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ABSTRACT

Nowadays power quality becomes critical issue in power electrical system. 

The connection of three-phase transformer through underground cables is growing 

fast in residential, commercial, industrial and rural applications. Due to this 

increasing situation, the possibilities of having a series connected capacitance and a 

non-linear inductance, prone to ferroresonance, become more probable. Not only the 

cable capacitance (and consequently its length) is an important factor to take into 

consideration in the transformers ferroresonance, but also other elements are 

completely necessary for ferroresonance to appear. All these factors affect the 

ferroresonance appearance in several ways, producing the phenomenon just as well 

as making some damaging consequences appear. Because of that, it is necessary to 

have a general idea about what would be the best preventive decisions to take in 

order to avoid unexpected surprises. First of all it is necessary to have accurate model 

consist of ferroresonance then we should apply any device to smooth the sharp effect 

of it. In this project one o f the FACTS devise has been applied, static synchronous 

series compensator (SSSC) to palliate ferroresonance. It is shown that the 

performance of system becomes better than before and maintain at its acceptable 

rated value.
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ABSTRAK

Pada masa kini, kualiti kuasa menjadi isu kritikal dalam sistem kuasa elektrik. 

Sambungan pengubah tiga fasa melalui kabel bawah tanah berkembang pesat di 

kediaman, aplikasi komersil, industri dan luar bandar. Oleh kerana keadaan ini 

semakin meningkat, kemungkinan mempunyai kemuatan sambungan siri dan 

kearuhan bukan linear, seterusnya terdedah kepada ferroresonance, menjadi lebih 

tinggi. Bukan sahaja kemuatan kabel (dan seterusnya panjang) satu faktor penting 

untuk mengambil kira dalam ferroresonance transformer, tetapi juga unsur-unsur 

yang lain adalah perlu untuk ferroresonance untuk muncul. Semua faktor yang 

mempengaruhi penampilan ferroresonance dalam beberapa cara, menghasilkan 

fenomena yang sama juga membuat beberapa akibat merosakkan muncul. Oleh 

kerana itu, adalah perlu untuk mempunyai idea umum mengenai apa yang akan 

menjadi keputusan pencegahan yang terbaik untuk mengambil untuk mengelakkan 

kejutan yang tidak diduga.Simulasi telah dilaksanakan menggunakan perisian ATP- 

EMTP. Adalah perlu untuk mempunyai model ferroresonance yang tepat seterusnya 

menentukan peranti yang sesuai bagi menghalang atau mengurankan kesan 

ferroresonance. Dalam projek ini salah satu komponen FACTS telah digunakan iaitu 

pemampas siri segerak statik (SSSC) untuk meredakan ferroresonance. Prestasi 

sistem menjadi lebih baik daripada sebelumnya dan berjaya mengekalkan tahap 

voltan pada nilai kadaran.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Power Quality

There is no doubt the enhancement of power quality and stability in power 

system are critical issues. Any reasons which lead to distortion must be considered 

and mitigated. Transients occur on power systems due to a variety of reasons. 

Ferroresonance is a mysterious phenomenon [2-4-7].

The issue of electricity power sector delivery is not confined to only 

energy efficiency and environment issues and also it depends on quality and 

continuity of supply. Electrical Power quality is the degree of any deviation 

from the nominal values of the voltage magnitude and frequency. Power 

quality may also be defined as the degree to which both the utilization and 

delivery of electric power affects the performance of electrical equipment.

Other terms used for power quality are supply reliability, service 

quality, voltage quality, current quality, quality of supply, and quality of
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consumption According to IEEE Standard 1159-1995, the definition of 

power quality is given as :

“the concept of powering and grounding sensitive equipment in a 

manner that is suitable to the operation of that equipment Power quality 

problems concerning frequency deviation are the presence of harmonics and 

other departures from the intended frequency of the alternating supply 

voltage.” On the other hand, PQ problems concerning voltage magnitude 

deviations can be in the form of voltage fluctuations, especially those causing 

flicker . Furthermore, due to the power system impedance, any current (or 

voltage) harmonic will result in the generation and propagation of voltage (or 

current) harmonics and affects the entire power system.

1.1.2 U npredictable Events

Both electric utilities and end users agree that more than 60% of 

power quality problems are generated by natural and unpredictable events. 

Some of these are faults, lightning, resonance, and ferroresonance.

Ferroresonance is a resonance situation with nonlinear inductance which is 

equal of capacitance in the network. The inductive reactance not only depends on 

frequency, but also on the magnetic flux density of an iron. Core coil (transformer 

iron- core). High overvoltage due to Ferroresonance can cause failures [2-9-10].
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1.2 Problem statement

A good power system should possess the ability to regain its normal 

operating condition after a disturbance. Since ability to supply uninterrupted 

electricity determines the quality of electric power supplied to the load, stability that 

is regarded in the current study is one of the important topics in power system. Power 

system stability is critical issue at the event of possible disturbances such as 

ferroresonance and load switching; Consequence power system may experience 

sustained oscillations.

Practically, in electrical system we use transformer at generation and 

distribution parts as well as transmission part of the system, in case of ferroresonance 

hence; the step up transformers are used, the abnormal rates of harmonics and over 

current and over voltage which is produced in transformer due to ferroresonance 

transmit to whole entire system and the rest of system sense abnormal situation 

because o f that. Reduction o f the oscillation is also important. Damping has to be 

provided to the system in order to avoid this. The availability and successfully o f 

FACTS devices such as SSSC to damp these oscillations have been applied in this 

project. This project will also illustrate the effective ways of SSSC to damp the effect 

of ferroresonance in the power system.

1.3 Objectives of this project

The objectives of the project are:

i. The main objective of this project is to simulate the ferroresonance 

phenomenon on power system. An alternative Transient Program- 

Electromagnetic Transient Program (ATP) is used to carry out this 

project.

ii. To determine methods to minimize/ reduce the risk of ferroresonance 

also modeling of ferroresonance by detailed model to show transient 

behavior of the output voltage waveform.
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iii. To model SSSC and coupling capacitance.

iv. To design a time switching controller for SSSC function.

v. To investigate the harmonic effect with and without connecting SSSC.

vi. To determine Fourier series once Ferroresonance occur.

vii. To compare performance with/without apply SSSC.

1.4 Scopes of the project

The scopes of the project are:

i. The aim of this research is to create ferroresonance situation, because at the 

ferroresonance time; nonlinear inductance of transformer combine with the 

capacitance of line and current will jump up.

ii. To prove that ferroresonance can cause disturbance in terms of power quality 

issue; and transient situation in the system.

iii. The main scope of this project is to identify method to minimize the impacts 

of ferroresonance on power system. Using compensator such as SSSC will 

lead to decrease in the sharp attack of ferroresonance into system. In terms of 

power quality issue we have to have the voltage and current in standard rate, 

the investigation of harmonic problem which is directly related to power 

quality is another goal of this project.
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1.5 Methodology

i. F irst, to construct a complete model of our project, ferroresonance was 

created based on actual B-H curve data.

ii. Second, the effect of ferroresonance into the power system configuration will 

be considered.

iii. Third, SSSC was designed and the output waveform was analyzed 

with/without SSSC.

iv. Finally, the whole of modelling should carry out in ATP software. The 

results show mitigation or smooth the shock and sharp effects of 

ferroresonance.

1.6 Report Organization

This thesis consists of five chapters describing all the work done in the 

project. The thesis outline is generally described as follows.

Chapter 1: This chapter explains the introduction of the project. Brief general 

background is presented. The objectives of the project are clearly phased with 

detailed. The research scope implementation plan and methodology are also 

presented.

Chapter 2: This chapter discusses the project background and some previous 

literature review.
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Chapter 3: this chapter describes the methodology and stages which is 

implemented to model a ferroresonance and compensator during this project.

Chapter 4: This chapter discusses and analyzes the results of output 

waveform once ferroresonance occurs and the comparison of using SSSC and 

without it.

Chapter 5: This chapter presents the conclusion based on the analysis and 

comparison of results in chapter 4. Recommendations for future works are also 

provided.
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