen 

abroad etc.’  

Race of the patient 

3 orgfail  Qualitative binary with 1= No 

organ failure 2= At least one 

organ failure 

Organ failure before and 

during treatment in the 

ICU 

4 comorbid  Qualitative binary with 1= Did 

not suffer from comorbid 

disease, 2= Suffer at least one      

comorbid disease 

Comorbid diseases 

(existing diseases) before 

being treated in the ICU 

 

5 mecvent  Qualitative binary with 1= 

Patients do not use ventilator      

machine, 2= Patients use      

ventilator machine 

Patients using ventilator 

machine 

6 s2sadm Quantitative discrete with 

minimum value of 0  

SAPS II score during the 

first 24 hours in the wards 

(SAPS II score admit) 

7 s2sdisc Quantitative discrete with 

minimum value of 0 

SAPS II score during the 

discharge from the 

ward/hospital  (SAPS II 

score discharge) 

 

 

1.6.2 Model Scope 

 

Firstly, the analysis of influential and outlier in multiple linear regression 

(MLR) model should be carried out to the data in order to discard the data due to the 

assignable causes (human error, machine error and environment error). In this study, 

we will also use the data mining technique, that is, analytical hierarchy process 

(AHP) in order to fuzzify the binary data of comorbid disease and organ failure. This 

technique will transform the binary data to the continuous data within interval [0,1] 

which is expected to be more accurate and near to the real situation (Rao, 2006).  

 

Then, the fuzzy c-means (FCM) model will be used for s2sadm variable since 

the variable varies from 0 to 126. This technique will determine the best cluster for 
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this variable as FCM develops hyper-spherical-shaped clusters. In this technique, we 

will identify the critical point for health indicator. It is important to cluster the 

patients into “high risk” and “non-high risk”. A medical decision in ICU will be 

suggested in order to treat intensively high risk patient first. This decision is 

important to save the life of patients and decrease the mortality rate.  

 

In this study, there are eight cases of data considered as a result of using AHP 

technique and FCM model toward independent data. Eight cases involving six 

independent variables with different combination of variable types in each case were 

considered in order to find the best modified data using MLR and FCRM models. 

The variables involved are sex (
1x  is binary), race (

2x  is category), orgfail (
3x  is 

binary or continuous), comorbid (
4x  is binary or continuous), mecvent (

5x  is binary) 

and s2sadm (
6x  is binary or continuous). Case 4 in the Section 6.2.1 is the beginning 

data without any modification toward data.  

 

After that, other models will be applied to the best modified data such as 

multiple linear regression (MLR) model, MLR model with LQD technique, MLR 

with truncated error, Cox proportional hazard model, fuzzy linear regression model 

or FLRM (Tanaka and Ni model), fuzzy least squares regression model or FLSRM 

(Chang model), fuzzy c-regression models or FCRM (Hathaway & Bezdek and 

Kung & Lin model) and new affine TS fuzzy models. We also proposed new models 

which are fuzzy c-regression truncated models (FCRTM) and fuzzy c-regression 

LQD models (FCRLM). 

 

The comparison among other models with FCRTM and FCRLM models will 

be carried out including its assumption, function of model and the mean square error 

(MSE). The model with the lowest MSE will be chosen as the best model. The 

search of the best model is important in order to get the approximation of solution 

which is closer to the exact solution for the health indicator. 
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1.7 Research Contributions 

 

There are many benefits that can be gained from this study which can 

contribute immensely, mainly to the hospital ICU. The contributions can be stated as 

follows; 

 

(i). The application of data mining technique that  is analytic hierarchy process 

(AHP) in order to fuzzify the binary data so that more accurate prediction can 

be obtained. 

(ii). The suggestion of critical point of health indicator using fuzzy c-means 

(FCM) model which could be classified as a high risk patient. The making of 

medical decision in ICU can be more reliable since high-risk patients should 

be treated first. 

(iii). The application of multiple linear regression (MLR) model, Cox proportional 

hazard model, fuzzy linear regression model (FLRM), fuzzy least squares 

regression model (FLSRM), fuzzy c-regression models (FCRM), new affine 

Takagi Sugeno fuzzy models, fuzzy c-regression truncated models (FCRTM) 

and fuzzy c-regression LQD models (FCRLM) for the health indicator in the 

ICU. 

(iv). The recommendation based on the better model in achieving better services 

in the ICU, be applied not only in Malaysia but also in other countries. 

 

 

1.8 Research Importance 

 

Kao (1974) suggested a medical decision in the ICU field by applying the 

motto “Treating High-risk Patients First”. However, he did not use this motto in his 

study. In this study, we propose the health indicator of patients to be based on their 

value of SAPS II of discharge (s2sdisc). The value of s2sdisc could be predicted by 

FCRTM and FCRLM models based on the value of independent variables.  

 

The patients admitted to the ICU are those who come from areas outside the 

hospital or from within the hospital itself. Since there are many patients admitted to 

the ICU, the difficulty is to apply the motto “Treating High-risk Patients First”. In 
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order to identify the high-risk patients, each patient should have a calculated 

indicator of their level of health. The patients with high value level of health 

indicator or classified as high risk patients should be treated immediately and 

aggressively. This is the importance of the medical decision made in the ICU in 

order to save the lives of patients with critical conditions. This decision is important 

to the ICU management in order to decrease mortality rate. As a result, the quality 

management in ICUs could be improved by decreasing the mortality rate. 

Additionally, this medical decision making process has not been applied in ICU of 

any hospitals in this world. 

 

Chapter 2 indicates that many methods used in the ICU involve MLR model 

and logistic regression model. The fuzzy models are still not a common method used 

in the ICU. Only Pilz and Engelmann (1998) did a basic fuzzy rule which is given by 

physician to determine the medical decision made in the ICU. For example, the five 

conditions of mean arterial pressure (MAP) were determined by 25 fuzzy rules 

which are the combination of heart rate (very high, high, normal, low and very low) 

and blood pressure (very high, high, normal, low and very low) which could give a 

confusing decision. However they did not use FCM and FCRM models to analyze 

their data. Taking the idea of their work in the field of ICU may give this study a 

challenge. Since the FCM, FCRM, FCRTM and FCRLM models have not yet been 

explored in the ICU, we propose the use of these models in the ICU study. The 

dependent variable used is s2sdisc or health indicator which corresponds and has 

high correlation with mortality rate. In addition, there are not many rules used in this 

modelling. 

 

Takrouri (2004) made a medical decision in the ICU. He organized ICUs that 

cared more for seriously ill patients. This has raised ethical and professional issues 

related to some patients who had untreatable medical conditions or those who 

sustained unsalvageable damage to their vital organs. However, he did not use any 

logistic regression or fuzzy model in his research. The determination of the patients’ 

state of health becomes crucial when there are too many patients who need to be 

admitted to the ICU and there is insufficient space in the ICU. In fact the application 

of certain method is still needed in ICU’s management.  

 



 

  

15

 

In order to improve the models, we use the data mining technique that is, 

AHP technique to fuzzify the binary data of comorbid diseases and organ failures. 

This technique will transform the binary data to a continuous data within [0,1] 

interval which is expected to be more accurate and near to the real situation. In fact, 

this technique is a new technique in analyzing data obtained from ICU.  

 

In FCRM models, there are two important factors, namely the fuzzy model 

(fuzzification and defuzzification) and the MLR model. Both factors are closely 

associated in producing the final FCRM models. In this case, the MLR model used in 

FCRM models is the basic model without considering the problem of outlier data. 

So, FCRM models common issue is that it is vulnerable to outlier data. In any 

statistical studies, researchers want to find the latest methods in minimizing the 

errors.  

 

Several current methods of addressing outlier in the MLR model can be 

adapted in FCRM models such as least median squares (LMS), least trimmed squares 

(LTS), deepest regression and least quartile difference (LQD) method. Because of 

this reason, the new FCRTM and FCRLM models are proposed in this thesis which 

are robust against outlier. FCRLM models are based on the existing LQD techniques 

while FCRTM models are based on new ideas about the percentage of contaminated 

data in the breakdown point. However, FCRTM models show better model in 

modelling health indicator in the ICU. A significant advantage in the use of fuzzy 

model is that it can be used for all data types without the need for early assumptions. 

However, the disadvantage for multiple linear regression model is the residuals 

should be first fulfill the assumption of normality. 

 

 

1.9.1 Thesis Organisation 

 

This thesis contains eight chapters. Chapter 1 is the introduction to the thesis. 

This chapter gives an introduction to the research background, history of ICU, 

problem description, research objectives, research scopes, research contribution, 

research importance and a thesis organization. 
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Chapter 2 is the literature review that contains a discussion on the current and 

past research on medical field especially in the ICU. The applications of fuzzy 

modelling are also presented in several fields such as science, medicine, engineering, 

computer, economics, management and so on. Previous studies on FCRM models are 

also presented. 

 

In Chapter 3, a detailed explanation of the nine models/technique used in this 

thesis is presented. The models/technique discussed are multiple linear regression 

(MLR) model, analytical hierarchy process (AHP) technique, fuzzy c-means (FCM) 

model, fuzzy c-regression models (FCRM), fuzzy linear regression model (FLRM), 

fuzzy least squares regression model (FLSRM), new affine Takagi Sugeno fuzzy 

models, fuzzy c-regression truncated models (FCRTM) and fuzzy c-regression LQD 

models (FCRLM). 

 

Chapter 4 will discuss the analysis of the proposed model, fuzzy c-regression 

truncated model (FCRTM) using simulated data. The simulated data are created 

using S-Plus program. The simulated data consist of one dependent variable and four 

independent variables. This chapter is important to make sure that simulated data are 

suitable for the evaluation of the proposed models. Indeed, the proposed model 

comprises 5 procedures whereby all the procedures need to be fulfilled to validate 

the potentiality of the proposed model.  

 

The discussion of data background and development of data mining 

technique (analytic hierarchy process or AHP), fuzzy c-means (FCM) model and 

multiple linear regression (MLR) model will be presented in Chapter 5. Here, the 

binary data of comorbid diseases and organ failures will be fuzzified into the 

continuous data with [0, 1] interval. The different types of comorbid diseases or 

organ failures will be weighted based on their importance. AHP technique is 

predicted to get the higher accuracy of prediction. The FCM model will be used to 

identify the critical point of health indicator. 

 

In Chapter 6, the development of the newly proposed model that are fuzzy c-

regression truncated models (FCRTM) and fuzzy c-regression LQD models 

(FCRLM) will be discussed. Both models are models resulting from the modification 
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of FCRM models. It has five procedures to be followed. The difference of these two 

models is in the fifth procedure. FCRTM models using truncated residual method, 

while FCRLM models using the least quartile difference (LQD) technique. In the 

first procedure, eight cases of data are considered for FCRM models. It includes the 

original data for the six dependent variables and modified data for the orgfail, 

comorbid and s2sadm variables of a binary and continuous data using AHP and FCM 

model. 

 

Chapter 7 discusses the analysis of other models such as multiple linear 

regression (MLR) model, MLR model with LQD technique, MLR model with 

truncated residual technique, Cox proportional hazards model, fuzzy linear 

regression model 1 (Tanaka model), fuzzy linear regression model 2 (Ni model), 

fuzzy least squares regression model (Chang model), fuzzy c-regression models 1 

(Hathaway & Bezdek model), fuzzy c-regression models 2 (Kung & Lin model) and 

new affine Takagi Sugeno fuzzy models. The overall comparisons among other 

models with the FCRTM and FCRLM models are discussed to show the reliable and 

potential of FCRTM and FCRLM models.  

 

Chapter 8 concludes and summarizes the study of the modelling of health 

indicator in the ICU and then discusses some important results and findings. The best 

model which has the lowest MSE value will be revealed. Recommendations on areas 

related to the findings and possible directions for future research in modelling health 

indicator in the ICU are also presented here. 

 

 



 215

 

 

 

REFERENCES 
 

 

 

 

Abonyi, J. and Feil, B. (2007). Cluster Analysis for Data Mining and System 

Identification. USA: Springer. 

Agresti, A. and Finlay, B. (1997). Statistical Methods for the Social Sciences. USA: 

Prentice-Hall, Inc. 

Akhavi, F. and Hayes, C. (2003). A Comparison of Two Multi-Criteria Decision-

Making Techniques. Proceedings Of The IEEE International Conference On 

Systems Man And Cybernetics. 1: 956-961.  

Andersen, E. B. (1997). Introduction to the Statistical Analysis of Categorical Data. 

Berlin. Heidelberg: Springer-Verlag.  

Angelov, P. (2004). An Approach for Fuzzy Rule-base Adaptation Using On-line 

Clustering. International Journal of Approximate Reasoning. 35: 275–289. 

Angus, D. C., Kelley, M. A., Schmitz, R. J., White, A., Popovich, J. (2000). Current 

and Projected Workforce Requirements for Care of the Critically Ill and Patients 

with Pulmonary Disease: Can We Meet the Requirements of an Aging 

Population?. The Journal of the American Medical Association. 284(21): 2762-

2770. 

Azme Khamis (2005). Application of Statistical and Neural Network Model for Oil 

Palm Yield Study. Ph.D. Thesis. Universiti Teknologi Malaysia, Malaysia.  

Babuska, R. (1988). Fuzzy Modeling for Control. Boston: Kluwer Academic 

Publishers. 

Banday, S. H. and Shah, M. A. (1994). Dictionary of Statistics. New Delhi: Anmol 

Publications PVT LTD. 

Bao, Y., Wu, Y., He, Y. and Ge, X. (2004). An Improved AHP Method in 

Performance Assessment. Proceedings of the 5th World Congress on Intelligent 

Control and Automation, 15-19
th

 June, 2004. Hangzhou, China, 177-180. 

Barnett, V. and Lewis, T. (1994). Outliers  in Statistical Data. England:  John Wiley 

& Sons Ltd. 



 216

Bargiella, A., Pedrycz, W. and Nakashima, T. (2007). Multiple Regression with 

Fuzzy Data. Fuzzy Sets and Systems. 158: 2169-2188. 

Belsley, D.A., Kuh, E.,Welsch, R.E. (1980). Regression Diagnosis, Identifying 

Influential Data and Sources of Collinearity. New York: John Wiley & Sons, 

Inc. 

Berg, B. W., Vincent, D. S. and Hudson, D. A. (2004). Remote Critical Care 

Consultation: Telehealth Projection of Clinical Specialty Expertise. Journal 

Telemed Telecare. 9(2): 9-11. 

Berget, I., Mevik, B. H. and Naes, T. (2008). New Modifications and Applications of 

Fuzzy C-Means Methodology. Computational Statistics & Data Analysis. 52: 

2403-2418. 

Berenholtz, S. M., Dorman, T., Ngo, K. and Pronovost, J. (2002). Qualitative 

Review of Intensive Care Unit Quality Indicators. Journal of Critical Care. 

17(1): 1-12. 

Bernholt, T., Nunkesser, R. and Schettlinger, K. (2007). Computing the Least 

Quartile Difference Estimator in the Plane. Journal Computational Statistics and 

Data Analysis. 52(2): 763-772. 

Bezdek, J. C. (1974). Cluster Validity with Fuzzy Set. Journal Cybernetic. 3: 58–72. 

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function 

Algorithms.  USA: Kluwer Academic Publishers.  

Bolotin, A. (2005). Fuzzification of Linear Regression Models with Indicator 

Variables in Medical Decision Makin. Proceedings of the International 

Conference on Computational Intelligence for Modelling, Control and 

Automation and International Conference on Intelligent Agents, Web 

Technologies and Internet Commerce. 1: 572-576.    

Breslow, M. J., Rosenfeld, B. A., Doerfler, M., Burke, G., Yates, G., Stone, D. J., 

Tomaszewicz, P., Hochman, R. and Plocher, D. W. (2004). Effect of a Multiple-

Site Intensive Care Unit Telemedicine Program on Clinical and Economic 

Outcomes: An Alternative Paradigm for Intensivist Staffing. Journal of Society 

of Critical Care Medicine. 32(1): 31-38. 

Chang, Ping-Teng (1994). Fuzzy Regression Analysis. Ph.D. Dissertation, Kansas 

State University, USA. 

Chang, R. W. S., Jacobs, S. and Lee, B. (1988). Predicting Outcome among Intensive 

Care Unit Patients Using Computerised Trend Analysis of Daily Apache II 



 217

Scores Corrected for Organ System Failure. Journal of Intensive Care Medicine. 

14(5): 558-566. 

Chao, C. T., Chen, Y. J. and Teng, C. C. (1996). Simplification of Fuzzy Neural 

System Using Similarity Analysis. IEEE Transaction System, Man Cybernetic, 

Part B. 26(2): 344-354. 

Ch’en, S. H. (1985). Operations on Fuzzy Number with Function Principle. Tamkang 

Journal Management of Science. 6: 13-25. 

Chen, M. Y. and Linkens, D. A. (2004). Rule-Base Self-Generation and 

Simplification for Data-Driven Fuzzy Models. Fuzzy Sets System. 142(2): 243–

265. 

Chou, W. H. (2008). Using AHP to Assess a Plan of Training the Adolescent Golf 

Player. Fifth International Conference on Fuzzy Systems and Knowledge 

Discovery. 18-20
th

  October, 2008. Jinan Shandong, China, 575-579. 

Chuang, C. C., Su, S. F. and Chen, S. S. (2001). Robust TSK Fuzzy Modeling for 

Function Approximation with Outliers. IEEE Transactions on Fuzzy System. 

9(6): 810–821. 

Clark, M. C., Hall, L. O., Goldgof, D. B., Velthuizen, R., Murtaugh, R. and Silbiger, 

M. S. (1999). Unsupervised Brain Tumor Segmentation Using Knowledge-Based 

and Fuzzy Techniques. Fuzzy and Neuro-fuzzy Systems in Medicine. 1: 137-169. 

Colpan, A., Akinci, E., Erbay, A., Balaban N. and Bodur, H. (2005). Evaluation of 

Risk Factors for Mortality in Intensive Care Units: A Prospective Study from a 

Referral Hospital in Turkey. American Journal of Infection Control. 33(1): 42-

47. 

Cox, D.R. and Oakes, D. (1990). Analysis of Survival Data. London: Chapman & 

Hall. 

Croux, C., Rousseeuw, P. J. and Hossjer, O. (1994). Generalized S-estimators. 

Journal of the American Statistical Association. 89: 1271-1281. 

D’Urso, P. (2003). Linear Regression Analysis for Fuzzy/Crisp Input and 

Fuzzy/Crisp Output Data. Computational Statistics & Data Analysis. 42: 47-72. 

D’Urso, P. and Gastaldi, T. (2002). An “Orderwise” Polynomial Regression 

Procedure for Fuzzy Data. Fuzzy Sets and Systems. 130: 1-19.  

D’Urso, P. and Santoro, A. (2006). Goodness of Fit and Variable Selection in the 

Fuzzy Multiple Linear Regression. Fuzzy Sets and Systems. 157:  2627-2647. 



 218

Devillez, A., Billaudel, P. and Lecolier, G. V. (2002). A Fuzzy Hybrid Hierarchical 

Clustering Method with a New Criterion Able to Find the Optimal Partition. 

Fuzzy Sets and System. 128(3): 323-338. 

Dewan Bahasa dan Pustaka (1992). Istilah Matematik. Kuala Lumpur: Percetakan 

Dewan Bahasa dan Pustaka. 

Dewan Bahasa dan Pustaka (1999). Kamus Dwibahasa Bahasa Inggeris-Bahasa 

Malaysia. Kuala Lumpur: Percetakan Dewan Bahasa dan Pustaka. 

Dey, P. K., Hariharan, S. and Brookes, N. (2006). Managing Healthcare Quality 

Using Logical Framework Analysis. Managing Service Quality. 6(2): 203-222. 

Diamond, P. (1987). Least Squares Fitting of Several Fuzzy Variables. Proceedings 

of the 2nd IFSA Congress. July 1987. Tokyo, Japan, 20-25. 

Dickerson, J. A. and Kosko, B. (1996). Fuzzy Function Approximation with 

Ellipsoidal Rules. IEEE Transaction Systems, Man Cybernetic. 26(4): 542-560. 

Diez, J. L., Navarro, J. L. and Sala, A. (2007). A Fuzzy Clustering Algorithm 

Enhancing Local Model Interpretability. Soft Computing Journal. 11: 973-983.  

Diez, J. L., Sala, A. and Navarro, J. L. (2006). Target-Shaped Possibilistic Clustering 

Applied to Local-Model Identification. Engineering Applications of Artificial 

Intelligence. 19: 201-208.  

Dobson, A. J. (1991). An Introduction to Generalized Linear Models. London: 

Chapman & Hall. 

Donoho, D. L. and Huber, P. J. (1983). The Notion of Breakdown Point. In A 

Festschrift for Erich L. Lehmann (edited by Bickel, P. J., Doksum, K. A. and 

Hodges, J. L.). Belmont, CA: Wadsworth, pp. 157–184.  

Doring, C., Lesot, M. J. and Kruse, R. (2006). Data Analysis with Fuzzy Clustering 

Methods. Computational Statistics & Data Analysis. 51: 192-214. 

Draper, N. R. and Smith, H. (1981). Applied  Regression  Analysis  (2nd Edition).  

New York: John Wiley.  

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in 

Detecting Compact Well-Separated Clusters. Journal of Cybernetics. 3: 32-57. 

Fan, J., Xie, W. and Pei, J. (1999). Subsethood Measure: New Definitions. Fuzzy 

Sets System. 106(2): 201-209. 

Fan, J. S., Kao, W. F., Yen, D. H. T., Wang, L. M., Huang, C. I. And Lee, C. H. 

(2007). Risk Factors and Prognostic Predictors of Unexpected Intensive Care 



 219

Unit Admission within 3 Days after ED Discharge. The American Journal of 

Emergency Medicine. 25(9): 1009-1014. 

Fausett, L. V. (1999). Applied Numerical Analysis Using MATLAB. USA: Prentice 

Hall, Inc. 

Ferguson, T.S. (1967). On The Rejection of  Outliers. Journal of Fourth Berkley 

Symposium (University of California). 253-287.  

Ferris, M. C., Mangasarian, O. L. and Wright, S. J. (2007). Linear Programming 

With MATLAB. USA: Society for Industrial and Applied Mathematics. 

Fiordaliso, A. (1998). Analysis Improvement of Takagi-Sugeno Fuzzy Rules Using 

Convexity Constraints. IEEE International Conference on Tools with Artificial 

Intelligence. 10-12
th

 November, 1998. Taipei, Taiwan, 232-235. 

Flores-Sintas, A., Cadenas, J. M. and Martin, F.(2000). Partition Validity and 

Defuzzification. Fuzzy Sets System. 112(3): 433-447. 

Frair, L., Matson, J. O., Matson, J. E. (1998). An Undergraduate Curriculum 

Evaluation with the Analytic Hierarchy Process. Proceeding FIE '98 

Proceedings of the 28th Annual Frontiers in Education. 3: 992-997. 

Garland, A. (2005). Improving the ICU (Part 1). American College of Chest 

Physicians. 127: 2151-2164. 

Gath, I. and Geva, A. B. (1989). Unsupervised Optimal Fuzzy Clustering. IEEE 

Transaction Pattern Anal, Machine Intell. 11(7): 773-781. 

Ghiaus, C. (2005). Experimental Estimation of Building Energy Performance by 

Robust Regression.  Journal of Energy and Buildings. 38: 582–587. 

Grisales, V. H., Gauthier, A. and Roux, G. (2005). Fuzzy Model Identification of a 

Biological Process Based on Input-Output Data Clustering. IEEE International 

Conference on Fuzzy Systems. 927-932. 

Gustafson, E. E. and Kessel, W. C. (1979). Fuzzy Clustering with a Fuzzy 

Covariance Matrix. Proceeding IEEE CDC, San Diego. 761–766. 

Hariharan, S., Dey P. K., Moseley H. S. L., Kumar, A. Y. and Gora, J. (2004). A 

New Tool for Measurement of Process-Based Performance of Multispecialty 

Tertiary Care Hospitals. International Journal of Health Care Quality Assurance. 

17(6): 302-312. 

Hathaway, R. J., and  Bezdek, J. C. (1993). Switching  Regression  Models  and  

Fuzzy Clustering. Pattern Recognition Letters. 23: 151-160. 



 220

Hathaway, R. J., and  Bezdek, J. C. (2002). Clustering Incomplete Relational Data 

Using the Non-Euclidean Relational Fuzzy C-Means Algorithm. IEEE 

Transactions on Fuzzy Systems. 1(3): 195-204. 

Hathaway, R. J., and  Bezdek, J. C. (2006). Extending Fuzzy and Probabilistic 

Clustering to Very Large Data Sets. Computational Statistics & Data Analysis. 

51: 215-234. 

Hao, L. C. and Hui, J. Y. (2007). Group Prioritization in the Analytic Hierarchy 

Process (AHP) by an Improved Fuzzy Preference Programming Approach. 

International Conference on Wireless Communications, Networking and Mobile 

Computing, WiCom 2007. 21-25
th

 September, 2007. Shanghai, China. 

Hill, A. D., Vingilis, E., Martin, C. M., Hartford, K. and Speechley, K. N. (2007).  

Interhospital Transfer of Critically Ill Patients: Demographic and Outcomes 

Comparison with Nontransferred Intensive Care Unit Patients. Journal of 

Critical Care. 22(4): 290-295. 

Honda, K., Ohyama, T., Ichihashi, H. and Notsu, A. (2008). FCM-Type Switching 

Regression with Alternating Least Squares Method. IEEE International 

Conference on Fuzzy Systems. 10: 122-127. 

Hoppner, F., Klawonn, F., Kruse, R., and Runkler, T. (1999). Fuzzy Cluster Analysis, 

Methods for Classification, Data Analysis and Image Recognition. New Jersey: 

John Wiley & Sons. 

Hoppner, F. and Klawonn, F. (2003): Improved Fuzzy Partitions for Fuzzy 

Regression Models. International Journal of Approximate Reasoning. 32: 85-

102. 

Hoppner, F. and Klawonn, F. (2004). Learning Fuzzy Systems – An Objective 

Function-Approach. Mathware & Soft Computing. 11: 143-162. 

Hsiao, C. C. and Su, S. F. (2005). Robust TSK Fuzzy Modeling with Proper 

Clustering Structure. SICE Annual Conference 2005 in Okayama University, 

Japan. 1564-1569. 

Huband, J. M., Bezdek, J. C. and Hathaway, R. J. (2005). BigVAT: Visual 

Assessment of Cluster Tendency for Large Data Sets. Pattern Recognition 

Society. 38: 1875-1886.  

Hui Feng (2007). Bayesian and Nonbayesian Contributions to Fuzzy Regression 

Analysis.  Bayesian. Ph.D. Dissertation. University of Victoria, USA.  



 221

Hwang, S. and Chao, J. J. (1996). An Identification Algorithm in Fuzzy Relational 

Systems. IEEE Proceeding of 1996 Asian Fuzzy System. 9: 254-259. 

Jafelice, R. M., de Barros, L. C., Bassanezi, R. C. and  Gomide, F. (2004). Fuzzy 

Modeling in Symptomatic HIV Virus Infected Population. Bulletin of 

Mathematical Biology. 66(6): 1597-1620. 

Junoy, J. P. (1997). Measuring Technical Efficiency of Output Quality in Intensive 

Care Units. International Journal of Health Care Quality Assurance. 10(3): 117-

124. 

Kao, E. P. C. (1974). Study of Patient Admission Policies for Specialized Care 

Facilities. IEEE Transactions on Systems, Man, and Cybernetics. 4(6): 505-512. 

Kim, E., Park, M., Ji, S., and Park, M. (1997). A New Approach to Fuzzy Modeling. 

IEEE Transaction on Fuzzy Systems. 5(3): 328–337. 

Kim, B. and Bishu, R. R. (1998). Evaluation of Fuzzy Linear Regression Models by 

Comparing Membership. Fuzzy Sets and Systems. 100: 343-352. 

Kim, J. Y., Hwang, J. H., Kim, J. S., Hwang, Y. S., Kim, M. Y., Kang, J. S. and Min 

I. S. (2004). Variations in ICU Mortality Rates and the Need for Quality 

Improvement in Korea. Amsterdem Conference Isqua, IND19-10-04.  

Kleinbaum, D. G. (1994). Logistic Regression : A Self-Learning Text. New York: 

Springer-Verlag, Inc.  

Knaus, W. A. , Wagner, D. P., Loirat, P., Cullen, D. J., Glaser, P., Mercier, P., Nikki, 

P., Snyder, J. V., Le Gall, J. R., Draper, E. A., Campos, R. A., Kohles, M. K., 

Granthil, C., Nicolas, F., Shin, B., Wattel, F. and Zimmerman, J. E. (1982). A 

Comparison of Intensive Care in the U.S.A. and France. The LANCET Journal. 

320(8299): 642-646.   

Kotnarowski, M. (2010). Measurement of Distance between Voters and Political 

Parties – Different Approaches and Their Consequences. 3rd ECPR Graduate 

Conference Dublin. 30 August – 1 September, 2010. Dublin, England. 

Kung, C. C. and Lin, C. C. (2004). A New Cluster Validity Criterion for Fuzzy C-

Regression Model and Its Application to T-S Fuzzy Model Identification. IEEE 

International Conference on Fuzzy Systems. 3: 1673-1678. 

Kung, C. C. and Su, J. Y. (2007). Affine Takagi-Sugeno Fuzzy Modelling Algorithm 

by Fuzzy C-Regression Models Clustering with a Novel Cluster Validity 

Criterion. IET Control Theory Application. 1(5): 1255-1265.  



 222

Le Gall, J. R., Lemeshow, S. and Saulnier, F. (1993). A New Simplified Acute 

Physiology Score (SAPS II) Based on a European/North American Multicenter 

Study. Journal of American Medical Association. 270(24): 2957-2963. 

Li, C. and Sun, Y. (2008). An Improved Ranking Approach to AHP Alternatives 

Based on Variable Weights. Proceedings of the 7th World Congress on Intelligent 

Control and Automation. 25- 27
th

 June, 2008. Chongqing, China. 

Liao, T. W., Celmins, A. K. and Hammell, R. J. II (2003). A Fuzzy C-Means Variant 

for the Generation of Fuzzy Term Sets. Fuzzy Sets System. 135(2): 279-303. 

Lin, Y. and Cunningham, G. A. III (1995). A New Approach to Fuzzy-Neural 

System Modeling. IEEE Transaction on Fuzzy Systems. 3(2): 190-198. 

Leski, J. M. (2004). ε-Insensitive Fuzzy C-Regression Models: Introduction to ε-

Insensitive Fuzzy Modeling. IEEE Transactions on Systems, Man, and 

Cybernetics. 34(1): 4-15. 

Leski, J. M. (2004). Fuzzy C-Varieties/Elliptotypes Clustering in Reproducing 

Kernel Hilbert Space. Fuzzy Sets System. 141(2): 259-280. 

Marsus, M. (1993). Matrices and MATLAB : A Tutorial . USA: Prentice-Hall, Inc. 

McMeekin, C. C. (1994). An Estimation Procedure to Detect and Remove 

Unintentional Judgmental Bias (UJB) in the Analytic Hierarchy Process 

Methodology. Engineering Management Conference IEEE International. 17 -

19
th

 October, 1994. Dayton North, USA.   

Meadow, W., Hall, J., Frain, L., Ren, Y., Pohlman, A., Plesha-Troyke, S., Gresens, 

W. and Lantos, J. (2003). Some are Old, Some are New: Life and Death in the 

ICU. Seminars in Perinatology. 27(6): 471-479. 

Mohd Saifullah Rusiman, Zalina Mohd Daud, Ismail Mohamad (2004). The 

Comparison between Logit, Probit and Linear Probability Models toward 

Mortality Rate at ICU General Hospital. Jurnal Statistika. 4(2), 129-138. 

Mohd Saifullah Rusiman, Zalina Mohd Daud, Ismail Mohamad (2007). 

Perbandingan Teori Model Binari (Comparisons of Theoritical Binary Models). 

MATEMATIKA. 23(1): 51-66. 

Mohd Saifullah Rusiman (2007). The Technique of Data Robustness in Logit 

Modeling. Proceedings of 5th SEAMS-GMU International Conference on 

Mathematics and Its Applications. 24-27
th

 July, 2007. Universiti Gadjah Mada, 

Yogyakarta, Indonesia, 615-621. 



 223

Mohd Saifullah Rusiman, Robiah Adnan, Efendi Nasibov & Kavikumar Jacob 

(2011). Modification of Continuous and Binary ICU Data in FCRM Models. 

International Seminar on the Application of Science & Mathematics (ISASM) 

2011. 1-3
rd

 November, 2011. PWTC, Kuala Lumpur, Malaysia. 

Montgomery, D. C. and Peck, E. A. (1992). Introduction to Linear Regression 

Analysis (2nd Edition). New York: John Wiley & Sons. 

Mustafa, M. A. and Al-Bahar, J. F. (1991). Project Risk Analytic Assessment Using 

the Hierarchy Process. IEEE Transactions on Engineering Management. 38(1): 

46-52. 

Neter, J., Wasserman, W. and Kutner, M.H. (1983). Applied Linear Regression 

Models. New York: Richard D. Irwin, Inc. 

Ni, Y. S. (2005). Fuzzy Correlation and Regression Analysis. Ph.D. Dissertation. 

University of Oklahoma, USA.  

Noortgate, N. V. D., Vogelaers, D., Afschrift, M. and Colardyn, F. (1999). Intensive 

Care for Very Elderly Patients: Outcome and Risk Factors for In-Hospital 

Mortality. British Geriatrics Society. 28: 253-256. 

Norusis, M. J. (1993). SPSS for Windows Advanced Statistics Release 6.0. USA: 

SPSS Inc. 

Oh, C. H., Honda, K. and Ichihashi, H. (2001). Fuzzy Clustering for Categorical 

Multivariate Data. IFSA World Congress and 20th NAFIPS International 

Conference 2001. 4: 2154-2159. 

Ohnishi, S. and Imai, H. (1998). Evaluation for a Stability of Fuzzy Decision Making 

Using a Sensitivity Analysis. Fuzzy Information Processing Society - NAFIPS, 

1998 Conference of the North American. 20 – 21
th

 August 1998, Pensacola 

Beach, FL. 

Owczarek, A. Gacek, A. and Leski J. M. (2005). Multi-Channels Time-Domain-

Constrained Fuzzy C-Regression Models. Advances in SoftComputing, 30: 263-

270. 

Ozaki, M. (1999). A Fuzzy System for Dental Development Age Evaluation. Fuzzy 

and Neuro-fuzzy Systems in Medicine. 2: 195-210.  

Ozdemir, M. S. and Saaty, T. L. (2006). The Unknown in Decision Making What to 

do About It. European Journal of Operational Research. 174: 349–359. 

Pal, N. R. and Bezdek, J. C. (1995). On Cluster Validity for the Fuzzy C-Means 

Model. IEEE Transaction Fuzzy System. 3(3): 370–379. 



 224

Pedryoz, W. (2005). Knowledge-Based Clustering: From Data to Information 

Granules. John Wiley & Sons.    

Perego, A. and Rangone, A. (1996). On Integrating Tangible and Intangible 

Measures in AHP Applications: A Reference Framework. IEEE International 

Conference on Systems, Man, and Cybernetics. 14-17
th

 October, 1996. Beijing, 

China.  

Pilz, U. and Engelmann, L. (1998). Integration of Medical Knowledge in an Expert 

System for Use in Intensive Care Medicine. Fuzzy and Neuro-fuzzy Systems in 

Medicine. 2: 290-315. 

Powell, J. R. W. (2005). The Relationship between Time Spent in the Emergency 

Department and Patient Outcomes in the Medical Intensive Care Unit. USA: 

Dissertation of D’Youville College. 

Pronovost, P. J. , Berenholtz, S. M., Ngo, K., McDowell, M., Holzmueller, C., 

Haraden, C., Resar, R., Rainey, T., Nolan, T. and Dorman, T. (2003). Developing 

and Pilot Testing Quality Indicators in the Intensive Care Unit. Journal of 

Critical Care. 18(3): 145-155. 

Rao, G. S. (2006). Numerical Analysis. Daryaganj, New Delhi: New Age 

International. 

Rhee, H. S. and Oh, K. W. (1996). A Validity Measure for Fuzzy Clustering and Its 

Use in Selecting Optimal Number of Clusters. Proceeding IEEE International 

Conference in fuzzy system. 2: 1020-1025.  

Rotshtein, A. (1999). Design and Tuning of Fuzzy Rule-Based Systems for Medical 

Diagnosis. Fuzzy and Neuro-Fuzzy Systems in Medicine. 2: 243-289. 

Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal American 

Statistical Association. 79: 871–880. 

Rousseeuw, P.J., Hubert, M. (1999). Regression Depth. Journal American Statistical 

Association. 94 (446): 388–402. 

Rousseeuw, P. J., Leroy, A. M. (1987). Robust Regression and Outlier Detection. 

Wiley, NewYork. 

Rovatti, R. (1996). Takagi-Sugeno Models as Approximators in Sobolev Norms: The 

SISO Case. 5th Proceeding of IEEE Conference on Fuzzy Systems, New Orleans. 

3: 1060-1066. 

Ruiswyk, J. V., Hartz, A., Kuhn, E. and Rimm, A. (1991). Linking Process and 

Outcome in Quality of Care Assesstment. IEEE Journal. 8: 2117-2120. 



 225

Rusiman, M. S., Nasibov, E., and Adnan, R. (2011). The Optimal Fuzzy C-

Regression Models (OFCRM) in Miles Per Gallon of Cars Prediction. IEEE 

Student Conference on Research and Development (SCORED) 2011. 19-20
th

 

December, 2011. Kelab Komuniti Taman Tasik Cyberjaya, Malaysia, 251-256. 

S. Mahmoud Taheri (2003). Trends in Fuzzy Statistics. Austrian Journal Of 

Statistics. 32(3): 239-257.  

Saaty, T. L. (1977). A Scaling Method for Priorities in Hierarchical Structures. 

Journal of Mathematical Psychology. 15(3): 234-281. 

Saaty, T. L. and Hu, G. (1998). Ranking by Eigenvector Versus Other Methods in 

the Analytic Hierarchy Process. Applied Mathematics Letters. 11(4): 121-125. 

Schniederjans, M. J. (2004). Information Technology Investment : Decision-Making 

Methodology.  Singapore: World Scientific Publishing Company, Inc. 

Siarry, P. and Guely, F. (1998). A Genetic Algorithm for Optimizing Takagi-Sugeno 

Fuzzy Rule. Fuzzy Sets and Systems. 99: 37-47. 

Silva, A., Cortez, P., Santos M. F., Gomes L. and Neves, J. (2005). Mortality 

Assessment in Intensive Care Units Via Adverse Events Using Artificial Neural 

Networks. Artificial Intelligence in Medicine. 36: 223-234. 

Simchen, E., Sprung, C. L., Galai, N., Zitser-Gurevich, Y., Bar-Lavi, Y., Gurman, 

G., Klein, M., Lev, A., Levi, L., Zveibil, F., Mandel, M., Mnatzaganian, G. 

(2004). Survival of Critically Ill Patients Hospitalized in and out of Intensive 

Care Units under Paucity of Intensive Care Unit Beds. Critical Care Medicine. 

32(8): 1654-1661. 

Sintas, A. F., Cadenas, J. M. and Martin, F. (2000). Partition validity and 

defuzzication. Fuzzy Sets and Systems. 112 (2000): 433 - 447. 

Sivanandam, S. N., Sumathi, S. and Deepa, S. N. (2007). Introduction to Fuzzy Logic 

using MATLAB. Berlin : Springer-Verlag Heidelberg. 

Skarmeta, A. F. G., Delgado, M. and Vila, M. A. (1999). About the Use of Fuzzy 

Clustering Techniques for Fuzzy Model Identification. Fuzzy Sets System. 

106(3): 179-188 

Sloane, E. B., Liberatore, M. J., Nydick, R. L., Luo, W. and Chung, Q. B. (2002). 

Clinical Engineering Technology Assessment Decision Support: A Case Study 

Using the AHP. Proceedings of the Second Joint EMBS/BMES Conference. 23-

26
th

 October, 2002. Houston, USA.  



 226

Sugeno, M. and Kang, G. T. (1988). Structure Identification of Fuzzy Model. Fuzzy 

Sets Systems. 28(1): 15-33. 

Sugeno, M. and Yasukawa, T. (1993). A Fuzzy-Logic-Based Approach to 

Qualitative Modeling. IEEE Transaction Fuzzy System. 1: 7-31. 

Takagi, T. and Sugeno, M. (1985). Fuzzy Identification of Systems and its 

Applications to Modeling and Control. IEEE Transaction Systems, Man 

Cybernatic. 15: 116-132. 

Takrouri, M. S. M. (2004). Intensive Care Unit. The Internet Journal of Health. 3(2), 

ISSN 1528-8315. 

Tanaka, H., Uejima, S. and Asai, K. Linear Regression Analysis with Fuzzy Model. 

IEEE Transactions On Systems, Man, and Cybernetics. 6: 903-907.  

The Committee for National Audit on Adult Intensive Care Units (2002). Protocol : 

National Audit on Adult Intensive Care Units. Kuala Lumpur: Ministry of Health. 

Ting, C. S. (2006). Stability Analysis and Design of Takagi–Sugeno Fuzzy Systems. 

Information Sciences. 176: 2817-2845. 

Tsekouras, G., Sarimveis, H., Kavakli, E. and Bafas, G. (2005). A Hierarchical 

Fuzzy-Clustering Approach to Fuzzy Modeling. Fuzzy Sets System. 150(2): 245-

266. 

Universiti Teknologi Malaysia (2007). UTM Thesis Manual July 2007. Johor Bahru: 

UTM, Skudai. 

Van Der Voort, P. H. J. (2005). Reducing ICU Mortality: To What Extent?. 

Yearbook of Intensive Care and Emergency Medicine. 16: 755-759. 

Wakabayashi, T., Itoh, K., Mitamura, T. and Ohuchi A. (1996). A Framework of an 

Analytic Hierarchy Process Method Based on Ordinal Scale. Proceedings of the 

Fifth IEEE International Conference on Fuzzy Systems. 8-11
th

 September, 1996. 

New Orleans, USA. 

Wang, L. X. (1994). Adaptive Fuzzy Systems and Control: Design and Stability 

Analysis.  New Jersey: Prentice-Hall. 

Wang, L. X. (1997). A Course in Fuzzy Systems and Control. New Jersey: Prentice-

Hall. 

Weisberg, S. (1985). Applied Linear Regression (2nd Edition). New York: John 

Wiley & Sons. 



 227

Wolkenhauer, O. (2002). Fuzzy Regression Models, Fuzzy Clustering and Switching 

Regression. Retrieved on 3
rd

 May, 2008 from http://www.sbi.uni-rostock.de 

/uploads/tx_templavoila/SBI_Materials _Fuzzy-Regression.pdf. 

Xie, X. L. and Beni, G. A. (1991). A Validity Measure for Fuzzy Clustering. IEEE 

Transaction Pattern Anal. Machine Intelligent. 3(8): 841–846. 

Xu, C. W. and Lu, Y. Z. (1987). Fuzzy Model Identification and Self-Learning for 

Dynamic Systems. IEEE Transaction System, Man Cybernetic. 17: 683–689. 

Yen, K. K., Ghoshray, S. and Roig, G. (1999). A Linear Regression Model Using 

Triangular Fuzzy Number Coefficients. Fuzzy Sets and Systems. 106: 167-177. 

Ympa, Y. P., Sakr, Y., Reinhart, K. and Vincent J. L. (2005). Has Mortality from 

Acute Renal Failure Decreased? A Systematic Review of the Literature. The 

American Journal of Medicine. 118(8): 827-832. 

YongShen Ni (2005). Fuzzy Correlation and Regression Analysis. Doctor 

Philosophy, University of Oklahoma, USA. 

Yu, C. S. and Li, C. K. (2001). A Group Decision Making Fuzzy AHP Model and Its 

Application to a Plant Location Selection Problem. IFSA World Congress and 

20th NAFIPS International Conference. 25-28
th

 July, 2001. Vancouver, Canada. 

Yuan, G. J. , Jia, L. and Li, Q. (2006). Research on Supply Chain performance 

Evaluation Based on DEA/AHP model. Proceedings of the 2006 IEEE Asia-

Pacific Conference on Services Computing (APSCC'06). 26
th

 December, 2006. 

Guangzhou, China. 

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control. 8 (3): 338–353. 

Zhang, Y., Wang, W., Zhang, X. and Li Y. (2008). A Cluster Validity Index for 

Fuzzy Clustering. Information Sciences Journal. 178: 1205–1218. 

Zhang, Y. Zhang, H., Zhong, Z., Gao X. and Ni, Y. (2008). Objectively Evaluating 

Environmental Comprehensive Quality by Improved AHP Method. The 2nd 

International Conference on Bioinformatics and Biomedical Engineering, ICBBE 

2008. 16-18
th

 May, 2008. Shanghai, China. 




