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ABSTRACT

Graphene nanoribbons are among the recently discovered carbon nanostruc-
tures, with unique characteristics for novel applications. One of the most important
features of graphene nanoribbons, from both basic science and application points of
view, is their electrical conductivity.The impressive properties of graphene such as the
linear energy dispersion relation, room-temperature mobility as high as 15000 cm

2
/V s

with current density 2A/mm .This is make it an remarkable candidate for electronic
devices of the future. Graphene nanoribbon (GNR) with outstanding electrical and
thermal properties indicates quantum confinement effect. GNR as a new material
which can be used with Si complementary metal oxide semiconductor (CMOS)
technology to overcome the integrated circuits hit transfer problems.GNRCMOS
devices operated at high source-drain bias show a saturating I-V characteristic. In
this project armchair GNR with semiconducting properties in the CMOS technology
application is in our focus. Based on the presented model comparison study on
transfer characteristic is reported which illustrates that the performance and electrical
properties of GNRCMOS.The measurements of the GNRCMOS confirm larger than
0.1 eV bandgap with channel length 20 nm. These parameters have been replicated on
CMOS. The low noise margin (NML) and the high noise margin (NMH) are 1.156
and 1.053 volt reported respectively which is comparable by SiCMOS with 0.6744
volt NML and 1.39 volt NMH respectively. The voltage transfer curve (VTC) of
GNRCMOS is calculated (13.2978) while for the SiCMOS device is 7.999309.
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ABSTRAK

Graphene nanoribon adalah antara nano struktur karbon yang baru dijumpai
dan mempunyai ciri-ciri unik bagi penggunaan yang baru. Berdasarkan pengetahuan
sains asas, graphene nanoribon dipercayai mampunyai cirri-ciri konduktor elektrik
yang sangat baik. Graphene nanoribon mempunyai ciri-ciri yang sangat
mengagumkan seperti, tenaga penyebaran yang linear dan pergerakan suhu bilik
yang tinggi (15000cm2/V s) dengan ketumpatan arus sebanyak 2A/mm.Ini menjadikan
graphene nanoribon sebagai peranti elektrik yang mempunyai ciri-ciri luar biasa
bagi penggunaan masa hadapan.Sifat-sifat elektrik dan terma yang masih belum
jelas menunjukkan bahawa terdapat kesan pengurungan kuantum dalam graphene
nanoribon (GNR). GNR boleh digunakan sebagai bahan baru di dalam Si
teknologi semikonduktor oksida logam pelengkap (CMOS) untuk mengatasi masalah
pemindahan dalam litar bersepadu. Peranti GNRCMOS yang beroperasi pada
sumber saliran yang tinggi telah menunjukkan ciri-ciri kumpulan I-V. Di dalam
projek ini, kami memfokus pada penggunaan GNR untuk diaplikasikan di dalam
CMOS teknologi kerana sifatnya sebagai semikonduktor yang baik. Kajian mengenai
pernandingan model yang dibentangkan telah menggambarkan prestasi dan sifat
elektrik yang baik bagi GNRCMOS. GNRCMOS telah disahkan mempunyai ukuran
bandgap yang lebih besar dari 0.1 eV dengan saluran sepanjang 20 nm. Kesemua
parameter tersebut telah disalin pada CMOS.NML (1.156 volt) danNMH (1.053 volt)
untuk GNRCMOS telah dibandingkan dengan NML (0.6744 volt) dan NMH (1.39
volt) untuk SiCMOS. Pengiraan keluk pemindahan voltan (VTC) bagi GNRCMOS
telah memberikan nilai 13, 2978 manakala untuk peranti SiCMOS adalah 7.999309.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The transistors on a modern Intel Pentium chip are 200 times smaller than 10
millionths of an eter in spite of the prediction by scientists, in 1961, that transistors
on a chip could ever be smaller than that [1]. Researchers are currently working on
innovative ways of building tiny devices. In particular, several emerging electronic
devices such as carbon nanotubes Field Effect Transistors (FETs) [2–4], Si nanowire
FETs [2–4], and planar IIIV compound semiconductor (e.g., InSb, InAs) FETs [4] are
being investigated. They are all promising potential device candidates for integration
onto the silicon platform for enhancing circuit functionality and also for the extension
of Moores Law [2]. The channel material could be narrow graphene based in future
transistors.

”Physicists Andre K. Geim, and Konstantin S. Novoselov, of the University of
Manchester in the U.K., won the 2010 Nobel Prize in Physics for their discovery of
graphene, a one-atom thick sheet of carbon atoms, arranged in a honeycomb pattern
that boasts of outstanding mechanical and electronic properties”.

The ”idea that a single freestanding sheet of graphene, a one atom thick carbon
film that rests on or is suspended from (but is not tightly attached to a support) could be
isolated had been investigated since the 1980s when carbon nanotubes and buckeyballs
were discovered [2]. By the early part of this decade, researchers had concluded that
freestanding graphene could not be isolated after years of trying unsuccessfully to
separate graphite into its constituent graphene sheets. Thermodynamics principles
predicted that the material would spontaneously roll up into a nanotubes or other
curved structure. Yet in 2004, Geim and Novoselov, worked out a surprisingly simple
method for exfoliating little chips of graphite by folding adhesive tape against the
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crystals and repeatedly peeling apart the tape. The team showed that not only could
single sheets of graphene be isolated, but they remain particularly stable at room
temperature”.

An explosion in graphene research resulted from the ”discovery of that
rudimentary method for isolating graphene sheets. For advanced computing
applications , digital displays [3, 4] and other types of flexible electronics [3–5],
and advanced composite materials, it has quickly become a top choice. The possibility
of using graphene in device applications in a manner similar to carbon nanotubes has
risen due to this”.

Recently, ”carbon nanotubes (CNTs) have enjoyed a lot of attention in the
literature, mostly because of their potential to replace silicon (Si) as the material
of choice for the channel of Field Effect Transistor (FET) devices. Electron and
whole mobility in CNTs have been measured and predicted to be exceedingly high,
to the point where CNT-based transistors can be described as nearly ballistic. No
straightforward way exists of patterning even simple CNT-based circuits [3], [4] even
when the electronic properties of CNTs are excellent for FET applications. Presently,
revolutionary advances in process technology appear to be needed for large-scale
integration of CNT devices. Grapheme, being a zero-gap semiconductor [2], cannot
be used directly in applications such as field-effect transistors (FETs). However, in
addition to the two dimensions (2D) confinement, the graphene electrons can be further
confined by forming narrow graphene ribbons [5]”.

Mistake Fujita and co-authors originally introduced graphene ribbons as a
theoretical model to ”examine the edge and nanoscale size effect in graphene [4-6],
which are essentially edge-terminated graphene sheets. Even though they offer the
possibility of lithographic patterning on silicon carbide (Sic) substrates, potentially
solving the major obstacle to large-scale integration, the GNRs are expected to have
similar electronic properties to CNTs ” [3, 4].

X Wang et al [6]”did one of the first works to demonstrate sub-10 nm width
GNRFETs. They achieved such dimensions because they started with GNRs that had
been chemically derived at smaller dimensions using the process described in Section
2.1.3.1 instead of patterning GNRs from a planar sheet with e-beam lithography. In this
process, exfoliated graphene is dispersed into a chemical solution by significations,
creating very small fragments. After that, the solution is applied to a substrate,
dried and GNRs identified with atomic force microscopy. These GNRs ranged from
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monolayer to trilateral. They were deposited on a silicon dioxide (SiO2) dielectric
over a highly doped silicon back gate, and contacted with palladium (Pd) source/drain
electrodes”. It is a new project referred to as Graphene-based Nan electronics.

With financial support from the European Commission, devices (GRAND)
have recently been set up in Europe to investigate technical aspects connected with
the feasibility, design, fabrication and complimentary metal-oxide-semiconductor
(CMOS) integration of graphene nanoribbon field effect transistors (GNRFETs).

”The semi-classical top-of-the-barrier ballistic model [7] was utilized with the
corresponding calculated band-structure”, in this study, to investigate the performance
of MOSFET like-GNRFET. This model can capture 2D electrostatics based on a
simple capacitance model, calibrated to the device structure. Through the self-
consistent calculation, it can also capture quantum capacitance. It calculates the carrier
transport properties based on the electronic structure of the channel at the top of the
barrier. It provides insights of device physics, even though it is a simple model. It
has also been widely utilized in investigating the ultimate device performance of the
different novel channel MOSFETs.

The upper limit performance potential of ballistic graphene nanoribbon
MOSFETs is examined using the ”semi-classical top-of-the-barrier ballistic” model In
X et al [4]. It has been shown in their study that semiconducting ribbons, that are a few
nanometers in width, electronically behave in a manner similar to carbon nanotubes,
thus attaining similar on-current performance. The authors compared ideal, ballistic
GNR MOSFETs with width w=2.2nm and 4.2nm to an ideal ballistic Si MOSFETs
whose device structure was specified by the 90nm node of ITRS report. They found
that an ideal ballistic MOSFET can be outperform by an ideal ballistic GNR MOSFET
by up to 200 % in terms of on-current density at a fixed off-current.

The device performance of different type of GNR MOSFETs has been
evaluated and compared to a cylindrical gate ”CNT MOSFETs using the semi-classical
top-of-the-barrier ballistic model ”in the study by X et al [3]. The 1nm diameter
cylindrical CNT MOSFET outperformed the 1.4nm width single gate armchair GNR
MOSFET by 200% in terms of on-current density as shown by the study. The 1.4nm
width double gate armchair GNR (with similar band gap ( 0.8eV) as the 1nm diameter
zigzag CNT) MOSFET, has, however, performance comparable to the 1nm diameter
cylindrical CNT MOSFET. Next, the authors investigated in detail, the ultimate
performance of a 3nm width armchair GNR MOSFET with double gate structure.
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Compared to the 1nm diameter zigzag CNT, the 3nm wide armchair GNRs has
similar width as the circumference of the CNT, but has a smaller band gap ( 0.5eV).
The double gate 3nm width armchair GNR MOSFET was found to have outperformed
both the cylindrical 1nm diameter CNT MOSFET and the double gate 1.4nm width
armchair GNR MOSFET when the total current and current density were evaluated.

1.2 Production

Single-layer graphene was first produced by a mechanical exfoliation
technique. Starting with highly oriented pyrolytic graphite (HOPG), a sticky ”scotch
tape was used to peel-off a few layers of graphene”. Since the ”graphite” is sliced
into two parts, each part has to be thinner than the original one. Repeating it several
times produces thin flakes, which can be transferred to a (silicon) substrate. Single
layer flakes can be identified by optical microscopy (Figure 1.2 (left)) [8] and can be
verified by Raman measurements [9] or by atomic force microscope (AFM).

A more ”scalable” method to produce graphene is to grow it on a suitable planar
surface using ”chemical vapor deposition (CVD), molecular beam epitaxy (MBE), or
by ”the reduction of SiC [10–12]. These methods can now produce both multilayer and
single-layer graphene on large-area substrates [Figure 1.2 (right)]. The clear advantage
is that one can cover an entire wafer with graphene by such growth methods. The CVD
technique is often performed on metal substrates (Cu, Ni, Ru) due to the underlying
hexagonal symmetry of the lattice, which initiates graphene formation. The low solid
solubility of carbon results in limited, few-layer growth [10].

These as-grown thin films on metal cannot be used in ordinary electronic
applications due to the direct (electrical) contact with the underlying metal. However,
it is possible to transfer the graphene from them to insulating substrates like silicon
or quartz by etching the metal substrate away. Epitaxial growth on insulating SiC
substrates is also possible. At high temperatures, the surface Si-C atoms start to
dissociate, and Si is pumped away, leaving excess carbon on the surface, which
reconstruct as a graphene layer [11,13,14]. It has now established that such ’epitaxial-
graphene’ layers are identical to graphene obtained by other methods.
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Figure 1.1: (left) Example of an ex foliated graphene flake. There is a monolayer flake
on the middle, double layer flake on the left and a multilayer flake on the right. (right)
AFM micrograph of the epitaxially grown graphene surface on SiC. The graphene is
atomically smooth; the steps are of the substrate. The image is 10 x 10 um, gray scale
range: 20 nm.

1.3 Objective

Focus of this study is to evaluate the upper limit performance potential of
graphene nanoribbon CMOS and specifically:

(a) Study and analyze the electrical properties of GNR on the CMOS technology.

(b) Understand the electrical characteristics of this low dimension transistor.

(c) Study the possible role of GNRCMOS in future electronic systems.

(d) Improvement of GNR CMOS performance through simulation by using T-
spice and MATLAB.

1.4 Problem Statement

Every three years, the progress in device scaling has followed an exponential
curve with the doubling of the device density on a microprocessor. This is now
known as Moore’s law. It was initiated by Intels founder, Gordon Moore. Continued
success in device scaling is necessary for maintaining the evolutionary technological
improvements that have been the foundation for integrated circuit development and
design this far. The channel length of CMOS has pushed by this into the nanoscale
regime. With the extreme scaling of CMOS, new challenges arise as the Si based
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CMOS reaches its performance limits, with short channel effects coming into place.
This brings us to the search of new devices or materials which would be able to keep
the transistor scaling in accordance with Moores Law. .

”Yet we do need an adjunct to silicon, because so much of the potential market
for electronics has yet to be opened. Electronics in paper, on walls, and in clothing
are today mere novelties, simply because silicon can’t easily be painted on a surface,
draped on a flexible platform, or used to cover large areas. What’s needed is something
that can do all that and still be churned out cheaply and in bulk, processed easily, and
slipped deftly into the guts of the next generations of electronics”.

Grapheme, the alternative material, is at the top of the substituent list. There
has been many contenders for Silicon ”in the past, these includes germanium (the
material used for the very first transistor), and gallium arsenide, which in spite of its
usefulness is still a mere niche material. Why do we therefore nurse such high hopes
for this rarefied form of carbon” This study seeks to fill the gap by separating reality
from hype.

1.5 Scope of the Study

The T-spice and MATLAB used in the simulation of the proposed technique is
the base for analysis in this thesis. Therefore we did not considered the experimental
details of the resulting device. The production of GNRCMOS is currently at the
embryonic stage. The simulation is therefore not based on any existing standard
although the current novel transistor and some experimental data on GNRCMOS are
considered in selecting simulation parameters. The comparison of study between
SiCMOS and GNRCMOS base on analysis voltage transfer characteristic (VTC) and
current voltage curve (I-V curve).

1.6 Summary

It is important that ”the potential device candidates that will be integrated onto
the silicon platform to enhance circuit functionality and also for extending Moores
Law should be frequently benchmarked against the existing and anticipated silicon
(Si) analog transistor data”. In this study, we will:
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• Try on measurement the progress of research.

• ”Identify the various device-related strengths, as well as limitations of these
novel devices and focus on solving these device related problems in order to
accelerate the research progress”.

• Study the possible role of GNRCMOS in future electronic systems.

• The Comparison of study via modeling & simulation.

1.7 Organization of project

At the beginning, Chapter 1 shows the introduction on nanodevices, carbon
nanotube and graphene nanoribbon and the study on CMOS and FET and application
them, then discussing the ”objectives of the project and the scope of the research” taken
in consideration the analysis graphene nanoribbon and comparison between SiCMOS
and GNRCMOS. After that, to study the solution of how to analysis Voltage Transfer
Characteristic VTC from I-V curve and comparison with simulation part for SiCMOS.

While, Chapter 2 clarify the structure and background of graphene nanoribbon.
Also study on properties on graphene nanoribbon. And make comparison between
carbon nanotube and graphene nanoribbon base on properties. Also in same chapter
discussion the challenging in graphene that are surface and interface effects on charge
transfer, contact resistance, high k insulator, deposition method, band gap engineering
method, mobility, integration , doping and compatibility with CMOS. Moreover Why
use graphene in CMOS. In chapter discus desirable electric characteristics which are
comparable to that achieved in CNTs, such as the fast switching behaviors, high carrier
mobility and ballistic transport which were discussed earlier.

Chapter 3 explains the methodology of this study. Method is find drain current
in graphene nanoribbon CMOS (GNRCMOS) and modeling equation by using matlab
and T-SPICE.

Chapter four contains the results of different value VGS, VDS and extract the
data to draw VTC.Their comparison with simulation part finally chapter five gives the
conclusion and future work for this study.
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