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Proportional-Integral-Derivative (PID) controller is one of the most popular 
controllers applied in industries. However, despite the simplicity in its structure, the 
PID parameter tuning for high-order, unstable and complex plants is difficult. When 
dealing with such plants, empirical tuning methods become ineffective while 
analytical approaches require tedious mathematical works. As a result, the control 
community shifts its attention to stochastic optimisation techniques that require less 
interaction from the controller designers. Although these approaches manage to 
optimise the PID parameters, the combination of multiple objectives in one single 
objective function is not straightforward. This work presents the development of a 
multi-objective genetic algorithm to optimise the PID controller parameters for a 
complex and unstable system. A new genetic algorithm, called the Global Criterion 
Genetic Algorithm (GCGA) has been proposed in this work and is compared with 
the state-of-the-art Non-dominated Sorting Genetic Algorithm (NSGA-II) in several 
standard test problems. The results show the GCGA has convergence property with 
an average of 35.57% in all problems better than NSGA-II. The proposed algorithm 
has been applied and implemented on a rotary inverted pendulum, which is a 
nonlinear and under-actuated plant, suitable for representing a complex and unstable 
high-order system, to test its effectiveness. The set of pareto solutions for PID 
parameters generated by the GCGA has good control performances (settling time, 
overshoot and integrated time absolute errors) with closed-loop stable property.



Pengawal Perkadaran-Kamiran-Pembezaan (PID) adalah salah satu daripada 
pengawal-pengawal yang banyak digunakan di industri. Walau bagaimanapun, 
selain memiliki struktur yang ringkas, penalaan parameter-parameter PID untuk 
sistem yang tidak stabil, kompleks dan bertertib tinggi menjadi sukar untuk 
disempurnakan. Apabila berhadapan dengan sistem sedemikian, kaedah-kaedah 
empirikal menjadi tidak berkesan dan kaedah-kaedah analitik memerlukan jalan 
keija matematik yang rumit. Kesannya, komuniti kawalan cuba mengalihkan 
perhatian kepada kaedah-kaedah stokastik yang kurang memerlukan interaksi 
daripada jurutera. Walaupun kaedah-kaedah ini berjaya menalakan parameter- 
parameter PID, penggabungan pelbagai objektif dalam satu fungsi objektif masih 
tidak begitu jelas. Tesis ini memperincikan pembangunan satu algoritma evolusi 
pelbagai objektif untuk mengoptimumkan parameter-parameter PID bagi satu sistem 
yang kompleks dan tidak stabil. Algoritma yang dicadangkan iaitu Algoritma 
Genetik Berkreteria Global (GCGA) akan dibandingkan dengan algoritma yang 
popular, Algoritma Genetik Penyusunan Tak-didominasi (NSGA-II) dalam beberapa 
permasalahan. Keputusan menunjukkan GCGA mempunyai purata 35.57% kadar 
penumpuan yang lebih baik berbanding NSGA-II dalam semua pengujian. 
Algoritma cadangan telah diaplikasikan ke atas bandul songsang berputar yang 
merupakan satu sistem tidak linear yang sesuai untuk mewakili sistem yang 
kompleks, bertertib tinggi dan tidak stabil. Set penyelesaian-penyelesaian pareto 
yang diperolehi melalui GCGA mempunyai sifat-sifat kawalan (masa pengenapan, 
kelajakan dan ralat masa mutlak bersepadu) yang baik dengan mematuhi sifat 
kestabilan sistem tertutup.
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INTRODUCTION

1.1 Background of the Problem

Controller design is an essential aspect in control engineering in order to 
ensure a controlled plant to perform well. The controller or control law describes the 
algorithm or the signal processing employed by the control processor to generate the 
actuator signal from the sensors and command signals it receives (Chen, 1992). 
Figure 1.1 shows the configuration of the controller, actuator, plant and sensor in a 
feedback or closed-loop system. The controller receives command signal and after 
that compares it with the present output measured by the sensor. The controller then 
send the appropriate signal to the actuator in order to ensure the plant produces the 
same output as the command signal.

Figure 1.1: Block diagram of the controller, actuator, plant and sensor in a 
feedback or closed-loop system

The signal value send by the controller completely depends on the parameters 
in the controller. The adjustment of the controller parameters or sometimes called 
controller tuning is a critical element in the controller design process. Simple



controllers like Proportional-Integral-Derivative (PID) controller only requires few 
parameters to be tuned but complicated controllers like Linear-Quadratic Regulator 
(LQR) and Linear Quadratic Gaussian (LQG) have more parameters to deal because 
they considered more states in the designs (Bemporad et al., 2002). These 
complicated controllers however are developed in such way so it will produce 
optimum control signal (Polyak and Tempo, 2001). The controller design only has to 
decide on the value of the weights associated with the various signals in the system. 
On the other hand, this research aims to find an approach to optimize the 
performances of the PID controllers.

Despite the simplicity in its structure and being the most popular type of 
controller employed, the level of difficulty in the PID controller tuning mainly 
depends on the plant behaviours (Astrom and Hagglund, 2001). Nonlinearity, 
instable open-loop system, under-actuation and the system’s order are the elements 
that contribute to the difficulties of tuning process (Zhuang and Atherton, 1993). 
Therefore this research used a rotational inverted pendulum (RIP) to demonstrate the 
difficulties in tuning the PID control parameters for a very nonlinear and under
actuated system. The under-actuated (two degree of freedoms, one actuator) property 
of RIP also demonstrates the tuning example of two PID controllers simultaneously. 
This condition will add to the difficulties in PID tuning.

Referring to the above conditions, the existing PID tuning methods are not 
capable to tune the combination of PID parameters when facing such plants. Thus 
this research tries to propose an algorithm that automatically gives the user the 
optimized PID parameters for the objectives like steady-state error, settling time and 
overshoot in the system.



1.2 Im portance of the W orks

Despite the popularity of PID controllers as the most practical controller for 
control engineer, Ender (1993) reports that 30% of the installed PID controllers are 
operating in manual mode and 65% of the automatic controllers are poorly tuned. 
Moreover, a study from Van Overschee et al. (1997) shows 80% of PID controllers 
are badly tuned and 25% of the PID controllers are operating under default factory 
settings, means the controllers are not tuned at all. Recently, O’Dwyer (2009) states 
the proposed tuning methods in literature are not having significant impact in the 
industrial practises. These situations implies the tuning PID controllers are the 
vexing problems to the tuning operators which maybe the tuning rules available are 
not well compatible for their tuning problems in industry.

Hence this research tries to provide an alternative approach for tuning PID 
controllers. The developed algorithm in this research will automatically provide the 
designers with the optimized PID parameters with less rules of tuning.

1.3 Research Objectives

The main objectives of this research are
i. To develop a multi-objective optimization algorithm based on evolutionary 

techniques for tuning PID controller parameters.
ii. To compare the proposed algorithm with the well known multi-objective GA.

iii. To apply the optimized PID controller to an under-actuated plant, rotational 
inverted pendulum (RIP) in the simulation and real plant.



1.4 Scope of W ork

This research consists of a few focus works in order to achieve its objectives.
i. Developing a multi-objective optimization algorithm to optimally tune the 

PID controller performances like settling time, steady state errors and 
overshoot using multi-objective genetic algorithms (MOGAs) approach.

ii. Analysing the optimization algorithm using several test problems borrowed 
from literature and comparing to a well-known algorithm.

iii. Applying the results of optimized PID controller simulation to the real plant 
in order to validate the algorithm in the real implementation.

1.5 Research Contribution

The main contributions of this research are
i. Introduction of a variant of MOGAs called Global Criterion Genetic 

Algorithm (GCGA).
ii. Optimization of PID controller tuning using GCGA.

iii. Simulation and experimental validation of optimized PID controller tuning.

1.6 Thesis Outline

This thesis consists of six chapters. Chapter 2 provides a discussion of the 
fundamentals of PID controller and a number of popular tuning methods for PID 
controller. Both conventional and alternative approaches are covered in this chapter.

Chapter 3 discusses the literature review for evolutionary algorithm (EA), the 
application of EA in the controller tuning problem and the multi-objective genetic 
algorithms (MOGAs). Previous work done by the researchers in the area of MOGAs 
will be used as the basis for the proposed algorithm in Chapter 4.



Chapter 4 presents the detailed methodology of the proposed algorithm called 
Global Criterion Genetic Algorithm (GCGA). Moreover, the modelling of the 
rotational inverted pendulum through derivation from the equations of motion is 
presented.

Chapter 5 analyzes the GCGA through several popular test problems and 
compares its performances with the well known Non-dominated Sorting Genetic 
Algorithm II (NSGA-II). This chapter also shows the optimization work of the PID 
controller using GCGA in the simulation and real RIP.

Chapter 6 concludes the thesis and suggests several further investigations of 
the optimization work.
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