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                                         ABSTRACT 

 

 

 

 

The onset of a ferroresonance phenomenon in power systems is commonly 

caused by the reconfiguration of a circuit into the one consisting of capacitances in 

series and interacting with transformers. The reconfiguration can be due to 

switching operations of de-energisation or the occurrence of a fault. Sustained 

ferroresonance without immediate mitigation measures can cause the transformers 

to stay in a state of saturation leading to excessive flux migrating to transformer 

tanks via internal accessories. The symptom of such an event can be unwanted 

humming noises being generated but the real threatening implication is the 

possible overheating which can result in premature ageing and failures.  The main 

objective of this project is to determine the accurate models for transformers, 

transmission lines, circuit breakers and cables under transient studies, particularly 

for ferroresonance. The second objective is to find out methods to mitigate these 

phenomena. All simulation studies are carried out using an electromagnetic 

transient program, called ATP Draw. Simulation studies revealed that the key 

circuit parameter to initiate transformer ferroresonance in a transmission system is 

the circuit-to-circuit capacitance of a double-circuit overhead line. The extensive 

simulation studies also suggested that the ferroresonance phenomena are far more 

complex and sensitive to the minor changes of system parameters and circuit 

breaker operations. Adding with the non-linearity of transformer core 

characteristics, repeatability is not always guaranteed for simulation and 

experimental studies.  



 

 

  ABSTRAK 

 

 

 

 

Bermulanya fenomena ferosalunan dalam sistem kuasa biasanya 

disebabkan oleh konfigurasi litar yang terdiri daripada kemuatan siri dan saling 

tindakan dengan pengubah. Konfigurasi ini boleh disebabkan oleh operasi 

pensuisan nyahtenaga atau berlakunya kerosakan. Ferosalunan mapan tanpa 

langkah-langkah mitigasi segera boleh menyebabkan pengubah dalam keadaan 

tepu berdepan kepada penghijrahan fluks yang berlebihan ke tangki pengubah 

melalui aksesori dalaman. Gejala seperti ini boleh menjanakan bunyi berdengung 

yang tidak diingini tetapi implikasi mengancam sebenar adalah pemanasan lebih 

mungkin boleh mengakibatkan penuaan pra-matang dan kegagalan. Objektif utama 

projek ini adalah untuk mengkaji tingkah laku ferosalunan dalam sistem kuasa dan 

untuk mengetahui beberapa kaedah yang paling sesuai untuk mengurangkan 

fenomena ini. Program simulasi ATP-EMTP digunakan untuk model pelbagai 

komponen sistem kuasa dan mensimulasikan fenomena ferosalunan. Kaedah untuk 

mengelakkan keadaan ferosalunan daripada berlaku, maka dengan itu mengelakkan 

kerosakan peralatan dan kerugian juga dicadangkan berdasarkan kerja-kerja 

simulasi. Talian Penghantaran 33kV digunakan dengan pengubah 33KV/100V. 

Untuk memperkenalkan fenomena ferosalunan dalam sistem, suis kawalan masa 

digunakan dengan pemuat bersiri. Kemudian kaedah untuk mengurangkan 

fenomena ini telah dijalankan. Dalam kajian ini lima teknik yang berbeza 

digunakan mengenai pengurangan ferosalunan; dengan mengubah pemuat siri, 

pemuat pirau, dan rintangan kemagnetan, kemudian dengan menambah rintangan 

pada bahagian sekunder pengubah dan akhir sekali dengan menukar sambungan 

antara belitan utama dan sekunder pengubah.  
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INTRODUCTION 

 

 

 

1.1 Introduction 

 

 

Ferroresonance refers to the resonance between network parameters with 

ferromagnetic material, particularly with the presence of transformers working at 

no-load conditions. It generally refers to a condition where power system voltages 

resonate at the natural frequency of certain excited components within the same 

system. Most of such components usually include nonlinear ironclad inductance 

typical transformer windings. The capacitance must be considered for the 

resonance to occur. The common sources of this include capacitor banks that are 

used for voltage regulation and power factor correction.  

 

Furthermore, a transmission line’s capacity may be a key circuit element 

during a ferroresonant event. In the last 85 years, there has been research on 

ferroresonance and the word itself was used in literature in 1920, even though 

resonance in transformers appeared in articles as early as 1907. In practice, interest 

was generated in the 1930s when it was shown that the use of series capacitors for 

voltage regulation caused ferroresonance in distribution systems, resulting in 

damaging the overvoltages[1]. 

Transient events occur due to attended power system parameters such as 

resistance, inductance and capacitance of transmission line, transformer, cable, 



capacitive shunt reactors, inductive shunt reactors etc. The frequency range of the 

transient phenomena can extend from DC to several MHz due to such parameters 

and the addition of capacitive and inductive components into the integrated power 

system.   

A subject of intense study, ferroresonance is also a common phenomenon 

on power systems. Because of the saturated magnetizing characteristics of the bus 

Potential Transformers (PT), ferroresonance may occur when switching or 

disconnecting a circuit breaker at neutral-grounded substations. In the event of the 

occurrence of ferroresonance, excessive voltage and current may cause the 

flashover of external insulation, the burn out of PTs or the destruction of metal 

oxide resistors. There has been an increase in incidences of ferroresonance in the 

last few years resulting to power cuts and the destruction of PTs[2]. 

Magnetic saturation of the nonlinear inductance may also cause 

ferroresonance. However power transformers and inductive PTs are the main 

contributors to the nonlinear inductance on power systems. Under normal 

conditions, a nonlinear inductance operates in the linear region of its excitation 

characteristic[3]. 

 

 

 

1.2 Background of Ferroresonance 

 

 

Linear resonance only occurs, for example, in the circuit in Figure 1.1 

consisting of a series-connected resistor, inductor and capacitor, when the source is 

tuned to the neutral frequency of the circuit. And the capacitive and inductive 

reactance of the circuit is identical.  The resonance frequency of any AC circuit 

totally depends on its capacitance and inductance. 



 

                             Figure 1.1:  Linear resonance circuit 

 

 

When the linear circuit in Figure 1.1 is subjected to a resonance condition, 

it produces an expected and respectable response to the applied source voltage. 

Sinusoidal voltages appear across any points in the circuit without any 

distortion[4]. 

      In contrast, things are not quite the same in a nonlinear series circuit as 

what happens in a linear resonance. A nonlinear inductor (ferromagnetic material) 

replaced the linear inductor in Figure 1.2. A transformer core is an example of a 

ferromagnetic material. The series connection consists of an alternating source 

(ES), a resistor (R), a capacitor (C) and an alternating source (ES). This is referred 

to as the ferroresonance circuit.  

      



 

Figure 1.2:  Ferroresonant circuit 

 

Resonance condition occurs at only one frequency with a fixed value of L 

and C in the linear circuit.  On the other hand, the nonlinear circuit can exhibit 

multiple values of inductances when the core is driven into saturation however this 

implies that will be a wide range of capacitances that can potentially lead to 

ferroresonance at a given frequency [5].  

 

 

 

 

1.3 Types of Ferroresonance Modes   

 

 

The distinctive difference between the linear resonance and ferroresonance 

has been described in the previous section. A resistance, a capacitance, and a 

nonlinear inductor are the fundamental elements involved in the ferroresonance 

circuit. It is the reconfiguration of a particular circuit caused by switching events 

that mostly caused the development of the ferroresonance circuit taking place in 

the power system. Immediately after the switching event, initial transient 



overvoltage will firstly occur and this is followed by the next phase of the transient 

where the system may arrive at a more steady condition. There can be several 

steady state ferroresonance responses randomly[6-7] induced into a system owing 

to the non-linearity of the ferroresonance circuit. Basically, there are four types of 

steady-state responses a ferroresonance circuit can possibly have. These includes: 

the fundamental mode, sub harmonic mode, quasi-periodic mode and chaotic 

mode.  

 

 

 

 

1.4 Symptoms of Ferroresonance 

 

 

There are various forms of ferroresonance with different physical and electrical  

displays [8]. Some have very high voltages and currents while others have voltages 

that are near to normal. This section demonstrates a few indications of 

ferroresonance: 

I. Audible Noise 

II. Overheating 

III. Arrester and Surge Protector Failure 

IV. Flicker 

V. Cable Switching 

 

 

 

 

 

 

 



1.5      Objectives  

 

 

The main objectives of this project are:  

I. Examine the effects of ferroresonace in power systems. 

II. To mitigate the effects of ferroresonace through system equivalent 

simulation model. 

III. Find out different techniques to minimize the Ferroresonance 

 

 

 

 

1.6 Scope of Work 

 

 

The scope of this project includes various phases which include:  

I. The study of resonance and its effects in linear circuits 

II. Behaviour of ferroresonance in power systems 

III. Operational characteristics of a transformer in saturation 

IV. Obstacles of ferroresonance in real power system and its damages 

V. Study of previously work done for ferroresonance mitigation and their outputs 

VI. Comparison of different techniques used for ferroresonance mitigation in   

previously work done in power system. 

 

 

 

 

 



1.7  Problem Statement   

 

 

The ferroresonance phenomenon in power systems is mostly due to the 

conformation of a circuit that includes capacitances in series and connected with 

transformers. The conformation can be because of switching operations of de-

energisation or due to a fault. Ferroresonance without rapid mitigation can affect 

the transformers to keep in a state of saturation lead to high flux to damage the 

transformer tanks via internal components. Algorithmic system method of 

choosing a proper simulation model is not more common yet. There is need of 

practical techniques for most rapid results so that this behavior of power 

components should be brought into steady-state operation for safety of high cost 

power devices. So, the main goal in this project is to achieve the following 

objectives: 

 

I. To convey good information about the technical parameters on each of the 

power system part needed for the simulation modelling for ferroresonance 

study.   

 

II. To facilitate some modelling road maps that needed for selecting any of the 

suitable models.  

 

 

III. To discover the types of models better and easy for the simulation to 

mitigate the ferroresonance from the system. 

 

 

 



1.8       Organization of Report 

 

 

The report consists of five chapters. 

 Chapter 2 illustrates the previous work done related on ferroresonance 

phenomenon in voltage transformers and power transformers. Detail of 

ferroresonance behaviour in power system is also explained. Besides this, it also 

includes some techniques for avoiding or mitigation of ferroresonance. 

 Chapter 3 describes the methodology of project simulation. Selection of 

system components as well design parameters is explained. It consists of how the 

simulation will be done. Basic design of ferroresonant circuit and mathematical 

formulation is shown. Brief details of simulation software ATP/EMTP is also 

presented. It presents  the  circuits  that  were  used  in  the  simulation  and  

explains  how  the simulations  techniques are  implemented.    

Chapter 4 presents the results of simulation done on basic ferroresonant 

model.  

Lastly chapter 5 describes the conclusion and future work that is related to 

the project done. 
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