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ABSTRACT

Graphene as a single layer graphite with one atom thickness and two
dimensional structures is satisfying prospective nanoelectronics demands and also
opens new portals in electronics. To meet specifications of future cutting edge
applications, lead us selecting graphene with the purpose of model an eligible transistor
regarding gamma-ray (Ionizing Radiation) detection. With utilizing graphene as a
top-gate of a FET, weve concluded a detecting device with exceptional sensitivity
which doubles the range of sensitivity. In this paper gradient of graphene conductivity
during the gamma-ray exposure (Ionizing Radiation) is reported.The capability of swift
localizing sources of gamma radiation would aid urgent situation responders to disable,
detach or securely take out devices with radioactive sources. In this work, Local
electric field’s ultra-sensitivity feature of the Single-Layer Graphene exploited by put
graphene in adjacency of the ionized gamma-ray absorber which consequently flow a
current across the surface of the graphene. Subsequently, weve calculated the factor
in order to define a detecting feature as an accessory characteristic of the sensor.
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ABSTRAK

Graphene adalah satu lapisan grafit setebal satu atom dan ia mempunyai
struktur dua dimensi dimana ia mendapat permintaan yang tinggi dalam bidang
nanoelektrik dan juga membuka portal baru dalam bidang elektronik. Untuk
memenuhi ciri-ciri penggunaan pinggir pemotongan bagi masa hadapan, kami telah
memilih graphene sebagai model transistor yang bersesuaian dengan pengesanan
sinaran gama (sinaran penionan). Dengan menggunakan graphene sebagia pintu
atas FET, kami menyimpulkan bahawa peranti ini mempunyai daya pengesanan
yang luar biasa dimana lingkungan pengesanannya digandakan. Dalam kajian ini,
garis kecerenun bagi kekonduksian graphene sewaktu pemancaran sinar gama telah
direkodkan.Keupayaan penempatan sumber radiasi gama yang pantas akan membantu
situasi genting penggerak balas untuk mematikan, menanggalkan atau mengeluarkan
peranti dengan selamat daripada sumber radioaktif. Dalam kajian ini, ciri-ciri
ultra-sensitivity medan elektrik tempatan bagi Graphene Tunggal-Lapisan akan
dieksploitasi dengan memasukkan grahpene secara bersebelahan dengan penyerap
trion sinaran gama dan seterusnya membenarkan pengaliran elektrik pada seluruh
permukaan graphene. Seterusnya, kami telah menghitung faktor dengan tujuan untuk
mentakrifkan ciri mengesan sebagai ciri eksesori pengesan.
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CHAPTER 1

INTRODUCTION

1.1 Why detecting gamma ray

1.1.1 Chernobyl accident

First month of spring in 1986 one of the most enormous manmade catastrophic
disasters took place in late Soviet Union, Chernobyl nuclear accident [3]. An event
which still influencing the environment and the vast area with several miles square
with difference stages of danger level is yet abandoned however the aftermaths are still
devastating, crops withered, farms and lands became barren unproductive wastelands.

The radioactive energy released at Chernobyl was two times bigger than created
by the bombs dropped on Hiroshima and Nagasaki during World War Second [4].

1.1.2 Fukushima Daiichi Nuclear Power Station

Most recent analogous event reported from combination of natural essence
(Tsunami) followed by synthetic malfunction originating in Japan Island, another
nuclear incident, malfunction in cooling tower results in reactors meltdown [5].

1.1.3 Operating NPPs around the globe

The first NPP (Nuclear Power Plant) established in USA in 1951. The most
powerful NPP is operating in France [6].Despite several endeavors for the purpose
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of reducing these kinds of vulnerabilities by shutting down NPPs or converting
nuclear power plants to gas and wind farms and The Decommissioning of Nuclear
Reactors and Related Environmental Consequences, is a current issue in ”UNEP
Global Environmental Alert Service (GEAS)”, there is already 441 active nuke plants
around the world.

Table 1.1: Basic facts about Nuclear Power Plants in the World [7]

Number of operating NPPs in 2010 441

2.5 402.57

First NPP USA, 1951

Most powerful NPP Chooz, France, 1500 MW

Share of nuclear energy in world energy production 15%

Nuclear energy produced in 2009 2.598 TWh

Number of years of operation to January 2009 13,911

1.3 50.334

Number of countries with operating NPPs 30

Number of NPPs under construction (January 2010) 60

Number of NPPs that started operation in year 2010 5

Number of shut down NPPs 125

Number of decommissioned NPPs 17

1.1.4 MESSENGER (MErcury Surface, Space ENvironment, GEochemistry,
and Ranging)

In other hand, NASA (National Aeronautics and Space Administration), with
the help of LLNL (Lawrence Livermore National Laboratory) and U.S. Homeland
Security, in order to investigate the structure of Mercurys core and its exospheres
composition, launched a spacecraft with special electronic devices, including GRS
(Gamma-Ray Spectrometer) [4, 5, 8, 9]. MESSENGER spacecraft orbiting the planet
Mercury. (Image courtesy of the National Aeronautics and Space Administration.)
A gamma-ray spectrometer aboard the spacecraft will help scientists determine the
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abundance of elements in Mercurys crust.

Figure 1.1: Image courtesy of the National Aeronautics and Space Administration

1.1.5 Nuclear terrorism

Nuclear terrorism and reported attempts made it serious to control the borders
preventing this massive fatal ruinous threat. Between 1966 to 1977 ten terrorist
incidents against nuclear installations endeavored in Europe [8].

Also 32 acts of suspected sabotage or intentional damage at domestic nuclear
facilities reported from United States, between 1974 and 1986 [9]. Occurrences
like mentioned samples, indicates the importance of taking serious all efforts relating
to prevention of these uncontrollable and irreversible happening with long lasting
succeeding consequences.

1.1.6 Sense the Gamma Ray

One of the primal actions which are extremely critical is sensing the leakage of
nuclear material. In order to perform this operation we need to detect gamma ray, the
more accurate, the better [10].
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1.1.7 Issue of Accuracy in gamma Ray detection

In terms of gamma ray detecting accuracy and precision are the first priorities
and have precedence with holding greatest importance which justifies executing any
effort to achieve these factors [11].

1.2 Why graphene

Next generation of electronics is demanding speed, reliability, stability,
flexibility and accuracy. Graphene (single layer graphite) with hexagonal structure
as shown in Figure 1, has multiple times higher carrier mobility (compare to the Si) in
excess of 200,000 cm2/V.s at electron density of 2x1011 cm-2 [3–5, 8, 9]. Graphene
with 2D atomic structure fulfills these requirements and also inaugurates new gates in
science specifically in electronics. Formerly, germanium used to be the first choice for
researchers to be used in precise and fast gamma-ray detection.

Figure 1.2: Brillouin zone, shows a hexagonal structure and C-C Bindings.
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1.3 Graphene as the Top Gate of FET

Recent studies indicates high capability of carbon-based materials as a sensor
platform. In terms of designing a gamma ray sensor, the main challenge is achieving
high resolution in room temperature [6, 10, 11].

1.4 Zigzag structure

As an adequate substance for future trends in high-tech devices, the graphene
with zigzag structure is chosen for modeling a FET to detect the gamma-ray, which is
due to its higher electrical stability and constant metallic behaviour [7]) as shown in
Figure 2.

Figure 1.3: Zigzag structure of graphene used in the suggested model of the sensor
exhibiting the W as width and L as Length of the sheet.

1.5 Sensitive to Local Electric Field

In order to achieve this goal, the ultra-sensitivity factor of the Single-Layer
Graphene (SLG) is exploited with respect to local electric fields. An ionizated
substance in neighborhood of graphene has resulted this desired electric field [12–14].
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1.6 Gamma-ray Absorber

The perfect material which meets the requirements is a gamma-Ray absorber
[15]. In this paper, Si is employed to role as an absorber, and the sensor is modeled as
a FET, in which Vg plays as a controlling factor used in controlling the channel current
because of the alteration in channel conductance.

1.7 Ionizing Radiation and Buffer (Oxide) layer

The local electric field induced by the gamma ray (Ionizing Radiation) in the
absorber, which is in adjacency of the graphene, results in a current flow across the
graphenes surface.

In this study, the proposed structure of sensor includes a semiconductor
material (such as Si, Ge, and InSb) serving as a gamma-ray absorber. To avoid direct
contact of SLG and absorber substrate, SiO2 as the oxide layer between them and Ag
as the terminals substance are employed as illustrated in Figure 1.4,.

Figure 1.4: Schematic of the SLG FET, indicating gamma-ray absorber layer, buffer
layer, graphene sheet and electrodes.
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