MODIFICATION OF SLOPE MAINTENANCE PROGRAM ALONG FT59, JALAN TAPAH-CAMERON HIGHLAND, PERAK

AHMAD KHAIRUL BIN ZAMZURI

A project report submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Geotechnics)

Faculty of Civil Engineering University Technology Malaysia

January, 2012

"Praise to Allah S.W.T, lots of love to my wife and son; Dalila and Iffat, special thought for both of my parents, big huge to all my siblings include my late sister, all the lecturers and my best friend, Mior Saifulnizam, thank you for being there for me"

ACKNOWLEDGEMENT

Praise to Allah who has made it possible for me to complete this project.

The author wishes to express his deepest gratitude to Assoc. Prof. Dr. Ir. Ramli bin Nazir for the valuable guides, constructive comments and support throughout the project making.

Special appreciations recorded to Ketua Penolong Pengarah Jalan, JKR Perak, En. Meor Muhammed Haris bin Meor Hussein, Jurutera Daerah JKR Batang Padang, En. Azman bin Abu Bakar and all JKR personnels, I had the benefits of discussing the themes and information during the course of preparing this project.

The author would like to thank to all lecturers, coursemate and to everyone who had contribute in the making of this project.

Last but not least, the author would like to express his deepest appreciation to his parents for their encouragement, blessing and love, which are forever remembered.

ABSTRACT

Generally slope failure is a stochastic event. Slope failure occurs without warning. Thus it is quite difficult to determine where and when failures will occurs. This critical situation become worsen due to the unpredictable climate, poor of maintenance, lack of education on slope failure and pre-assessment of slope was not conducted as scheduled. Regular maintenance is essential for all man-made slopes and retaining structures, disturbed terrain features and natural terrain hazard mitigation measures to avoid deterioration or to upkeep their functions. The purpose of this study is to recommend a standard of good practice for the maintenance of man-made slopes and retaining structures, disturbed terrain features and hazard mitigation measures provided to natural terrain (e.g. boulder fences and check dams). The thesis is aimed at professional geotechnical/civil engineers, although it will also be useful to the general public, many of whom carry responsibility for slope maintenance as owners of property. Jabatan Kerja Raya has already employ Slope Risk Management System in monitoring the slope performance. However flaw in the system in inevitable. The purpose of this work is to look in depth and propose for a betterment of the system. This thesis outlines the objective of the study, including the way the study will be conducted and the expected hypotheses that can be concluded from the study. Although the study done is quite superficial in term of slope monitoring, however it was tought to be invaluable in alerting responsible personal to acquire systematic knowledge in slope maintenance program.

ABSTRAK

Secara umumnya, kegagalan cerun berlaku secara 'stochastic'. Kegagalan cerun berlaku tanpa sebarang amaran. Oleh itu, agak sukar untuk menentukan di mana dan bila kegagalan akan berlaku. Keadaan kritikal ini menjadi menjadi lebih teruk kerana iklim yang tidak menentu, kekurangan penyelenggaraan, kekurangan pendidikan mengenai kegagalan cerun dan pra-penilaian cerun yang tidak dijalankan mengikut jadual. Penyenggaraan berkala amat diperlukan untuk semua cerun buatan manusia dan struktur penahan, bentuk muka bumi yang terganggu dan muka bumi semula jadi bagi mengelakkan kemerosotan atau menambah kebolehtahanannya. Tujuan kajian ini adalah untuk mengesyorkan piawaian amalan yang baik bagi penyelenggaraan cerun buatan manusia dan struktur penahan, bentuk muka bumi yang terganggu dan muka bumi semula jadi (contohnya pagar batu dan memeriksa empangan). Tesis ini adalah disasarkan kepada jurutera geoteknik / awam, walaupun ia juga akan berguna kepada orang awam, yang kebanyakannya menjalankan tanggungjawab penyenggaraan cerun sebagai pemiliknya. Jabatan Kerja Raya telah menggunakan kaedah Slope Risk Management System dalam memantau prestasi cerun. Walaubagaimanapun, kelemahan dalam sistem yang tidak dapat dielakkan. Tujuan kerja ini adalah untuk melihat serta mencadangkan penambahbaikan system ini. Tesis ini menggariskan objektif kajian, termasuk cara kajian itu akan dijalankan dan hipotesis yang dijangka yang boleh disimpulkan daripada kajian. Walaupun kajian yang dilakukan ini adalah memaparkan asas di dalam pemantauan cerun, ia adalah bernilai untuk menyedarkan mereka yang bertanggungjawab untuk mempunyai pengetahuan yang sistematik di dalam program penyelenggaraan cerun

TABLE OF CONTENT

CHAPTER		CONTENT	PAGE
	TITI	LE PAGE	i
	DEC	LARATION	ii
	DED	ICATON	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	CON	TENT	vii
	LIST	FOF TABLE	xiii
	LIST	FOF FIGURE	XV
	LIST	FOF APPENDIX	xvii
I	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Background	3
	1.3	Problem Statement	4
	1.4	Aim and Objectives	5
	1.5	Project Scope	5
	1.6	Importance of the Study	6
	1.7	Brief Project Methodology	6
	1.8	Sequence of Project Writing	7

LITERATURE REVIEW 8

Π

2.1	Introd	uction	8	
2.2	Type	and Characteristic of Slope	10	
2.3	Factor	Factors Affecting Slope Stability		
	2.3.1	Slope Geometry	12	
		2.3.1.1 Slope Steepness	12	
		2.3.1.2 Slope Length	12	
		2.3.1.3 Slope Curvature	12	
	2.3.2	Geological Factors	13	
	2.3.3	Groundwater Table	16	
	2.3.4	Matric Suction	16	
	2.3.5	Drainage System	17	
	2.3.6	Erosion	18	
2.4	Slope	Failure Classification	20	
	2.4.1	Flows	21	
	2.4.2	Slides	22	
	2.4.3	Falls	24	
2.5	Geolo	gy Along the FT 59, Jalan Tapah –		
	Came	ron Highland	24	
2.6	Slope	Stabilization and Remedial Works	25	
	2.6.1	Altering Slope Geometrics	25	
	2.6.2	Improvements to Surface and		
		Subsurface Drainage	27	
		2.6.2.1 Subsurface Drainage	27	
	2.6.3	Providing Lateral Support	28	
	2.6.4	Inserting Inclusions to Strengthen		
		the Slope	29	
	2.6.5	Vegetation	31	
2.7	Maint	enance Management	32	
	2.7.1	Maintenance Management Actions	32	
2.8	Routin	ne Maintenance	35	
	2.8.1	Purpose and Scope of Routine		
		Maintenance Inspections	35	

	2.8.2	Frequency and Timing of Routine	
		Maintenance Inspections	37
	2.8.3	Personnel for Routine Maintenance	
		Inspections	38
	2.8.4	Routine Maintenance Works	38
	2.8.5	Need for Immediate Engineer	
		Inspections for Maintenance	39
	2.8.6	Records of Routine Maintenance	40
2.9	Techn	ical Aspects Of Maintenance	
	For M	anmade Slopes And Retaining	
	Struct	ures	41
2.10	Surfac	ee Protective Cover On Soil Slopes	42
2.11	Surfac	e Drainage	44
2.12	Groun	dwater Seepage	45
2.13	Rock	Slopes	46
2.14	Trees		48
2.15	Bould	ers	49
2.16	Retain	ning Structures	49
2.17	Water	r - Carrying Services	50
2.18	Actio	ns on Buried Water - Carrying	
	Servic	ees	51
2.19	Urgen	t Actions on Buried	
	Water	- Carrying Services with	
	Signs	of Leakage	52
2.20	Slope	Furniture	52
2.21	Classi	fication Of Overall State	
	Of Slo	ppe Maintenance	53
2.22	Preven	ntive Maintenance Works	54
	2.22.1	Guidelines On Preventive	
		Maintenance Works	54
2.23	Maint	enance Requirements For	

Disturbed Terrain Features 56

	2.23.1	Purpose And Scope Of	
		Maintenance Inspections	57
	2.23.2	Maintenance Works	58
2.24	Preven	ntive Countermeasure	
	Imple	mentation	59
2.25	Slope	Maintenance Programme	61
	2.25.1	Regular Patrol for Slope	
		Maintenance	62
	2.25.2	Periodical Inspection for	
		Slope Maintenance	62
	HODO		64
3.1	Introd	uction	64
3.2	Pilot S	Study	64
	3.2.1	Literature Review	65
	3.2.2	Slope Prior Ranking System	65
	3.2.3	Application Components	66
	3.2.4	Risk Rating Methodology	67
	3.2.5	Application Functionality And	
		Current Use	72
3.3	Data (Collection	73
	3.3.1	Location of Slope and	
		Embankment	74
	3.3.2	Slope Geometry	74
	3.3.3	Surface Condition	74
	3.3.4	Drainage Condition	75
	3.3.5	Distress Condition	75
	3.3.6	Existing Stabilization Works	75
	3.3.7	Overall Slope Condition	75
3.4	Data A	Analysis	76
3.5	Concl	usions and Suggestion	76

III

IV	RES	ULT AND ANALYSIS	78
	4.1	Introduction	78
	4.2	Maintenance System	79
		4.2.1 Maintenance Manuals	80
		4.2.2 Co - Ordinated Approach To	
		Slope Maintenance	83
		4.2.3 Maintenance Records	83
		4.2.4 Routine Maintenance	84
	4.3	Slope Maintenance Programmed	85
		4.3.1 Current Practiced	85
		4.3.2 Proposed Enhancement	86
	4.4	To Determine The Criteria And	
		Condition Of Slopes	89
		4.4.1 Cut Slope	89
		4.4.2 Embankment Slope	91
V	DISC	CUSSION	93
	5.1	Introduction	93
	5.2	Slope Condition	94
		5.2.1 Slope Category	94
		5.2.2 Slope Geometry	95
		5.2.3 Angle of Slope	95
		5.2.4 Height of Slope	95
		5.2.5 Surface Condition	96
		5.2.5 Drainage Condition	96
	5.3	Overall Cut Slopes and Embankment	
		Slopes Condition	97
VI	CON	CLUSIONS AND	
	REC	OMMENDATIONS	98
	6.1	Introduction	98
	6.2	Types and Programmes of Maintenance	
		Works	98
	6.3	Condition and Criteria of Slopes	99

 \mathbf{V}

6.4	Future Recommendation	100
REFERENCES		101
Appendix A – K		103 - 185

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Classification of degree of weathering (ISRM, 1977)	15
2.2	Classifications of slope movement (after Varnes, 1978)	22
2.3	Recommended Frequency of Routine Maintenance Inspections	37
2.4	Typical Routine Maintenance Works for Slopes and Retaining	40
2.5	Classification of Defects on Individual Man-Made Items	54
2.7	Requirement for undertaking Maintenance Works	58
2.8	Road Slope Maintenance Management Programme	59
2.9	Concept of Priority in Countermeasure Implementation	60
2.10	Framework of implementation plan	61
2.11	Points of Observation and Recording during Slope Patrol	63
3.1	SPRS Rating	67

3.2	Scoring Ranges for Cut Slope	69
3.3	Scoring Ranges for Embankments	71
4.1	Pre-Incident Proforma	88
4.2	Slope Category According To Section Number Cut Slope	89
4.3	Summary of Slope Category	90
4.4	Slope Category According To Section Number For Embankment Slope	91
4.5	Summary of Slope Category	92

LIST OF FIGURE

FIGURE NO	TITLE	PAGE
2.1	Classification of residual soil by degree of weathering	14
2.2	Types of slope movement in clay slope (after Skempton and Hutchinson, 1969)	23
2.3	Methods of slope reductions (after Huang, 1983)	26
2.4	A number of different drainage measure are illustrated in this composite diagram (after Bromhead, 1986)	28
2.5	Facings of geotextiles reinforced walls (after Bronckenbrough and Boedecker, 1996)	30
2.6	Engineering role of vegetation (after Coppin and Richards, 1990)	31
2.7	Well-maintained Slope Surface Cover	34
2.8	Typical Man-made Items on Slope and Retaining Structures that Require Maintenance	36
2.9	Typical Preventive Maintenance Works for Soil Slope	55

2.10	Typical Preventive Maintenance Works for Rock Slope	56
3.1	Flow chart for research methodology	77
4.1	Current Slope Maintenance Program	86
4.2	Proposed Enhancements	87

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
A	Indicative format for maintenance Manual for Man-made slopes and Retaining structures	103
В	Indicative record sheets for routine maintenance inspections and works	112
С	Example of term of reference for engineer Inspections for maintenance for private slopes	118
D	Scope of services for engineer inspections for maintenance for government slopes	124
Е	Example of term of reference for stability assessments for private slopes or retaining structures	129
F	Indicative record sheets for engineer inspections for maintenance	133
G	Indicative format for maintenance manual for natural terrain hazard mitigation measures	144

H Sample check list for information search when

	conducting engineer inspections for maintenance	149
Ι	Consequence-to-life category	151
J	Pre- Incident Proforma Form	153
K	Sample observation using Pre-Incident Proforma	155

CHAPTER 1

INTRODUCTION

1.1 Introduction

Slope areas are extremely sensitive to disturbances of any sort with respect to numerous landside occurrences in Malaysia recently. Landslide at Genting Highlands slip road in 1996, landslide at Gua Tempurung in 1996 and collapse of Highland Tower in 1993 are among the events that indicated what could happen when things go wrong. These events over the pass years have captured the attention of the government and social especially to geotechnical engineers to carry out investigation or research to prevent and to maintain existing slopes from these indicates.

Landslide and other slope failures are the natural results of decomposition of geologic material, steepening of slopes by erosion and alteration of inclination by tectonic movements such as rainfall. The incident of occurrence is related primarily to topography, geology and climate. Certain geologic conditions have a probability of susceptibility to land sliding, but natural failure depends for the most part on ground saturation and rainfall intensity. Therefore actual prediction of failure can be uncertain, even when small movement already occurring.

In natural slopes almost all failures occur during or immediately after periods of heavy rain or during wet seasons, indicating that pore-water and seepage pressures are the most important aspect of stability analysis. These pressures result in generally from rising water-table levels. In constructed embankments, failures during or after construction are usually the result of high pore pressures induced by embankment loads or rising water levels (Hunt, 1986).

Many hill slopes areas in Malaysia are particularly vulnerable to soil erosion due to their steep slopes and an approximately 3000 mm heavy rainfall per year (Abidin and Arbai, 1998). Slope instability and erosion of the soil by water and wind are major environment hazards. Soil on slope and elevated areas has natural tendency to slide under the influence of gravitational, which is resisted by the shearing resistance of the material. Instability of slopes occurs when the shearing resistance is not enough to counterbalance the forces tending to cause movement along any surface within a slope.

In the stability analysis of slopes, many design factors cannot be determined with certainly. Therefore, a degree of risk should be assessed in an adopted design. The factor of safety fulfills this requirement. The factor should take into account not only the uncertainties in design parameter but also the consequences of failure are slight, a greater risk of failure or a lower factor of safety may be acceptable.

However, when a slide takes place, it necessary to determine the causes of the slide, so that proper remedial measures can be taken to correct it. The processes involved in slide comprise a continuous series of events from cause to effect. Seldom, it ever, can a slide be attributed to a single definite cause. The detection of the causes may require continuous observations, and a final decision cannot be made in a short time (Young, 1972). N other words, slope stability is one of the most prominent problem encounters in geotechnical engineering.

1.2 Background

FT 59, known as Jalan Tapah – Cameron Highland is the main road for traffic users from south bound heading to Cameron Highland. Jabatan Kerja Raya had started the construction of the road in the past 30 years to facilitate all users. Almost all the road alignment are surround by cut and embankment slopes. The road held by two authorities; JKR Perak and JKR Pahang.

Many stretches of the road would need to cut through hilly and rugged terrain and deep valleys due to stringent geometrical requirements for a comfortable driving and economical issue. As a result, more than 100 cut slopes and fill embankments along FT 59 was formed. Although very stringent maintenance and inspection strategies have been implemented, some slope failures are inevitable due to design optimization and many factors that could not be foreseen during the design and construction stage. It is very important that these cut slopes and fill embankment are maintained because significant investment is constructing them and the risk to road users and disruption to operation should major failure occurred. In many instances, slope failures, as well as erosion and flooding, are neither preventable nor controllable, even with the expenditure of very large sums of money.

This study is essentially to assess the slope maintenance programmers that has been carry out by JKR Perak in order to maintain the cut slopes and fill embankment along the FT 59, Jalan Tapah – Cameron Highland focusing only in the JKR Perak jurisdiction that is section 0.00 until section 46.00.

1.3 Problem Statement

In an earth or rock fill the important signs of impeding slope instability are increasing rate of lateral movement at the toe of the slope and formation of cracks at the crest. Initially the cracks will merely open in width, but when the failure has progressed there will be a vertical separation. Ordinarily, the lateral movements and any toe heaves will be imperceptible, at first, and can only be picked up by appropriate subsurface instrumentation and surface surveying. These are therefore and essential and integral part of any slope control programme.

The purpose of slope treatment can be places in either preventive for potentially unstable cut slope and fills, or remedial for existing unstable or moving slope or slope totally failed. Slope failure potential usually can be established with some certain by an experienced practitioner, although in many cases the actual occurrences of a failure is not predictable because of many natural transient factors such as weather conditions. In addition, there are many forms of slope failure that cannot be prevented. However, prevention to any slope failure incident could be done through slope maintenance programme, which will allow close monitoring and inspection of the slope condition. Preventive measure can be done if the inspection if the inspection and monitoring result shows that the slope conditions need to be maintained. Therefore, the slope maintenance programme cover in this study is hope to provide appropriate or sufficient knowledge on how slope maintenance programme and work was done along the North South Road. Assessment of this programme is made to fulfill the aim and objectives of this project.

1.4 Aim and Objectives

The aim of this study is to assess the overall maintenance programme carry out along the FT 59 Jalan Tapah – Cameron Highland and also to determine the slope failure risk involved.

The objectives of this study are outlined as follows :

- To determine the various types and programme of maintenance works related to slope along the road.
- (ii) To determine the condition and criteria of slope along the road.
- (iii) To determine the effectiveness of slope maintenance programme carry out along the road.

1.5 Project Scope

FT 59, Jalan Tapah – Cameron Highland is divided into five section as illustrated in figure 1.1, Therefore, it is important to identify the scope of the projects.

The scopes of this project are as follows :

- (i) Identification of slope failure types and programme of maintenance works carry out along the road in southern region (Seremban to Johor Bahru stretch).
- (ii) Identification of slope failure features, with respect to slope condition and criteria along the road in southern region.

1.6 Importance of the Study

The assessment on the slope maintenance programme is important because of the following factors :

- This study is essentially to find out the effectiveness of slope maintenance programme with the cost involved in order to maintain the slope along the road
- (ii) This study is hoped to provide and contribute to research work on slope carry out by student, researcher as well as practitioner.
- (iii) If the slope maintenance programme carry out is a well-established programme, it will certainly be a helping toll understanding the features and frequency of occurrence of slope failures along the FT 59, Jalan Tapah – Cameron Highland especially in JKR Perak authorities. Apart from that, the economic evaluation on whether the programme under considerations is worth investment at all.

1.7 Brief Project Methodology

The methodology of this study is to used and analyze the existing slopes condition along the road acquired from the slopes inspection form and physical reconnaissance as well as visual observations based on the aerial photo assessment. All the information and data acquired will be used to identify the overall slopes conditions along the road. Using this information, the slopes are ranked accordingly. The maintenance programme carry out along the road will be identified to gives the information on maintenance frequency, goals and strategy. The programme will then be assessed whether the programme is in line with the overall slopes condition along the road. This project is basically divide into 6 parts with the sequence of writing are as follows :

- (i) First part (Chapter I), will consists of introduction, background of the study, problem statement, aims and objectives of the study, the importance of the study, and also the sequence of project writing.
- (ii) Second part (Chapter II), is a review of literature on type and characteristic of slope, explanation of the factors that affect the slope stability, classification of slope failure, and also slope stabilization and remedial works.
- (iii) Third part (Chapter III), consists of explanation on project methodology which involved interviews with parties that involved in slope maintenance programme, data collections procedure and data analysis.
- (iv) Fourth part (Chapter IV), contains the results obtained from the analysis. Result were divided into three parts namely the maintenance systems, criteria and conditions of the cut slopes and embankment.
- (v) Fifth part (Chapter) will explain on the results, discussions on the high-risk area, factors will contribute to slope stability, frequency of maintenance work and type of maintenance work
- (vi) Sixth part (Chapter VI) is the last part of the project where conclusions for the project and suggestions to extend the study in the slope maintenance programme.

REFERENCES

Abdullah C.H., Mohamad A., Yusof M.A.M., Gue S.S. & Mahmud M. (2007).
"Development of Slope Management in Malaysia".

2. GEO (2000). "Geotechnical Manual for Slopes (4th ed.)". Geotechnical Engineering Office, Hong Kong.

3. Gue S. S. & Wong S. Y. (2008). How to Improve Slope Management and Slope Engineering Practices in Malaysia

4. CKC (2006). Layman's Guide to Slope Maintenance. (First edition). Cawangan Kejuruteraan Cerun JKR, Malaysia

5. GCO (1984). Geotechnical Manual for Slopes. (Second edition). Geotechnical Control Office, Hong Kong

6. GCO (1989). Model Specification for Prestressed Ground Anchors (Geospec 1). Geotechnical Control Office, Hong Kong

GEO (1993). Guide to Retaining structure Design (Geoguide 1). (Second edition).
Geotechnical Engineering Office, Hong Kong

8. GEO (2000a). Technical Guidelines on Landscape Treatment and Bio-Engineering for Mammade Slopes and Retaining structures (GEO Publication No. 1/2000). Geotechnical Engineering Office, Hong Kong

9. GEO (2002a). Layman's Guide to Landscape Treatment of Slopes and Retaining structures. Geotechnical Engineering Office, Hong Kong

GEO (2002b). Guide to Reinforced Fill Structure and Slope Design (Geoguide 6).
Geotechnical Engineering Office, Hong Kong

11. GEO (2003b). Guidelines on the Use of Prescriptive Measures for Rock Cut Slopes (Technical Guidance Note No. 13). Geotechnical Engineering Office, Hong Kong

12. Web 1: http://slopes.jkr.gov.my