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ABSTRACT 

The Cubic Interpolated Pseudo-Particle Navier Stokes equation (CIP-NSE) 

was applied to investigate the two-dimensional laminar square lid driven cavity flow 

of water at Reynolds number 1000. CIP-NSE scheme was used to solve hyperbolic 

term of the vorticity transport equation. In the CIP-NSE, the gradient and the value 

of the vorticity at the nodes is determined and the stream function is then determined 

using the vorticity equation. It is discovered that the numerical simulation of CIP-

NSE provided a very good agreement with the established benchmark results by 

previous researchers. The Runge-Kutta method has been used to calculate the 

velocity and position of the particle with the effects of Drag force and Gravitational 

forces. The hard sphere model has been applied to show the collisions effect on 

particles in the Lid-Driven cavity. The main result achieved from the investigation is 

that, as the density of particles increases the number of particles collision in first 

seconds of the investigation decreases and the number of particles settled on the floor 

of the cavity increases, so for higher density of particles there have been large 

number of particles settlement on the floor and the collision at starting of 

investigation decrease as the particles moves slower, and for the lighter particles and 

lower density of particles number of collision at starting of investigation in more as 

the particles are lighter and move faster but the particles settlement on the floor of 

cavity are less in compare to higher density of particles. All simulation have been 

done for four different density of particle which are 1000, 1200, 1700, and 2000 

(kg/m³). 
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ABSTRAK 

Persamaan Navier-Stokes untuk penentuan cubic pseudo-particle (CIP-NSE) 

telah digunakan untuk mengkaji alirain air dalam rongga berpandukan penutup dua 

matra dengan nombor Reynolds bersamaan dengan 1000. Kaedah CIP-NSE 

digunakan untuk menyelesaikan istilah hiperbolik bagi persamaan perjalanan vortex. 

Bagi CIP-NSE, kecerunan dan nilai vortex di nod ditentukan dan fungsi aliran 

ditentukan oleh persamaan vortex. Keputusan daripada simulasi berangka CIP-NSE 

didapati hampir serupa dengan keputusan daripada penyelidik sebelum ini. Kaedah 

Runge-Kutta telah digunakan untuk meramal kelajuan dan kedudukan zarah dengan 

mengamibil kira daya rintangan dan daya tarikan graviti. Model sfera keras telah 

digunakan untuk menunjukkan kesan perlanggaran ke atas zarah di dalam rongga 

berpandukan penutup. Kajian ini telah membuktikan bahawa semakin tinggi 

ketumpatan zarah, kadar perlanggaran zarah di awal kajian semakin rendah. 

Disebabkan ketumpatan yang tinggi, zarah-zarah akan tenggelam ke dasar rongga 

tersebut, dan zarah tersebut bergerak dengan perlahan, seterusnya menyebabkan 

kadar perlanggaran zarah yang rendah. Zarah yang ringan dan berketumpatan rendah 

mempunyai kadar perlanggaran yang tinggi kerana zarah yang ringan bergerak 

dengan lebih pantas dan seterusnya menghasilkan lebih banyak perlanggaran. 

Kesemua simulasi telah dijalankan untuk empat nilai ketumpatan zarah iaitu 1000, 

1200, 1700 dan 2000 (kg/m³). 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

One of the biggest inventions of mankind is the computer. Nowadays, the 

lack of a computer may cause many problems. The world is changing rapidly, with 

the computer’s evolution as evidence. Since its invention in the early 20
th

 century, 

the computer started off as big as a house and was incapable of rapid calculations.  

However it was not the end of the story; it was just the beginning of a great 

invention. After years of struggle and improvements made by companies, they have 

improved the computer in many aspects such as the size, weight and the 

performance. People used to need days or months to execute a task on an old version 

of the computer; the same task can be done in mere minutes on today’s computers. 

Researchers and accountants benefit a lot from the improvements of today’s 

computer performance. They save more time and can perform more tasks in mere 

minutes, hence they will have more time doing other tasks and research. 

Centuries before the invention of the computer, researchers can only count on 

experimental data and results to comprehend the actions of the flow of fluids and 

derive many other correlations and relationship. An example of the relationship 

which is famous and widely used is the Reynolds Number (Re) which was 

discovered once hundreds of successful experiments and investigations have been 

done.  
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The experiments were conducted by Osborn Reynolds in the 1880s 

constructing the founding of the dimensionless Reynolds number, Re, as the 

important parameter for the resolve of the flow system in pipes, whether turbulent or 

not [1] the next amazing and successful experiment ever accomplished in last few 

decades was the airplane which was designed and developed in 1903. Oliver and 

Wilbur Wrights were the team successfully lead the world into a new aspect and 

those conquests were attained so many praiseworthy experience and experiments.  

Clearly, the most challenging part of experimentation is to develop an 

effective data which need a large number of experiments. The outcome from 

experiment is very hopeful because it is the real thing that is really happening. By 

some means, it is difficult when showing an experiment since the preparation of the 

composition and devices is boring if it does not follow the instruction in a correct 

way. 

As the world technologically advances, computers also improved. CFD or 

Computational Fluid Dynamic is one of the applications which can be presented by a 

computer. CFD simulates fluid flow, and hence is a great tool to help solve problems 

in fluid flow. Many simulations were done using the CFD and it has been a great 

help for engineers and scientists. CFD is an easier and more cost-effective alternative 

to conducting an experiment, which could be expensive and time-consuming.  

Furthermore, the use of CFD is current and will always produce a good result 

if the formulation, especially the numerical simulation, was correctly selected and 

evaluated. More researches were carried out, and a large amount of numerical 

method was applied using a computer. 

Generally, solutions for fluid dynamics can be introduced through 

experiments where many relationships are established, and can be classified into 

three major categories which have more relationships.  
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Fluid 

Dynamic 

Solution 

Experimental 

CFD Theoritical 

There are three different categories of solution for fluid dynamics problems: 

the first one is through experiments, where the problem will be investigated in an 

experimental manner and in a sample mode; the second category is a theoretical 

solution, which deals with the fact that most problems dealing with fluid dynamics 

have its own assumptions and mathematical equation that will result in analytical 

solutions. The final category of solution is the recently generated and recently used 

method known as CFD, which stands for Computational Fluid Dynamics. This 

particular classification is shown in Figure 1.1 

 

 

 

 

 

 

Figure 1.1 Classification of Fluid Dynamics Solution 
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1.2  Computational Fluid Dynamic (CFD) 

Computational Fluid Dynamics (CFD) is one of the branches of fluid 

mechanics that uses numerical methods and algorithms to solve and analyze 

problems that involve fluid flows. The CFD has become an essential tool in solving 

problems governing the Navier-Stokes equation and the continuity equation, or any 

equation which are derived from these equations.  

CFD works by showing on a computer how fluid behaves. One method is to 

divide the spatial domain into small cells to form a volume mesh or grid, and then 

apply a suitable algorithm to solve the equations of motion (Euler equations for 

inviscid, and Navier-Stokes equations for viscous flow). In many instances, other 

equations are solved simultaneously with the Navier-Stokes equations.  

Other equations that may be included are those describing species 

concentration (mass transfer), chemical reactions and heat transfer, among others. 

More advanced codes allow the simulation of more complex cases involving multi-

phase flows (e.g. liquid/gas, solid/gas, liquid/solid), non-Newtonian fluids (such as 

blood), or chemically reacting flows (such as combustion). 

The basic approach in the use of CFD includes preprocessing, simulation, and 

post-processing. In preprocessing, the geometry of the problem is defined and the 

volume occupied by fluid is divided into meshes. During this process, both physical 

modeling and boundary conditions are defined.  

Simulation begins after the process and the equations are solved iteratively. 

Post-processing is where the postprocessor is used for the analysis and visualization 

of the result. Computational fluid dynamics, usually abbreviated as CFD, is a branch 

of fluid mechanics which solves fluid dynamics problems by using numerical 

methods. In this method, computers play an important role in computing and 

calculating the fluid flow problem.  
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There are many applications of CFD which are useful in the fields of 

research, education, automotive, design and sports, among others. This thesis focuses 

on using CFD to solve non-linear partial differential equation (PDE) where the 

analytical solution typically does not exist. Regardless, some flows with analytical 

solutions have applied with numerical method for validation purposes.  

The base of CFD is the well-known and unsolvable non-linear incompressible 

full Navier-Stokes equation. There are two types of CFD: the numerical type and 

another type, which uses computer software to simulate. The second type uses a form 

of software to simulate or calculate the CFD problem.  

Software like FLUENT©, which is very easy to use and can be used to 

simulate virtually any fluid flow problems, has some disadvantages, such as the 

user’s lack of knowledge about the equations applied, the assumptions or other 

criteria. This software is generally used for practical applications and for complicated 

geometry and complex conditions. In spite of that, FLUENT© software is 

established when it comes to numerical method but it is not publicized. 

The earlier type of simulation is very notable because who create the codes 

could understand the simulation, the assumption, boundary conditions and other 

variables very well. This type of simulation is appropriate for information sharing 

because many papers are published frequently which touts the use of new methods, 

for example the Lattice Boltzmann method, Bifurcation method and CIP. The better 

method is determined by carrying out comparison and validation between the 

aforementioned methods. The simulation requires the user to be well-versed in 

programming software such as FORTRAN, C++, and MATLAB; example 

applications are the simulation of flow over cylinder [2] and the experimental [3]. 
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1.2.1  Governing Equation in CFD 

There are many variables and parameters in fluid flow which control the 

characteristic of the flow. Generally, these parameters are related to the physics of 

the flow, the nature of the fluid or the surrounding system. Some of those variables 

which are usually arising in fluid flow are listed: 

 Temperature   

 Pressure   

 Velocity   

 Fluid density   

 Fluid viscosity, dynamic (μ) , and kinematic ( ) 

These are important variables in CFD simulation because they are useful and 

are generally incorporated in three major governing equations. These governing 

equations are very important for CFD and also for heat transfer simulation. These 

equations can also be modified depending on the physics of the fluid flow or based 

on the assumption which can be made. The equations involved in incompressible 

fluid flow are: 

 The continuity equation (conservation of mass)  

 

  0. u                                                                                                      (1.1) 

 

 The Navier-Stokes Equation (conservation of momentum) 

 

  fuvpuu  2

t .
1

.u


                                                               (1.2) 

 

 The energy equation (conservation of energy) 

 

  ufupqEuEt ..)(
.

                                                                    (1.3)  
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The first two equations play an important role in the formulation which is 

needed to produce the numerical simulation. These equations will be transferred into 

a new equation based on the physical model and it is also different from one another 

if the applied numerical method is different. 

1.2.2  The Navier-Stokes Equations 

The Navier-Stokes equations were named after the French engineer and 

scientist Claude Louis Henri Navier and the English mathematical physicist George 

Gabriel Stokes. The equations’ essential form was set forth by Navier in 1822; 

however, the origin of viscous stress was not properly represented. The latter was 

addressed by others, in particular by Poisson and Saint-Venant, but independently 

developed by Stokes in 1845.  

Stokes constructed a number of solutions to the equations of viscous flow, 

which confirmed their ability to describe fluid dynamical phenomena. 

The equation which describes the motion of fluid substances, i.e. substances 

which can flow, arise from applying Newton's second law to fluid motion, together 

with the assumption that the fluid stress is the sum of a diffusing viscous term 

(proportional to the gradient of velocity), plus a pressure term. The mathematical 

relationship which governs the fluid flow is the continuity equation and Navier-

Stokes equation given by: 

0. u                                                                                                      (1.4) 

uvPuu
t

u 2. 




                                                                         (1.5)
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With velocity u, pressure P, and kinematic shear viscosity. The Navier–

Stokes equations are a set of nonlinear partial differential equations which, unlike 

algebraic υ equations, do not explicitly establish a relation among the variables of 

interest (e.g. velocity and pressure). Rather, they establish relations among the rates 

of change. 

Navier-Stokes equation is well known in the field of fluid dynamics. The 

equation is nonlinear and usually the flows that use this equation are considered 

incompressible. Many fluid flows are governed by this equation because in 

describing the conservation of momentum, the equation is almost perfect. In the 

equation lie an unsteady term, a diffusive term, a pressure term, a convective term 

and the external force which is a complete package for momentum conservation. 

However, there is no analytical solution to this equation as there are many Partial 

Difference term in the equation. 

During the writing of this thesis, this equation is still not solved but many 

types of numerical methods were tried out by scientist and engineers and hence 

produce their own solution of numerical simulation. However, there still are 

exceptions, because some fluid flows having the analytical solution and this 

exception will be discussed later in the next chapter. 
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1.3  Problem Statement 

Many classical numerical methods have been applied to investigate the 

behaviors of particles in a lid-driven fluid cavity by solving the Navier-Stokes 

equation accompanied with Newton’s second law and the CIP method. Yet, these 

numerical methods are still insufficient; for higher order of accuracy, more grids are 

needed to satisfy the methods.  

 Many numerical solutions are being applied to solve Navier-stokes equation 

but they still lack accuracy 

 Low Mesh Grid has a higher accuracy. 

 How to properly describe the flow of a particle within a lid driven fluid 

cavity. 

 Effect of collisions on particle flow and the trajectory of particle. 

 The effects of gravitational forces and drag forces and collisions on particle 

flow. 

1.4  Objectives of the research 

The objective of this thesis is to investigate solid particles behaviors in a lid-

driven cavity flow while considering the drag force and gravitational force. In 

addition, the objective is to observe the effects of collision which is divided to two 

parts and will be further defined in chapters two and three. This research is mainly 

based on study of the flow in a square two-dimensional cavity with particle moving 

and particle collision is limited to hard sphere models only. Meanwhile, the CIP 

method is applied to solve the Navier-Stokes equation to express the result with less 

grid structure, which will increase the order of accuracy. The Runge-Kutta method is 

used to calculate the drag force and gravitational force exerted on the particle. 
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1.5  Significance of study 

Simulation allows scientists to virtually construct the experimental conditions 

so that they can investigate real conditions without actually experiencing that 

particular phenomenon. In some cases, it would be quite impossible to perform that 

experiment with the existing facilities and defined conditions. In the field of 

computational fluid dynamics, the most interesting areas in this field are description 

of fluid flow and the prediction and profile of the flow. 

Moreover, viscous fluids while in rotary motion have diverse industrial and 

commercial applications. The main focus for researchers has been lid-driven cavity 

flows, where the fluid is set into motion by part of the containing boundary. These 

types of flows are tedious for analyzing fundamental aspects of recirculation fluids: 

in spite of the apparently simple geometry, lid-driven cavity flows may involve a 

high degree of complexity. This is an interesting problem, which may yield much 

information about the interaction between fluid and particle and particle-particle and 

particle-wall collisions in a wide range of practical configurations. This has not been 

widely studied before this. 
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1.6 Scope of the Study 

The scope for this particular research is bound by two matters and will 

therefore be adhered to throughout the research, which are: 

Solve the advection equation with the application of CIP for NSE by: 

 

 Comparing the results with practical and simulated benchmarks with over 

other methods. 

 Comparing the dynamics of solid particles with the results that have been 

revealed so far. 

 Simulating multi-particle behavior in a lid-driven cavity while considering 

the effects of collision and gravitational force and drag force. 

 

Implementation of results verification: 

 

 Two-dimensional incompressible, unsteady, lid-driven cavity. 

 Two-dimensional incompressible lid-driven flow in square cavity without 

particle affecting, focusing on the streamline plots and velocity plots. 

 Two-dimensional incompressible lid-driven flow in square cavity 

representing the dynamics of solid particle, focusing on the orbit of the solid 

particle. 

 Two-dimensional incompressible lid-driven cavity flow with multiple 

particles and collisions effect and gravitational force and drag force. 

 Particle collision is limited to Hard-Sphere model only. 

 Gravitational force and drag force are solved using Runge-Kutta method. 
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