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ABSTRACT

A multi-objective optimization approach using surrogate modeling is applied
to a nonlinear Multi Input Multi Outputs (MIMO) control system model to predict
Pareto-front of objective functions which is defined using Integral Square Error
(ISE). Typically, practical multi-objective optimization was highly expensive even in
computer simulation. To address such a challenge, approximation or surrogate based
techniques are adopted to reduce the computational cost. The surrogate modeling
developed as surrogates of the expensive simulation process in order to improve the
overall computation efficiency in multi-objective optimization problem. By using
surrogate modeling, the location of the actual Pareto-front is predicted by Radial
Basis Function Neural Network (RBFNN) using only a small fraction of the design
space. Some case studies show that the surrogate modeling manages to predict
most of the Pareto-front of the design space. The best compromise of ISE obtained
from predicted Pareto-front produces optimum response for MIMO control system.
The result indicates that the procedure to construct the ‘model of the model’ totally
compensates the computational expense. This thesis also demonstrates that there are a
number of techniques which can be used to tackle difficult multi-objective problems.
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ABSTRAK

Sebuah pendekatan pengoptimasi multi-objektif menggunakan pemodelan
pengganti diaplikasikan kepada sebuah sistem kawalan Multi Masukan Multi Keluaran
(MMMK) tidak linear untuk menganggar fungsi objektif Pareto-hadapan di mana ianya
didefinisikan menggunakan Ralat Integral Persegi (RIP). Kebiasaanya, pengoptimasi
multi-objektif yang praktikal adalah sangat mahal walaupun dalam simulasi komputer.
Untuk mengatasi cabaran ini, penganggaran atau teknik berasaskan pengganti
diadaptasi untuk mengurangkan kos pengiraan. Pemodelan pengganti dibangunkan
sebagai pengganti kepada proses simulasi yang membebankan demi meningkatkan
keefisienan pegiraan secara keseluruhan dalam permasalahan pengoptimasi multi-
objektif. Dengan menggunakan pemodelan pengganti lokasi Pareto-hadapan sebenar
diramal oleh Fungsi Saraf Rangkaian Asas Jejarian menggunakan hanya sedikit
pecahan dari ruang reka bentuk. Kes-kes kajian menunjukkan pemodelan pengganti
berupaya menganggar kebanyakan Pareto-hadapan dari ruang reka bentuk. Kompromi
RIP terbaik diperolehi dari Pareto-hadapan yang dianggar menghasilkan respons
optimum untuk sistem kawalan MMMK. Hasil keputusan menunjukkan prosedur
membangunkan ‘model kepada model’ secara keseluruhan mengkompensasikan
pengiraan berkomputer. Tesis ini juga mendemonstrasikan dimana terdapat pelbagai
teknik yang boleh diguna bagi menyelesaikan masalah multi-objektif yang sukar.
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CHAPTER 1

INTRODUCTION

In the world of control engineering design, there are often multi-input multi-
output (MIMO) non-linear systems with complicated mathematical model. The system
usually consists of controlled variables and manipulated variables and in practice, it is
normally desired to find the controlled values that would give optimal responds of
the system. For example, a MIMO control system for a fluid mixing system which
consists of a mixing tank and two auxiliary tanks. The first auxiliary tank contains
colored water, while the second one contains clear water. The input flow to the mixing
tank is controlled by two valves, which regulate the output flows from the auxiliary
tanks.

The control system is used to control the level of the liquid in mixing tank and
the coloration of the resulting mix at the desired set point. Common practice usually
needs to find the optimum controller parameter values that minimize both liquid level
and coloration. However there are certain cases engineer emphasis to find the optimal
value by selecting one of the controllers. To increase the responsiveness for coloration
of the mixing result, the respond on liquid level need to be decreased or vice versa. The
process of finding parameters of different respond in MIMO control system is known
as a multi-objective problem.

There are mainly two ways to optimize multiple variables in MIMO system.
First by aggregating the objectives to a single objective and second by solving a
multi-objective optimization problem. Multi-objective optimization is a tool that
aids engineers in choosing the best design in a world where many targets need to
be satisfied. Unlike conventional optimization, multi-objective optimization will not
produce single solution, but rather a set of solutions, commonly referred to as Pareto-
front [1]. By definition it will contain only non-dominated solutions. It is up to
engineers to select the final design by examining this front. Hence the main purpose
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of multi-objective problem is to find this Pareto-front points.

1.1 Problem Statement

In MIMO control system problem user usually find an optimum respond for
all controller. The optimum response can be obtained by aggregating the objective
functions to a single objective function. However in real world not every objective
function weight the of same of each other. By aggregating the objective function, only
one solution can be achieve in a simulation. User need to re-simulate the problem
when the weight in one of the objective function changed. This is why multi-objective
optimization is needed to let engineer to have a set of solution or Pareto-front using
only a single simulation.

The simulations needed when applying multi-objective optimization for non-
linear MIMO control system might be very expensive computationally due to the
complexity of the actual model. Despite the continuous advances in computer
technology, the long simulation time is still unavoidable. This is due to the fact
that the control system to be simulated also keeps getting more complex everyday.
Thus it becomes impractical to rely exclusively on simulation for the purpose of multi-
objective control system optimization. Here, surrogate modeling is proposed to adopt
with multi-objective optimization to produce the Pareto-front. Surrogate modeling
requires simple computational algorithm to provide multi set of controller parameters.

This thesis is concerned with how this simulation problem is often tackled in
engineering design: simpler approximation models are created to predict the Pareto-
front by developing a relationship between the system inputs and outputs. When
properly constructed, these approximated Pareto-front models mimic the behavior of
the simulation code while being computationally cheap(er) to evaluate.

1.2 Objective of Research

1. To develop the Multi-objective Optimization using Surrogate Modeling
(MOSMO) algorithm for optimizing Multi Input Multi Output (MIMO)
controller system.
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2. To apply the MOSMO algorithm on different model of the PID controller
system as a case study to verify the effectiveness of MOSMO.

3. To compare the performance of MOSMO with brute force search
approach and other type of multi-objective optimization approach.

4. To compare the effectiveness of RBF with other approximation approach
in searching actual Pareto-front.

5. To develop and integrated a user friendly MOSMO tool using MATLAB R©

Graphical User Interface Development Environment (GUIDE).

1.3 Scope of Research

The emphasis of this project will be on the aspect of developing the MOSMO
algorithm model for the MIMO control system which can perform exactly as the
Simulink R© performs. This algorithm then will be used to find the parameters of the
controller that gives non-dominated error.

MOSMO is then applied to different type of controllers and MIMO model
as a case study to verify the effectiveness of MOSMO in tuning the Pareto-front
parameters. Two case studies presented, forced circulation evaporator and remotely
operated vehicle using PID controller.

The most common characterizations to be compared are Pareto-front point
obtained by surrogate modeling and actual Pareto-front obtained by using brute force
search approach. The MOSMO use RBF to approximate the actual Pareto-front of
input design space. The performance of RBF also will be evaluated by comparing with
Feed Forward (FF) back propagation neural network.

Two other well known types of optimization approach: Non-dominated
Sorting Genetic Algorithm II (NSGA-II) and Strength Pareto Evolutionary Algorithm
2 (SPEA2) are used to compare MOSMO as an optimization algorithm. The
performance evaluated based on Pareto-front performance and best compromise value.

The final scope is to develop an integrated and user friendly MOSMO tool
using MATLAB R© Graphical User Interface Development Environment (GUIDE) to
aid designer in producing an accurate model of the original system for the control
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system optimization purpose. The software package is intended for use with any
Simulink R© model. User will also enter the parameters to be optimized through GUI.

1.4 Thesis Outline

This thesis consists of six chapters. This chapter gives a brief description of
the objectives and scopes of the project. Chapter 2 consists of a literature review of
surrogate modeling, multi-objective optimization and related works on multi-objective
optimization using surrogate modeling. Chapter 3 presents the methodology and
details of the MOSMO algorithm development process. In Chapter 4 and 5, the
MOSMO is demonstrated to an evaporator and a ROV. Chapter 6 describes the
development, user interface and usage of the MOSMO GUI Toolbox. Chapter 7
concludes this research.
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