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ABSTRACT 

 

 

 

 

The imaging properties namely the edge spread function (ESF) and line 

spread function (LSF) of the Neutron Radiography 2 (NUR-2) system at Triga Mark 

II Reactor at Malaysian Nuclear Agency were investigated via simulation and 

experiment. The simulation of radiographic image was performed by using the 

Monte Carlo N-Particle codes version 5 and the real neutron radiographic images 

were collected from experiment done at NUR-2 facility. The simulation used Flux 

Image Radiograph (FIR) tally while for the experiment the direct method using film 

was used to detect the transported neutrons. The ESF of the system was measured 

using cadmium foil with thickness of 1 mm, 2 mm and 3 mm which blocked half of 

the neutron beam. Demineralized water was used as a scattering material to study the 

neutron scattering effect inside the material where it was placed between the 

cadmium foil and the detector. The differentiation of the ESF gave the LSF of the 

system and the full width at half maximum (FWHM) was estimated. From fast 

Fourier transformation of the LSF, the modulation transfer function (MTF) of the 

system was obtained. The results showed that the simulated neutron patterns without 

scattering material were similar to those found in experiment but with the presence of 

scattering material, the simulation and experimental data showed great differences. 

Cadmium with thickness of 1 mm gave the best spatial frequency response followed 

by 2 mm and 3 mm thick of cadmium. The range of spatial frequency for MTF at 

20% was 1.0 to 2.5 cycle/mm, while the range of FWHM was 0.3 to 0.5 mm. The 

FWHM and MTF obtained in this study are valuable for the characterization of 

imaging properties of the neutron radiography system. 
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ABSTRAK 

 

 

 

 

Sifat-sifat pengimejan iaitu fungsi taburan pinggiran (ESF) dan fungsi 

taburan garis (LSF) bagi sistem radiografi neutron di Reaktor Triga Mark II di 

Agensi Nuklear Malaysia telah dikaji menerusi simulasi dan eksperimen. Simulasi 

imej radiografi dilakukan dengan menggunakan perisian ‘Monte Carlo N-Particle’ 

versi 5 dan imej sebenar radiografi neutron telah diperolehi daripada eksperimen 

yang dijalankan di kemudahan NUR-2. Simulasi menggunakan gundalan fluks imej 

radiografi (FIR) manakala bagi eksperimen kaedah terus menggunakan filem 

digunakan untuk mengesan neutron yang dipindahkan. ESF sistem diukur 

menggunakan kepingan kadmium dengan ketebalan 1 mm, 2 mm dan 3 mm yang 

menutup separuh daripada alur neutron. Air ternyahmineral digunakan sebagai bahan 

penyerak untuk mengkaji kesan serakan neutron di dalam bahan di mana ia 

diletakkan di antara kepingan kadmium dan pengesan. Pembezaan ESF terhadap 

jarak memberikan LSF sistem tersebut dan lebar penuh pada separuh maksimm 

(FWHM) dianggarkan. Dengan mengambil jelmaan Fourier bagi LSF, fungsi 

pemindahan modulasi (MTF) sistem tersebut telah diperolehi. Keputusan 

menunjukkan bahawa corak simulasi neutron tanpa bahan penyerak adalah hampir 

sama seperti yang diperolehi daripada eksperimen tetapi dengan kehadiran bahan 

penyerak, data simulasi dan eksperimen menunjukkan perbezaan yang besar. 

Kadmium dengan ketebalan 1 mm memberikan sambutan frekuensi ruang yang 

terbaik diikuti oleh kadmium dengan ketebalan 2 mm dan 3 mm. Julat frekuensi 

ruang untuk MTF 20% ialah 1.0 hingga 2.5 kitar/mm sementara julat FWHM ialah 

0.3 hingga 0.5 mm. MTF dan FWHM yang diperolehi dalam kajian ini adalah 

berharga untuk pencirian sifat pengimejan sistem radiografi neutron. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background study 

 

 

 For more than 60 years, neutron radiography has existed as a testing 

technique and as a research tool especially in non-destructive testing.  Neutron 

radiography is an imaging technique which provides images similar to X-ray 

radiography.  The ways that neutrons interact with matter are very different from the 

way x-rays interact with matter. X-rays interact with the electron cloud surrounding 

the nucleus of an atom while neutrons interact with the nucleus itself.  This property 

allows neutron radiography to image objects which are invisible to X-ray.  The 

attenuation coefficient of X-ray is directly dependent on atomic number of material 

but the attenuation coefficient of neutrons is not a function of the atomic number of 

material.  Neutrons are efficiently attenuated by only a few specific elements 

especially material that have high hidrogen content. Organic materials or water for 

example are clearly visible in neutron radiographs while many structural materials 

such as aluminium or steel are nearly transparent. 
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Since early 1960s, imagings with neutrons have been widely used in 

industrial research and non-destructive testing applications.  Berger in the first book 

in 1965 published on neutron radiography had suggested three main areas of 

applications of neutron radiography which is reactor technology, rocket and missile 

technology and general applications (Berger, 1965).  A short review of neutron 

radiography applications in the Nondestructive Testing Handbook include in general, 

explosives, turbine blades, assemblies, contrast agents, metallurgy and nuclear 

industry field was published in later (Paul, 1985). 

 

 

There are several components that tend to degrade the image and thus limit 

the resolution of neutron radiography (Park, 2000).  According to Harms and Wyman 

(1986), the five major sources of image degradation in neutron radiography are 

converter unsharpness, scattering degradation, geometric unsharpness, motion 

unsharpness and noise degradation.  

 

 

Limitations in the imaging and processing systems, such as converter-film 

unsharpness and noise degradation are well defined, and image degradation due to 

the system is easily obtained through a simple experiment (Lindsay, 1983).  

Geometric unsharpness associated with lack of collimation in the beam can be 

ignored if the length of the collimator is large compared to the diameter of the source 

size. Motion unsharpness which is due to object motion during the exposure can be 

ignored if the object is static during the exposure.  However, if the object has a large 

scattering cross section, the scattering degradation caused by the neutrons scattered 

in that object cannot be ignored.  Therefore, removing object scattering from the 

image is important in order to improve the image quality for the highly scattering 

material (Park, 2000).  

 

 

In this research, we will determine the edge spread function (ESF), line spread 

function (LSF) and the resolution of the Neutron Radiography 2 (NUR-2) facility at 

TRIGA MARK II reactor of Malaysian Nuclear Agency via Monte Carlo simulation 

and the experimental confirmation will be made to verify the simulation results.  The 
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modulation transfer function (MTF) for the system will be estimated.  The MTF is 

useful for the enhancement and restoration of neutron radiographic image.  

 

 

 

 

1.2 Historical Review of Neutron Radiography 

 

 

 Radiography with neutrons began shortly after the discovery of the neutron 

by Chadwick in 1932.  The first investigation on neutron radiography was performed 

in Germany by Kallman and Kuhn.  This study initiated in 1935, resulted in a great 

number of German, French and American patents, most of them filed in the late 

1930’s and early 1940’s.  Kallman and Kuhn used neutrons produced by an 

accelerator to make radiographs but the quality was not very good due to the weak 

and ill defined beam (Domanus, 1992).  Although the actual radiography produced 

by them was not of high quality, these efforts indicate some of the possible uses of 

the neutron radiography and also yielded a great deal of information concerning 

many of the characteristics of neutron sources and image detection methods (Berger, 

1965). 

 

 

 A similar study on neutron radiography was being conducted by Peter in 

1946, also in German.  While the neutron source used by Kallmann was of relatively 

low intensity, Peter used a more powerful accelerator to produced radiographs of 

useful quality with only a few minutes of exposure.  According to Berger (1965), 

Peter only took 1 to 3 minutes to obtain radiograph with his source whereas a 

scintillator detection method which is the fastest technique developed by Kallmann 

and Kuhn required four hours of exposure with their smaller source.  The 

radiographs published by Peter were of fair quality and could be obtained in a 

reasonable time (Berger, 1965). 
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 In 1956, the first neutron radiographs were produced by Thewlis and 

Derbyshire in England.  They carried out their work with the BEPO reactor at 

Harwell, and its intense neutron beam allowed them to produce radiographs of much 

better quality than those of Kallman and Peters (Von Der Hardt and Röttger, 1981). 

They produced good quality images having specific non-destructive testing 

application such as voids in uranium and in “Boral”, a neutron shielding material 

fabricated from boron carbide and aluminium (Domanus, 1992). 

 

 

The spread function approach that uses Monte Carlo simulation to determine 

the shape of the point spread function (PSF) of object to detector distance, object 

thickness, and various scattering and absorption cross section was attempted by 

Segal et. al., (1983).  Since then some researchers have tried to use PSF 

deconvolution method to restore the neutron radiographic images, but the 

computational requirements and the necessity of a priori knowledge have made this 

option unattractive as a formal method for removing the object scattered neutron 

contribution from radiographic image (Syh et. al., 1990; Mora and Bernizer, 1992).  

 

 

Recent advances in computer processing power and speed have made the 

Monte Carlo technique a powerful tool for image formation formulation simulations.  

Monte Carlo techniques have been used by several investigators to model various 

aspects of image generation in neutron radiography and in computed tomography 

(Mora and Bernizer, 1992; Yanch et. al., 1992; Wallin, 2005, Hassanein, 2006).  

Most researchers have used Monte Carlo simulation to calculate the scattering 

contribution of neutron in the radiographed object for different cases to be applied 

for the restoration of radiographs (Park, 2000; Kardjilov et. al., 2005; Hassanein et. 

al., 2005; Hassan, 2009). 

 

 

The MTF can be used to characterize the resolution performance of a digital 

radiographic system (Samei et. al., 2005).  The MTF technique could be applied to 

determine the image degradation components of the imaging system.  The removal of 

blurring effects due to scattered neutron has been attempted by several investigators 
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either mathematically, experimental methods or by using a combination of 

experimental data and Monte Carlo simulations. However, mathematical formulation 

cannot be used to characterize the unsharpness due to the object scattering accurately 

(Park, 2000).  

 

 

In order to remove the effects due to scattered neutrons valid for various 

geometries, Park (2000) tried to develop the neutron scattering functions for neutron 

radiographic images through the solution of the neutron transport equation. The 

analytic solution was verified through Monte Carlo simulations and the experimental 

method but the algorithm obtained is limited to two-dimensional radiographic 

images.  There are limitations in the scattering correction algorithm obtained for 

example the scattering LSF was estimated with a given knowledge on the scattering 

material.  Furthermore, there are many uncertainties in the measurement of the 

neutron radiographic images which should be evaluated in detail.  

 

 

 Most recently scattering correction in neutron radiography was studied by 

Hassanein (2006) from Swiss Federal Institute of Technology Zurich for the 

application to the thermal neutron tomography.  Similar to Park (2000), Hassanein 

also used spread function method and Monte Carlo simulation to calculate point 

scattered function (PScF).  The PScF calculated were used successively to correct the 

scattering effect in the three other thermal neutron radiography facilities with 

different beam characteristic. The correction algorithm has been tested successfully 

not only for NEUTRA facility at PSI where the algorithm has been developed, but 

also for neutron radiography facilities at ANTARES (FRM II, Technische 

Universität München), CONRAD (Hahn-Meitner-Institute Berlin) and well as 

SANRAD (Necsa Pretoria).  The algorithm yield accurate quantitative results for any 

facility if the neutron energy spectrum and the properties of the detector are known 

and the experimental recommendations are realized (Hassanein, 2006). 
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1.3 Research Objectives 

 

 

The aim of this study is to analyze and compare the neutron radiographic images 

produced by NUR-2 system available at Malaysian Nuclear Agency via simulation 

and experiment.  The objectives are; 

 

 

(a) To determine the edge spread function and line spread function of neutron 

imaging system and estimate the full width at half maximum. 

(b) To determine the resolution property of the neutron radiography system via 

the modulation transfer function. 

 

 

 

 

1.4 Rational for Research 

 

 

The MTF is a basic measure for characterizing and quantifying the 

performance of an imaging system.  When an imaging system is to be characterized, 

a straightforward approach to measure the MTF is to image a known input, such as a 

point source, a slit or knife-edge, which corresponds to PSF, LSF and ESF 

respectively.  In this research, the knife-edge method was used to determine the 

spread function of the system in order to estimate the FWHM. The effect of the 

scattered neutron in the material was also considered in this study since the blurring 

effects due to scattered neutron could contribute to the degradation of the image.  

The value of MTF and FWHM obtained could be used in future work for image 

restoration codes.  This research will contribute to the development of a neutron 

scattering correction algorithm for the enhancement of neutron radiographic images 

peculiar to the NUR-2 facility at TRIGA MARK II reactor of Malaysian Nuclear 

Agency. 
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1.5 Research Scope 

 

 

The aim of this research is to determine the ESF and LSF of neutron 

radiography system at NUR-2 facility.  Cadmium with thickness of 1 mm, 2 mm and 

3 mm was used as a sample in order to obtain the ESF.  To study the neutron 

scattering effect, demineralized water was used as a scattering material.  This 

scattering material was placed between the sample and the detector.  The resolution 

properties of neutron radiographic images are also to be determined via MTF.  This 

research only covers the used of NUR-2 facility although there have other neutron 

radiography facilities using tangential beam port and thermal column.  The 

simulation was done by using Monte Carlo n-particle transport code version 5 

(MCNP5).  

 

 

 

 

1.6 Organization of Thesis 

 

 

This thesis details the work, results and analysis from the study of neutron 

radiographic system. The introduction chapter describes the basic of neutron 

radiography and indicates some factors that contribute to the degradation of the 

image.  Chapter 2 describes the principle of neutron radiography broadly, the transfer 

system for imaging system and the Monte Carlo technique.  Research methodologies 

are discussed in Chapter 3 which detailed the simulation and experimental 

confirmation of the simulation results.  Further in Chapter 4, the result and discussion 

of each method are presented.  Finally, the conclusion of the research and suggestion 

for other improvements are presented in chapter 5. 
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