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ABSTRACT

Date palm leaf fiber (DPLF) reinforced recycled poly(ethylene terephthalate)
(PETr) nanocomposites containing montmorillonite (MMT) were prepared by melt
extrusion using a counter rotating twin-screw extruder followed by injection molding.
The influence of the DPLF and MMT along with 10 phr of SEBS-g-MA as
compatibilizer on the mechanical and thermal properties of the PETr matrix was
evaluated separately, through their individual contributions. The effect of various
DPLF additions at from 5 to 15 wt% and the incorporation of 1, 3 and 5 phr of MMT
were investigated. Scanning electron microscopy (SEM) was used to investigate the
phase morphology and study the adhesion between the matrix and DPLF fibers while
the dynamic mechanical properties were studied via dynamic mechanical analysis
(DMA). The thermal properties were determined using thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC). The results showed that blending
SEBS-g-MA with PETr matrix significantly increased the toughness at the expense
of stiffness of the blend. The incorporation of DPLF resulted in enhancements in
tensile and flexural strength of the composites. However, a decrease in the Young’s and
flexural moduli was recorded. Fiber additions also improved the impact strength of the
composites and an increase in the area under the stress-strain curve was observed. SEM
revealed a strong interfacial bonding between the matrix and fibers, and a homogenous
one phase system, indicating strong interactions between the PETr matrix and SEBS-
g-MA. The DSC results showed that the crystallization process was enhanced through
the incorporation of DPLF fibers, and a higher degree of crystallinity was observed as
compared to PETr. However, TGAshowed that, fiber addition lowered the thermal
stability of the composites. The incorporation of MMT resulted in a significant
increase in the stiffness of the nanocomposites and 58% increment was observed in the
flexural modulus was recorded. The addition of nanoparticles also increased the degree
of crystallinity for 1 and 3 phr of nanoclay addition. Thermal stability enhancements
were observed for all nanocomposite formulations. The results pointed to a successful
development of a hybrid nancomposite from recycled PET and natural fiber with the
potentialof various outdoor applications.
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ABSTRAK

Gentian daun pokok kurma (GDPK) diperkukuh dengan nanokomposit
poli(etilena terephthalate) (PETr) yang dikitar semula terisi montmorillonit (MMT)
telah disediakan melalui penyemperitan leburan menggunakan penyemperitan skru
berkembar berlawanan arah dan diikuti dengan pengacuan suntikan. Sifat-sifat
mekanikal dan terma terhadap GDPK, MMT bersama 10 phr stirena-etilina-butadiena-
stirena tercangkuk malik anhidrida (SEBS-g-MA) yang digunakan sebagai penyerasi
ke atas PETr matrik telah di kaji secara berasingan melalui ciri-ciri bagi setiap
bahan. Kesan variasi penambahan GDPK dari 5 sehingga 15% berat dan penambahan
MMT sebanyak 1, 3 dan 5 phr terhadap campuran telah dikaji. Mikroskop imbasan
electron (SEM) telah digunakan untuk mengkaji fasa morfologi permukaan dan
interaksi di antara matrik dan gentian GDPK manakala sifat dinamik mekanikal
telah dikaji melalui analisis dinamik mekanikal (DMA). Sifat terma pula telah
ditentukan menggunakan analisa thermogravimetri (TGA) dan kalorimeter pembezaan
imbasan (DSC). Keputusan yang diperolehi menunjukkan bahawa pengadunan
SEBS-g-MA bersama PETr matrik telah meningkatkan keliatan tetapi menyebabkan
penurunan kekakuan campuran tersebut. Campuran GDPK telah meningkatkan
kekuatan regangan dan lenturan komposit manakala modulus Young dan modulus
lenturan menunjukkan penurunan. Penambahan gentian telah meningkatkan kekuatan
hentaman komposit dan penambahan lengkuk tegasan-terikan telah diperhatikan.
SEM telah menunjukkan bahawa terdapat ikatan antara permukaan yang kuat di
antara matrik dan gentian, dan satu fasa sistem yg sekata yang membuktikan
bahawa interaksi yang kuat diantara PETr matrik dan SEBS-g-MA. Keputusan DSC
menunjukkan bahawa proses penghabluran telah meningkat melalui penambahan
gentian GDPK dan penambahan darjah penghabluran telah diperhatikan berbanding
PETr. Bagaimanapun, keputusan TGA menunjukkan dengan penambahan gentian di
dalam komposit telah menurunkan kestabilan terma komposit. Penambahan MMT
ke dalam komposit telah meningkatkan kekakuan dengan ketara dan peningkatan
sebanyak 58% bagi modulus lenturan telah diperhatikan. Penambahan nanopartikel
telah meningkatkan darjah penghabluran bagi 1 dan 3 phr dengan penambahan
nanotanah liat. Peningkatan kestabilan terma telah diperhatikan bagi kesemua
formulasi nanokomposit.
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CHAPTER 1

INTRODUCTION

1.1 Background

Poly (ethylene terephthalate) (PET) has been used extensively due to its
interesting physical and mechanical properties. It is a light weight, transparent
thermoplastic with good barrier properties, making it suitable for packaging
applications. Its widespread use in the packaging and beverage industry, results in
a huge number of post consumed PET bottles and makes it a very good target for
polymer recycling [1].

The amount of plastics end up in city landfills is increasing yearly and they
usually end up in incinerators and an effective recycling program is necessary to
address this issue. A study by Environmental Protection Agency (EPA) showed that
almost one fifth of the total waste stream are plastic wastes [2]. The annual world
PET production is around 60 million tons, which were manufactured using extrusion,
injection molding and blow molding techniques [3].

Studies showed that during the reprocessing of PET, the melt flow index
increased from 23 to 80 g/10 min for virgin PET and for the material after five
processing cycles [4]. An increase in the concentration of the carboxyl groups due
to chemical and mechanical degradations was also reported [4]. after five times of
injection molding, the chain packing was facilitated by the presence of smaller chains
that tended to fit among the larger ones. Hence, the degree of crystallization increased
from 23% to 37%. A ductile to brittle transition was observed during the reprocessing
of PET. Virgin resin showed a ductile behavior and had more than 40% of elongation
at break where recycled PET only shows 5% due to changes in degree of crystallinity.
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Similar brittleness problems have been solved before by incorporating a tough
material into a brittle matrix. Huang [5] examined the rubber toughening of an
amorphous polyamide using maleic anhydride-grafted poly(styrene-ethylene/butyl-
diene-styrene) (SEBS-g-MA) and SEBS in terms of morphology, Izod impact
behavior and ductile to brittle behavior transition temperature changes. A super
tough nylon 66 was successfully produced by blending it with SEBS-g-MA [6].
Several studies have also been conducted recently in the development of toughened
nanocomposites [7–9]. Tjong [8] had sucessfully developed and studied a toughened
polypropylene/montmorillonite (MMT) nanocomposite by the incorporation of SEBS-
g-MA through dynamic mechanical analysis (DMA). More recently a toughened
polycarbonate (PC) nanocomposite was developed with enhanced ductility and impact
strength [9]. Despite all these efforts, very few studies focused on the toughening effect
of SEBS-g-MA addition on the PETr matrix. Zhang [10] had examined the effect
of SEBS-g-MA addition as compatibilizer into the PETr/LLDPE blend and reported
enhancements in tensile and impact strengths as well as elongation at break. The
SEBS-g-MA addition improved the Izod impact strength and elongation at break of
PETr while lowering the stiffness of the blend [11]. Interestingly, the incorporation of
SEBS-g-MA into the PETr matrix increased the crystallization rate and overall degree
of crystallinity and resulted in the formation of smaller crystal entities [12].

Natural fibers are promising alternatives for traditional reinforcing components
in polymer composites due to their low cost, abundance availability, biodegradability,
high specific strength and low density [13–15]. Natural fiber reinforced polymer
composites may offer a new class of materials, which can provide environmental
protection as well as significant advantages (in terms of reduced composite weight
and biodegradability) over mineral reinforcements such as glass fiber, mica and talc.
In addition, there are several important features of natural fibers such as: nonabrasive
nature, low energy consumption, biodegradability, high specific properties, availability
of a wide variety of fibers throughout the world, and generation of agriculture based
economy [14]. All these benefits imply a significant property potential for commodity
synthetic polymers. Therefore, development of natural fiber reinforced recycled
thermoplastic composites offers materials with balanced properties while equally
reducing the volume of plastic waste.

Natural fiber reinforced composites (NFRC) have been studied extensively
due to the environmentally aware consumers, increased environmental pollution and
global warming [14, 16–20]. Natural fibers (NF) as reinforcing elements in the
composites are sourced from renewable resources, which will reduce the cost and
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the dependance on petroleum. Today, natural fiber reinforced composites are used
in a variety of applications where low to medium strength and low cost are needed.
These applications may vary from door and window frames and furnitures to car door
panels. Several parts in commercial vehicles, particularly those produced in Brazil,
use natural fibers such as coconut coir, sisal and flax and epoxy resin in order to
achieve higher performance due to their superior impact resistance in addition to noise
reduction [15, 21].

The date palm tree naturally grows in the middle east, north Africa and
countries like India, Iraq, Iran, Pakistan and also in the United States. There are greater
than one hundred types of date palm trees in the world and each tree can grow for more
than one hundred years [19]. The large number of date palm tree throughout the world
produces a huge amount of waste, which was considered unusable before [24]. The
fibers produced from the date palm tree annually, creates a very consistent source of
natural fiber, which can be used in the composite industry.

One main task was to modify the natural fibers in such a way that these fibers
be more compatible with the hydrophobic polymer matrices. In the previous study by
Valadez [18], 5% NaOH solution was used to modify the henequen fiber surface and
much stronger interactions between the fiber and the HDPE matrix was observed when
the fiber’s surface topography was altered. In a more recent study, flax fibers were
surface treated to increase the effectiveness of the compatibilizer and also to make the
fibers more compatible with the PP matrix and reported lower water absorptions when
alkali surface treatment was used [22]. Fiber surface modification parameters should
be optimized in order to achieve the desired properties and prevent fiber damage. A
complete discussion on the effects of surface treatment methods on mechanical and
thermal properties of date palm fiber by Al-Khanbashi [23] revealed that using too
abrasive chemicals and long exposure times could damage the fiber’s surface and
reduce its tensile strength. Between commercial detergent, 5% NaOH solution and
dioxin solution, surface treatment with low concentration sodium hydroxide solution
showed enhancements in thermal resistance and Young’s modulus as well as tensile
strength of the fibers [24].
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1.2 Problem statement

It is known that the incorporation of natural fibers into synthetic polymers
helps to improve the mechanical properties. However, these fibers possess hydrophilic
character and blending them with polar hydrophobic polymers raises an issue of
incompatibility. Previous study by Corradini [1] showed that the addition of sugar
bagasse fiber into recycled PET (PETr) did not yield satisfying mechanical properties.
In order to overcome this problem, the simultaneous use of surface modifications and
compatibilizer addition have been used to overcome the compatibility issues. To date,
very limited work has been performed to study the mechanical and thermal properties
of recycled PET reinforced with natural fibers. A through study of microscopic and
macroscopic properties of PETr will ensure that the compound can be widely used in
various outdoor applications, while it can be processed by a range of technological
equipments, typically injection molding. Based on literature, several studies have been
done on natural fiber/polymer composites but the effect of natural fiber additions to
recycled PET received less attention. The present study is focused on the effect of
date palm leaf fiber addition into PETr matrix, and the outcome will help to analyze
the final composites and nanocomposites properties to be used and implemented as a
replacement in applications where traditionally made of wood.

1. What are the benefits of using the surface treatment process and how can it
enhance and change the properties of fibers and composites?

2. What improvements will be achieved by incorporating date palm leaf fibers
(DPLF) into the PETr matrix in terms of mechanical and thermal properties?

3. Does the addition of Montmorillonite (MMT) helps enhancing the mechanical
and thermal properties of the nanocomposites in order to be used in various
outdoor applications where high stiffness is crucial?

1.3 Objectives of study

One of the most important aspects of composite developments is to achieve a
good combination of mechanical properties and processability. As far as mechanical
properties are concerned, the goal is to achieve a balance of stiffness, strength and
toughness. The present work aims to develop plastic composites based on recycled
polyethylene terephthalate (PETr) reinforced with date palm leaf fiber (DPLF). These
composites have the potential to be used in indoor applications such as door frames,
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trim and furniture as well as any other wood replacement materials. The main
objectives can further be divided into:

i. To determine the effect of chemical surface treatment on the thermal properties
and chemical structure of the date palm leaf fiber.

ii. To study the effect of date palm leaf fiber (DPLF) loading on mechanical and
thermal properties as well as morphological (SEM) behavior of the recycled
PET/DPLF composites.

iii. To investigate the effect of montmorillonite (MMT) concentration on the
mechanical and thermal properties of PETr/DPLF/MMT nanocomposites.

1.4 Scope of research

In order to achieve the goals of this research, the following procedures were
carried out:

1. Sample preparation In this research project, sample preparation and blending
was performed via melt extrusion. This includes:

i. Surface treating the date palm fiber.

ii. Blending of recycled PET with surface treated fibers by using a twin
screw extruder in a single extrusion step.

iii. Blend fabrication into test specimens via injection molding according to
ASTM test specimen.

2. Physical and mechanical analysis

i. Density measurement

ii. Tensile test

iii. Flexural test

iv. Izod impact test

3. Thermal properties analysis

i. Differential scanning calorimeter (DSC)

ii. Thermogravimetric analysis (TGA)

iii. Dynamic mechanical analysis (DMA)
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4. Morphological study

i. Scanning electron microscopy (SEM)
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