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ABSTRACT

This project proposes a software and hardware architecture for computing
image gradients in order to reduce the input image size. The only way to transfer
data in real time using lower speed wireless communication systems is to reduce the
frame size; if a 24bit image is binarized the size will be reduced 24 times. In this
project the Canny algorithm is analyzed and written in Matlab and C programming
language for NiosII CPU. Then it is implemented in a Field Programmable Gate Array
(FPGA) hardware and the timing result for every step is measured. Based on these
timing results, a final co-design is proposed. The output image after processing is a
binary image that is at least 24 times smaller than the original image. For a sample
98×183, 24bit image and a working frequency equal to 50MHz, total logic elements
for final co-design increased about 4 times of software design, but execution time in
co-design architecture is 19 times faster than software. The hardware implementation
in this paper is done on Altera CycloneII FPGA board.
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ABSTRAK

Projek ini mereka bentuk perisian dan perkakasan bagi pengiraan kecerunan
imej untuk tujuan pengurangan saiz imej. Penghantaran data imej secara “real
time” melalui komunikasi wayarles hanya dapat dilaksanakan sekiranya saiz frame
imej dikurangkan. Contohnya, saiz imej 24 bit yang dibinarikan akan berkurangan
sebanyak 24 kali. Projek ini menganalisis algoritma Canny dan menterjemahkannya
kepada kod Matlab dan seterusnya pengatucaraan C untuk dilaksankan oleh pemproses
NiosII. Rekabentuk perkakasan kemudiannya dilaksanakan menggunakan Field
Programmable Gate Array (FPGA) dan analisa masa untuk setiap langkah diukur.
Berdasarkan keputusan daripada analisa masa, co-design peringkat akhir dicadangkan.
Imej ouput daripada pemprosesan merupakan imej binari yang sekurang-kurangnya
24 kali lebih kecil daripada imej asal. Untuk sampel imej 24 bit dengan resolusi
98×183 dan 50MHz frekuensi operasi , jumlah elemen logik bagi rekabentuk akhir
meningkat kepada 4 kali ganda berbanding dengan rekabentuk yang menggunakan
perisian sahaja. Walau bagaimanapun, masa pemprosesan rekabentuk akhir adalah
19 kali lebih cepat berbanding menggunakan perisian. Rekabentuk perkakasan akhir
untuk projek ini dilaksanakan dengan menggunankan papan Altera CycloneII FPGA.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

A new generation of cameras that have been appeared since the late 1990s is
called smart cameras. A smart camera is not just a camera that take pictures but it
can perform tasks and do some processing depending on situations. Motion detection,
object measurement, read vehicle number plates and even recognizing human behavior
are some examples of smart camera processing [1].

Based on the quality of a camera, the size of the frames is different. Large
frame requires high bandwidth communication. The size of an 24bit uncompressed
digital 720×480 NTSC (National Television Standards Committee) frame is about
8.3Mega bit per frame. For 30 frames per second, it is around 250Mega bit per second.
Furthermore, it may not necessary to send all data of frame as some especial data of the
image are sufficient. The gradient of an image can be used to extract important detail
of the image [2]. If the 24bit image is binarized, a speed of 1.3MBps or 10.4Mbps for
wireless image transfer is sufficient. Canny algorithm is one of the optimum methods
to compute the gradient of an image [3].

1.2 Statement of the Problem

Canny algorithm requires very high computation power because it needs a
large amount of computation for different steps such as smoothing, thinning and
thresholding. These steps contain many functions that are using multiplications,
divisions and even more complex operations such as Arctan which are very time
consuming.
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Achieving this level of processing power using programmable DSP (Digital
Signal Processor) requires multiple processors. In order to efficiently use the hardware
resources and increase the speed, hardware features like pipelining must be employed.
A single FPGA (Field Programmable Gate Array) with an embedded soft processor can
deliver the requisite level of computing power more cost-effectively, while simplifying
board complexity [4].

1.3 Objective of the Study

The main objective of this project is to propose a software and hardware
co-design architecture of Canny edge detection algorithm using FPGA for a fast
image analysis. To achieve this aim, it is necessary to know the mathematical
properties of edge detection. Therefore, the first objective of the project is to analyze
the mathematical properties of Canny edge detection. The second objective is to
map the mathematical operations as a hardware architecture model. Then several
hardware/software Canny architectures are analyzed to evaluate each architecture
trade-off. Finally execution time for every step in hardware and software compare
together to determine which step should be done in software and which one is faster if
implemented in hardware.

1.4 Scope of Work

The Modified Canny algorithm is benchmarked with a Matlab based
implementation. The algorithm is simulated in Altera Quartus II and implemented
in hardware to make a binary image of input image that contains just desired features,
and has a less size in compare with original input image. The hardware architecture
is based on RTL (Register Transfer Level) design methodology on Altera FPGA and
input the image is a 24bit bitmap image.

1.5 Methodology

Figure 1.1 illustrates the steps of high-level implementing algorithms in
hardware. At first step, RGB image is converted to grayscale to be ready for computing
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Figure 1.1: Steps of implementing algorithms on hardware.

gradient, in the next step the magnitude of first order derivative in x and y directions
are computed using the Canny algorithm and are added together to yields gradient of
the image. At last step the image is compressed as much as possible to get minimum
size for a fast image transfer.

Canny algorithm step is written in Matlab (without modification). Some parts
of Canny algorithm i.e. Arctan, are modified and compared with results from step
1. If the difference between results is negligible then modification is applied. The
modified algorithm is written in NiossII Processor by Altera for various models of its
FPGAs. execution time of every step is measured. Each processing step is separately
analyzed as hardware structure. If the execution time is faster in software, the step is
written in software else, it is implemented in hardware.

1.6 Report Outline

This rest of the report is organized as follows. Chapter 2 introduces a brief
about smart cameras and Canny algorithm and it’s complexity, DE2 Altera board,
PAL (Phase Alternating Line) and NTSC standards and bitmap image. Chapter 3
describes how Canny algorithm modified to suit hardware implementation. Chapter
4 talks about the designed hardware architecture. Chapter 5 illustrates and compares
the theoretical and experimental results. finally Chapter 6 summarizes this project and
proposes directions for future work.
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