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ABSTRAK

Fokus kajian adalah untuk memodelkan proses penukaran penurunan
berparameter secara spontan (SPDC) di dalam kristal tak linear yang menghasilkan
foton-foton yang saling berkait sifatnya antara satu sama lain mengunakan kaedah
berangka dengan pendekatan fizik kuantum sepenuhnya. Berdasarkan kajian sebelum
ini, model yang dihasilkan mengfokuskan nombor foton pam laser sehingga n = 4
sahaja manakala dalam projek ini, model yang dihasilkan adalah sehingga nombor
pam laser n = 8. Kesemua persamaan pembeza bagi amplitud keadaan hasilan,
perubahan keadaan hasilan selepas pembelah alur cahaya, pengutub cahaya dan
pengesanan foton diselesaikan secara simbolik dan berangka menggunakan pakej
sistem algebra berkomputer sumber terbuka yang dikenali sebagai Maxima. Pakej ini
juga digunakan untuk mengira nilai kebarangkalian yang diperolehi daripada analisis
selain dapat menghasilkan hasil analisis dalam bentuk grafik. Keputusan
menunjukkan bahawa bagi kes parameter perolehan $ dan juga amplitud pam &,
yang kecil, keberangkalian untuk berlakunya proses ini adalah didominasi oleh
keadaan hasilan yang tidak berlaku sebarang penurunan berbanding dengan keadaan
yang berlaku proses penurunan sepenuhnya. Walau bagaimanapun, bila &
ditingkatkan, proses SPDC pada amplitud pam &; yang rendah, keseluruhan proses
dikuasai oleh penghasilan yang mengandungi foton isyarat dan pemelahu. Keputusan
ini selari dengan apa yang ditemui oleh kajian sebelum ini. Taburan kebarangkalian
paling maksimum bagi tanpa proses penurunan, sebahagian proses penurunan dan
proses di mana berlakunya penurunan sepenuhnya sentiasa bertepatan dengan nilai
®; . Kebarangkalian pengesanan foton secara bersama antara foton isyarat dan
pemelahu dapat dihasilkan dengan menyalurkan foton berbilang hasil daripada
proses SPDC ke interferometer. Ianya menunjukkan bahawa corak dan bentuk
taburan kebarangkalian bagi pengesanan dua-foton dan empat-foton adalah sama

sebagaimana yang diterbitkan oleh kajian sebelum ini.
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ABSTRACT

This work focuses on numerical modeling of the spontaneous parametric
down conversion (SPDC) process in nonlinear crystal which produces correlated
photons using fully quantum approach. From previous work, the modelling only
focus the pump photon number until n = 4 while in this project the modelling were
extended to pump photon numbers n = 8. All the coupled linear differential equations
for the product state amplitudes as well as the transformations of the product states
through the beam splitter, polarizers and photon detectors were solved numerically
and symbolically using an open-source Computer Algebraic System (CAS) software
called Maxima. In addition the package was also used to calculate various
probabilities generated during the analyses and to produce graphical outputs of the
results. The results show that for small gain parameter % and pump amplitude o, the
probability of generating multi-particle product states with zero down conversion
consistently dominate the SPDC process compared to that of the product states with

full down conversion in pump photons. When the gain parameter ¢ is increased

however, the SPDC process at low pump amplitude o begins to favour the product
states containing certain number of signal and idler photons which is in agreement
with the findings from the previous works. Furthermore the peak of probability
distributions for all the zero, partial and fully down conversion product states always
coincide with the mean photon number of the pump photons. The applications of the
multi-particle states to a standard interferometer lead to the expressions for the
probability of coincidence detection. Again the results show that both the trends and
shapes of the two-photon and four-photon coincidence probability distributions are

also in agreement with the published by previous research.
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CHAPTER 1

INTRODUCTION

This chapter focuses on the ideas of single photon, single-photon sources,
entangled photons and common nonlinear optical phenomena which include the
spontaneous parametric down-conversion (SPDC). In addition, this chapter also
covers the background of the problem, the statements of the problem, the objectives,

the hypothesis, the significance, and the scope of this research.

1.1 Introduction

The idea of photon was first introduced by Planck (1901) when he worked on
black-body radiation experiment and suggested that the energy in electromagnetic
waves could only be released energy in a packet. Later Einstein (1965) suggested
that the electromagnetic waves could only exist in discrete wave-packet which he
called quanta. Lewis (1926), a physical chemist, published a speculative theory that
photons were “uncreateable and indestructible”. Although his theory was
contradicted by many experiments, the name photon was adopted and being used by
many physicists to explain the discrete energy of light. When the first idea of photon
arise, the generation of single photons was not being considered.

Many experimental physicists in early stage of understanding photon used
attenuated laser beam to ensure that the probability of having more than one photon
became negligible. Although this method is acceptable for some experiments, it is
still questionable because the attenuated laser beam is not a true single-photon

source. When using attenuated laser beam, the vacuum probability is much higher



that the probability to detect a photon, so the detection of no photon regime is always
higher than the single photon itself. The probability to detect two photons also is
never zero. So the attenuated laser beam cannot be assumed as a single photon
source.

Nowadays, the advance in quantum information science has increased the
demand for the optical sources which produce ultra bright single photons. In
particular secured quantum cryptography and linear optical quantum computing
depend on the availability of such single-photon sources. The combination of strict
requirements for single photons plus new technologies are driving an exciting
research effort into single-photon generation.

Quantum dots in pillar micro cavities, falling neutral atoms and trapped ions
in cavities, defects in diamond nanocrystals, single molecule in a solid and
parametric down conversion are among the methods used to produce single photons
and photon pairs (Grangier et al., 2004). The most commonly used method is called
the parametric down conversion process which was first introduced by Klyshko
(1988). This method was first called photon fluorescence and it produced photon
pairs.

The photons in the photon pairs are said to be entangled or correlated to each
other and they carried nonlocal information which is beyond the domain of classical
physics and always considered as a paradox in physics like what Einstein et al.
(1935) claimed in their paper. But then, this paradox has now become clear and
acceptable after Bell (1964) discovered the nonlocal properties and introduced the
Bell's inequalitiy, which can be verified by experimental work. Recently there are
growing interests on the applications of entangled or correlated photons, for
example, the usage of the correlated photons in quantum cryptography (Ekert, 1991),
quantum teleportation (Bennett et al., 1993), and quantum computation (Ekert and
Jozsa, 1995).

The photon-pair generation is a second order nonlinear process in which a
pump photon disappears leading to the creation of two photons with lower energy.
This generation is driven by an optical pump field oscillating at the frequency w, and
occurs spontaneously to produce twin photons namely the signal and idler photons
with frequencies w;s and w; respectively which are lower than w,. This process can

be conceptually illustrated by the diagram in Figure 1.1.



Signal photon

Pump photon /

Nonlinear crystal Idler photon

Figure 1.1 : Twin photon generation process

The signal and idler photons are said to be entangled to each others in frequency
domain (De Martini and Sciarrino, 2005). The non-classical correlation between the
intensities of the generated two- photon states has been observed for the first time by
Burnham and Weinberg (1970), and has become widely used in the experiments of
quantum optics (QO). Thanks to the seminal work of Leonard Mandel and his
collaborators (Hong and Mandel, 1986, Hong et al., 1987, Ghosh and Mandel, 1987
and Mandel, 1999), optical parametric oscillators (OPO) based on processes of
down-conversion in a cavity have proved to be efficient sources of frequency tunable
light with a range of unique properties.

Figure 1.2 shows the other three types of non-linear interactions that being
described in recent paper (De Martini and Sciarrino, 2005). They are the quantum-
injected optical parametric amplification, the stimulated emission by a biphoton state

and the frequency up-conversion.



= Signal photon
g
Pump photon g
\0‘\ 3
ST ; Idler ph
W & er photon
(a)
In:
%‘ = Signal photon
S
Pump photon > %
(@)
AP 5
“\-\ec@ 3 Idler photon
(b)
&O[
Sum photon

>

>
v/§
~
[BISAID Te3UI[UON

~
@]
~—

Figure 1.2 : Schematic Diagram of Nonlinear Optical Processes;
(a) quantum-injected optical parametric amplification,
(b) stimulated emission by a biphoton state,

(c) frequency up-conversion

1.2  Background of the Problem

Early SPDC theory was proposed by D. N. Klyshko in 1966 and the research



on his theory still exists with new, unexplored possibilities of using SPDC for the
discovery of new phenomena at that time (Mandel and Wolf, 1995). Most research
works were experimental and several others were done by numerical methods.

Fully quantum theoretical treatment of SPDC process is based mainly on the
work of Podoshvedov et al. (2005). They derived the expressions to calculate the
probability distributions of photons from SPDC process. However, in their work, the
expressions for the photon correlation probabilities were derived only for cases with
maximum of four photons in the pump.

For SPDC experimentalists who conduct experiments on parametric down
conversion in small scale, there will be a need for a pump photon with a low photon
number to be down converted into two or more entangled or correlated photons.
Thus a SPDC theory fully based on quantum theory that works with low photon
number is needed even though many SPDC experiments have been conducted by
using laser beam which normally is treated as classical optics rather than quantum
optics.

In this project, the expressions for the probability distributions of correlated
photons in full quantum SPDC process for cases with more than four photons are
derived. The problems are also solved numerically by using open source software,
Maxima, a software freely available for others to use. It is hoped that the numerical
studies on SPDC process will become much easier and reliable to conduct in the
future by incorporating the quantum properties of light before as well as after

propagating through the nonlinear crystal.

1.3 Statement of Problem

Even though most SPDC experimental works have used attenuated laser
beams as the photon sources, more precise works are known to require single-photon
sources. The classical treatment of the SPDC theory is commonly considered to be
the approximation for cases when pump photon number involved is very large. The
SPDC process in nonlinear crystal therefore should be analyzed fully using quantum

theory.



1.4  Research Objectives

In this project there are two main objectives to be completed. The first
objective is to carry out numerical modeling of the SPDC process in fully quantum
way for cases where the pump field contains more than four photons. The second
objective is to derive, plot and analyze the multi-particle coincidence probability

distributions based on the correlated photons generated from the SPDC process.

1.5  Statement of Hypothesis

It is hypothesized that, fully quantum theoretical treatment on SPDC process
can be simulated using Maxima and the results for cases with up to four photons in
the pump field should be consistent with those published by Podoshvedov et al.
(2005) and Maxima can further simulate the fully quantum SPDC process for cases

where pump field contains higher photon number.

1.6  Significance of Research

This work will give us an insight about the theoretical model of the quantum
field interaction of light in nonlinear optical crystal. In addition it can be an
alternative means of investigating the SPDC process. It also helps us to advance our
knowledge in quantum optics as well as in the computational method used to study

the SPDC process.

1.7  Scope of Study

The scope of the study is to investigate the fully quantum theory of the SPDC

process in nonlinear crystal and then to calculate the probability distributions of the



correlated states in the process and the detection probabilities in coincidence
detection using open source computer algebraic system (CAS) software, Maxima.

The results will be compared with to those published by Podoshvedov et al. (2005).



89

REFERENCES

Atatiire, M., Di Giuseppe, G., Shaw, M. D., Sergienko, A. V., Saleh, B. E. A., &
Teich, M. C. (2002). Multiparameter entanglement in femtosecond
parametric down-conversion. Physical Review A.Atomic, Molecular, and
Optical Physics, 65(2), 023808/1-023808/4.

Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox. Physics, 1(3), 195-200.

Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K.
(1993). Teleporting an unknown quantum state via dual classical and
einstein-podolsky-rosen channels. Physical Review Letters, 70(13), 1895-
1899.

Boeuf, N., Branning, D., Chaperot, 1., Dauler, E., Guérin, S., Jaeger, G., Muller, A.,
& Migdall, A. (1999). Calculating Characteristics of Non-collinear Phase-
matching in Uniaxial and Biaxial Crystals. nonpublished.

Bothe, W. (1964). Nobel Lectures, Physics 1942-1962. Amsterdam: Elsevier
Publishing Company.

Burnham, D. C., & Weinberg, D. L. (1970). Observation of simultaneity in
parametric production of optical photon pairs. Physical Review Letters,
25(2), 84-87.

De Martini, F., & Sciarrino, F. (2005). Non-linear parametric processes in quantum
information. Progress in Quantum Electronics, 29(3-5), 165-256.

Delphenich, D. H. (2006). Nonlinear optical analogies in quantum electrodynamics.
ArXiv preprint.

Di Giuseppe, G., Atatiire, M., Shaw, M. D., Sergienko, A. V., Saleh, B. E. A., &
Teich, M. C. (2002). Entangled-photon generation from parametric down-
conversion in media with inhomogeneous nonlinearity. Physical Review A -
Atomic, Molecular, and Optical Physics, 66(1), 138011-138017.

Edlén, B. (1972) Nobel Lectures. Physics 1963-1970, Armsterdam: Elsevier
Publishing Company.



90

Einstein, A. (1965). Concerning an Heuristic Point of View Toward the Emission
and Transformation of Light. Translation into English American Journal of
Physics, 33(5), 1-15.

Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical
description of physical reality be considered complete? Physical Review,
47(10), 777-780.

Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Phys. Rev.
Lett, 67(6), 661-663.

Ekert, A. K., & Jozsa, R. (1995). Shor's quantum algorithm for factorising numbers.
in preparation for Reviews of Modern Physics.

Feynman, R. P. (1972). Statistical mechanics: a set of lectures/ notes taken by R
Kikuchi and H A Feiveson, Reading, Mass: Benjamin.

Friberg, S., Hong, C. K., & Mandel, L. (1985). Measurement of time delays in the
parametric production of photon pairs. Physical Review Letters, 54(18),
2011-2013.

Ghosh, R., & Mandel, L. (1987). Observation of nonclassical effects in the
interference of two photons. Physical Review Letters, 59(17), 1903-1905.

Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography.
Reviews of Modern Physics, 74(1), 145-195.

Glauber, R. J. (1963). The quantum theory of optical coherence. Physical Review,
130(6), 2529-2539.

Gordon, J. P,, Zeiger, H. J., & Townes, C. H. (1954). Molecular microwave
oscillator and new hyperfine structure in the microwave spectrum of NH3.
Physical Review, 95(1), 282-284.

Gordon, J. P,, Zeiger, H. J., & Townes, C. H. (1955). The maser-new type of
microwave amplifier, frequency standard, and spectrometer. Physical Review,
99(4), 1264-1274.

Gould, R. G. (1959). The LASER, Light Amplification by Stimulated Emission of
Radiation. The Ann Arbor Conference on Optical Pumping, the University of
Michigan, 128.

Grangier, P., Sanders, B., & Vuckovic, J. (2004). Focus on single photons on
demand. New Journal of Physics, 6. 56-58.

Griffiths, D. J. (1999). Introduction to electrodynamics, 3rd ed. Prentice Hall.



91

Haliday, Resnick and Walker. (2005). Fundamental of Physics, 7th Ed. John Wiley &
Sons, Inc.

Hanbury Brown, R., & Twiss, R. Q. (1956). A test of a new type of stellar
interferometer on sirius. Nature, 178(4541), 1046-1048.

Hong, C. K., & Mandel, L. (1986). Experimental realization of a localized one-
photon state. Physical Review Letters, 56(1), 58-60.

Hong, C. K., Ou, Z. Y., & Mandel, L. (1987). Measurement of subpicosecond time
intervals between two photons by interference. Physical Review Letters,
59(18), 2044-2046.

Hoover, E. R. (1977). Cradle of Greatness: National and World Achievements of
Ohio's Western Reserve. Cleveland: Shaker Savings Association.

Javan, A., Bennett Jr., W. R., & Herriott, D. R. (1961). Population inversion and
continuous optical maser oscillation in a gas discharge containing a he-ne
mixture. Physical Review Letters, 6(3), 106-110.

Joseph, E. S., Konstantin L. V., Paulina S. K., & Martin M. F. (2008). Terahertz
Sources Based on Intracavity Parametric Down-Conversion in Quasi-Phase-
Matched Gallium Arsenid. IEEE Journal of Selected Topics in Quantum
Electronics, 14(2), 354-362

Kato, K. (1986). SECOND-HARMONIC GENERATION TO 2048 ANGSTROM IN
beta -BaB//2 O//4. IEEE Journal of Quantum Electronics, QE-22(7), 1013-
1014.

Kenyon, I. R. (2008). The light fantastic: a modern introduction to classical and
quantum optics. Oxford: Oxford University Press.

Kim, Y. -. (2003). Measurement of one-photon and two-photon wave packets in
spontaneous parametric down conversion. Journal of the Optical Society of
America B: Optical Physics, 20(9), 1959-1966.

Klyshko, D. N. (Author), Sviridov, Y(Translator). (1988). Photons and Nonlinear
Optics. Amsterdam: Gordon and Breach Science Publishers.

Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum
computation with linear optics. Nature, 409(6816), 46-52.

Koupelis, T., & Kuhn, K. F. (2007). In Quest of the Universe. Jones & Bartlett
Publishers.

Lewis, G. N. (1926). The conservation of photons. Nature, 118(2), 874-875.



92

Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature, 187(4736), 493-
494.

Mandel, L. (1999). Quantum effects in one-photon and two-photon interference.
Reviews of Modern Physics, 71(SUPPL. 2), S274-S282.

Mandel, L., & Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge:
Cambridge University Press.

Mark Fox. (2006). Quantum Optics: An Introduction (Oxford Master Series in
Physics, 6). USA: Oxford University Press.

Maxima manual ver. 5.21

Maxima wiki. (2011). URL http://maxima-project.org/wiki/index.php?
title=Maxima_ports

Maxima. (2011) URL http://maxima.sourceforge.net

Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field.
Philosophical Transactions of the Royal Society of London 155, 459-512.

McGraw-Hill. (1993). McGraw-Hill Encyclopedia of Science and Technology (5th
ed.). McGraw-Hill: McGraw-Hill Professional.

Midwinter, J. E., & Warner, J. (1965). The effects of phase matching method and of
uniaxial crystal symmetry on the polar distribution of second-order non-
linear optical polarization. British Journal of Applied Physics, 16(8), 1135-
1142.

Morgan. J. (2005). In Memoriam : William Frederick Schelter. Office of the General
Faculty.

Nielsenm M. A., & Chuang, I. L. (2000). Quantum Computation and Quantum
Information, (1st Edition). Cambridge: Cambridge University Press.

Nikogosyan, D. N. (1991). Beta barium borate (BBO) - A review of its properties
and applications. Applied Physics A Solids and Surfaces, 52(6), 359-368.

Nouredine Z. (2009). Quantum Mechanics : Concepts and Applications 2nd ed. John
Wiley & Sons, Ltd.

Ou, Z. Y., & Mandel, L. (1988). Violation of bell's inequality and classical
probability in a two-photon correlation experiment. Physical Review Letters,
61(1), 50-53.

Ou, Z. Y., Hong, C. K., & Mandel, L. (1987). Relation between input and output

states for a beam splitter. Optics Communications, 63(2), 118-122.



93

Planck, M. (1901). On the Law of Distribution of Energy in the Normal Spectrum.
Annalen der Physik, 4, 553.

Podoshvedov, S. A., Noh, J., & Kim, K. (2005). A full quantum theory of parametric
down conversion and its application to coincidence measurements. Journal of
the Korean Physical Society, 47(2), 213-222.

Rarity, J. G., Tapster, P. R., Jakeman, E., Larchuk, T., Campos, R. A., Teich, M. C., et
al. (1990). Two-photon interference in a mach-zehnder interferometer.
Physical Review Letters, 65(11), 1348-1351.

Rossi, B. (1930). Method of Registering Multiple Simultaneous Impulses of Several
Geiger's Counters. Nature 125, 636-636.

Rubin, M. H., Klyshko, D. N., Shih, Y. H., & Sergienko, A. V. (1994). Theory of
two-photon entanglement in type-II optical parametric down-conversion.
Physical Review A, 50(6), 5122-5133.

Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A., & Teich, M. C. (2010). Photonic
circuits for generating modal, spectral, and polarization entanglement. IEEE
Photonics Journal, 2(5), 736-752.

Santori, C., Pelton, M., Solomon, G., Dale, Y., & Yamamoto, Y. (2001). Triggered
single photons from a quantum dot. Physical Review Letters, 86(8), 1502-
1505.

Schuster, A. (1904). An Introduction to the Theory of Optics. London: Edward
Arnold.

Shi, B. -., Wang, F. -., Zhai, C., & Guo, G. -. (2008). An ultra-bright two-photon
source with a type-I bulk periodically poled potassium titanyl phosphate.
Optics Communications, 281(12), 3390-3394.

Takeuchi, S., Okamoto, R., & Sasaki, K. (2004). High-yield single-photon source
using gated spontaneous parametric down conversion. Applied Optics,
43(30), 5708-5711.

Torres-Company, V., Lajunen, H., & Friberg, A. T. (2009). 'Nonlocal' dispersion
cancelation with classical light. New Journal of Physics, 11.

U'Ren, A. B., Banaszek, K., & Walmsley, 1. A. (2003). Photon engineering for
quantum information processing. Quantum Information and Computation,

3(SPEC. ISS.), 480-502.



94

V. G. Dmitriev, G. G. Gurzadyan and D. N. Nikogosyan, A. E. Siegman(editor).
(1991) Handbook of Nonlinear Optical Crystal. Springer Series in Optical
Sciences, Vol.64, Verlag Berlin Heidelberg: Springer.

Walls, D. F. & Milburn, G. J. (2008). Quantum Optics. Springer.

Williams, T & Kelley, C. (2004). Gnuplot 4.4 : An Interactive Plotting Program.
1986 - 1993, 1998.

Wolf, K. B. (1995). Geometry and dynamics in refracting systems. European Journal
of Physics.

Young, H. D. (1992a). University Physics, 8th Ed. Addison-Wesley.

Young, H. D. (1992b). University Physics 8th Ed. Addison-Wesley,Chapter 37.

Young, H. D. (1992c). University Physics 8th Ed. Addison-Wesley,Chapter 38.





