
GRADIENT IMAGE GENERATOR HARDWARE/SOFTWARE CO-DESIGN

ABBAS HAGHI

UNIVERSITI TEKNOLOGI MALAYSIA



GRADIENT IMAGE GENERATOR HARDWARE/SOFTWARE CO-DESIGN

ABBAS HAGHI

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Master of Engineering (Electrical - Computer and Microelectronic System)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JULY 2012



iii

To my parents for their love, endless support and encouragement.



iv

ACKNOWLEDGEMENT

First and foremost, I would like to thank to my supervisor of this project,
Dr. Muhammad Nadzir Marsono for his valuable guidance and advice. He inspired
me greatly to work in this project. His willingness to motivate me contributed
tremendously to my project.

Furthermore, I wish to express my gratitude towards my family especially my
parents. There is no word I could write which is adequate to depict how much they
mean to me. The reason that has been keeping me going on through these times.

Lastly, I must to thank to my friends and coursemates for their kind
encouragement and constant support throughout the project.

Skudai, Johor - Malaysia

Abbas Haghi



v

ABSTRACT

This project proposes a software and hardware architecture for computing
image gradients in order to reduce the input image size. The only way to transfer
data in real time using lower speed wireless communication systems is to reduce the
frame size; if a 24bit image is binarized the size will be reduced 24 times. In this
project the Canny algorithm is analyzed and written in Matlab and C programming
language for NiosII CPU. Then it is implemented in a Field Programmable Gate Array
(FPGA) hardware and the timing result for every step is measured. Based on these
timing results, a final co-design is proposed. The output image after processing is a
binary image that is at least 24 times smaller than the original image. For a sample
98×183, 24bit image and a working frequency equal to 50MHz, total logic elements
for final co-design increased about 4 times of software design, but execution time in
co-design architecture is 19 times faster than software. The hardware implementation
in this paper is done on Altera CycloneII FPGA board.



vi

ABSTRAK

Projek ini mereka bentuk perisian dan perkakasan bagi pengiraan kecerunan
imej untuk tujuan pengurangan saiz imej. Penghantaran data imej secara “real
time” melalui komunikasi wayarles hanya dapat dilaksanakan sekiranya saiz frame
imej dikurangkan. Contohnya, saiz imej 24 bit yang dibinarikan akan berkurangan
sebanyak 24 kali. Projek ini menganalisis algoritma Canny dan menterjemahkannya
kepada kod Matlab dan seterusnya pengatucaraan C untuk dilaksankan oleh pemproses
NiosII. Rekabentuk perkakasan kemudiannya dilaksanakan menggunakan Field
Programmable Gate Array (FPGA) dan analisa masa untuk setiap langkah diukur.
Berdasarkan keputusan daripada analisa masa, co-design peringkat akhir dicadangkan.
Imej ouput daripada pemprosesan merupakan imej binari yang sekurang-kurangnya
24 kali lebih kecil daripada imej asal. Untuk sampel imej 24 bit dengan resolusi
98×183 dan 50MHz frekuensi operasi , jumlah elemen logik bagi rekabentuk akhir
meningkat kepada 4 kali ganda berbanding dengan rekabentuk yang menggunakan
perisian sahaja. Walau bagaimanapun, masa pemprosesan rekabentuk akhir adalah
19 kali lebih cepat berbanding menggunakan perisian. Rekabentuk perkakasan akhir
untuk projek ini dilaksanakan dengan menggunankan papan Altera CycloneII FPGA.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv
LIST OF SYMBOLS xv
LIST OF APPENDICES xvi

1 INTRODUCTION 1
1.1 Background of the Study 1
1.2 Statement of the Problem 1
1.3 Objective of the Study 2
1.4 Scope of Work 2
1.5 Methodology 2
1.6 Report Outline 3

2 LITERATURE REVIEW 4
2.1 Smart Camera 4

2.1.1 Classification of Smart Cameras 5
2.1.2 Functionalities of ASIP 7

2.2 Canny Algorithm 7
2.2.1 Image Smoothing 9
2.2.2 Edge Detection 10
2.2.3 Directional Non-maximum Suppression

(DNS) 14

Ahmed
Text Box



viii

2.2.4 Thresholding 15
2.3 Altera Cyclone II Board 16

2.3.1 DE2 Control Panel Facility 17
2.4 NTSC and PAL Standards 17
2.5 Bitmap Image 18
2.6 Motivation of Extended Work 18

3 MODIFIED CANNY ALGORITHM 22
3.1 Implementing RGB to GrayScale 22
3.2 Implementing Smoothing in Hardware 23
3.3 Computing Magnitude and Orientation of Gradient

of Image 25
3.4 Implementing Thinning in Hardware 29
3.5 Implementing Hysteresis 29
3.6 Chapter Summary 30

4 HARDWARE ARCHITECTURE 31
4.1 Chapter Summary 34

5 RESULTS AND DISCUSSION 35
5.1 Matlab Results 35

5.1.1 RGB to GrayScale 35
5.1.2 Smoothing 35
5.1.3 Magnitude and Direction of Gradient 38
5.1.4 Directional Non-maximum Suppression

(DNS) 38
5.1.5 Hysteresis 39

5.2 Co-Design Results 42
5.2.1 All Steps in NiosII 42
5.2.2 Computing only Grayscale in Hardware

and the Rest in NiosII 42
5.2.3 Computing only Smoothing in Hardware

and the Rest in NiosII 43
5.2.4 Computing only Magnitude and Direction

of Gradient and the Rest in NiosII 45
5.2.5 Only Thinning in Hardware and the Rest

in NiosII 46



ix

6 CONCLUSION 52
6.1 Future Works 53

REFERENCES 54



x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Types of smart cameras, typical characteristics, and
sample applications. 5

2.2 Addresses of different information located in a bitmap
header file. 20

5.1 Execution time for every step of the canny algorithm in
software. 42

5.2 Execution time when only computing grayscale is in
hardware. 43

5.3 Numbers of SOPC builder generated module resources
when only computing grayscale is in hardware. 43

5.4 Numbers of computing grayscale designed module
resources. 43

5.5 Execution time when only smoothing in hardware using
method1. 44

5.6 Execution time when only smoothing in hardware using
method2. 44

5.7 Numbers of SOPC builder generated module resources
when only smoothing is in hardware. 45

5.8 Numbers of smoothing designed module resources. 45
5.9 Execution time when only computing gradient is in

hardware. 45
5.10 Numbers of SOPC builder generated module resources

when only computing gradient is in hardware. 46
5.11 Numbers of computing gradient designed module

resources. 46
5.12 Execution time when only thinning is in hardware. 46
5.13 Numbers of SOPC builder generated module resources

when only thinning is in hardware. 47
5.14 Numbers of thinning designed module resources. 47



xi

5.15 Execution time for every step of the canny algorithm
implemented in hardware. 47

5.16 Execution time difference between hardware and
software of the canny algorithm. 48

5.17 Execution time when computing grayscale, smoothing
and computing gradient are in hardware. 48

5.18 Numbers of SOPC builder generated module resources
for final co-design. 48

5.19 Numbers of final co-design, designed module resources. 49
5.20 Execution time for different operations. 50



xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Steps of implementing algorithms on hardware. 3
2.1 Functional structure of a smart camera. 4
2.2 Classification of smart cameras based on levels of

integration. 6
2.3 Canny algorithm steps. 9
2.4 Gaussian shape in respect to different standard devia-

tions. 10
2.5 Gaussian kernel. 10
2.6 Image results of a Gaussian function with different

standard derivations applied to an image. 10
2.7 Additive Gaussian noise applied to images of rows

number 2, 3 and 4 with a standard deviation of 0.1,1 and
10 , respectively. 11

2.8 Roberts, Prewitt and Sobel masks using for implement-
ing first order derivative in x and y direction. 13

2.9 An example of how gradient works. 14
2.10 An example of how thresholding works. 15
2.11 Altera DE2 development and education board. 16
2.12 The DE2 control panel concept. 17
2.13 Bitmap header file. 19
3.1 Gaussian function. 24
3.2 Graphical show of convolution an image with Gaussian

mask. 24
3.3 Sobel masks in x and y directions. 25
3.4 Central pixel and directions of it’s neighbors. 26
3.5 Division of trigonometric circle to four directions. 27
3.6 Upper half of trigonometric circle. 28
3.7 Black central pixel and its corresponding neighbors for

thinning, based on the direction. 29



xiii

3.8 Black central pixel and its corresponding neighbors for
thresholding, based on the direction. 30

4.1 Sequence of canny algorithm implementation. 31
4.2 Hardware architecture of final design. 32
4.3 Sequence of passing data from one step to another one. 33
4.4 Sequence of input/output data to/from system. 34
5.1 Grayscale results using three different methods. 36
5.2 Smoothed results using Gaussian mask. 37
5.3 The measured bit difference between smoothed images

using original and estimated Gaussian mask. 37
5.4 Magnitude of gradient. 38
5.5 Simple thresholded and thinned image results

(Th=100). 39
5.6 A horizontal edge with 3 different values. 39
5.7 Image results before and after hysteresis (Th=200 and

T l=50). 40
5.8 Image results before and after hysteresis (Th=100 and

T l=50). 41
5.9 Matlab results of modified Canny algorithm. 41
5.10 A set of pixels; central pixels and corresponding

neighbors that should be send to hardware for
smoothing. 44

5.11 24bit input image versus binary output image. 49



xiv

LIST OF ABBREVIATIONS

ASIC - Application Specific Integration Circuit

ASIP - Application Specific Information Processing

ATSC - Advanced Television Systems Committee

DAC - Digital to Analog Converter

DNS - Directional Non-maximum Suppression

DSP - Digital Signal Processor

FPGA - Field Programmable Gate Array

HD - High Definition

IP - Internet Protocol

LED - Light Emitting Diode

NTSC - National Television Standards Committee

PAL - Phase Alternating Line

PLD - Programmable Logic Device

RTL - Register Transfer Level

SDRAM - Synchronous Dynamic Random Access Memory

SOPC - System on a Programmable Chip

SRAM - Static Random Access Memory

USB - Universal Serial Bus

VTR - Video Tape Recorder



xv

LIST OF SYMBOLS

T l – Low Threshold Value

Th – High Threshold Value

Hz – Hertz

MBps – Megabytes Per Second

Mbps – Megabits Per Second

M – Mega

σ – Standard Derivative

–

Ahmed
Text Box



CHAPTER 1

INTRODUCTION

1.1 Background of the Study

A new generation of cameras that have been appeared since the late 1990s is
called smart cameras. A smart camera is not just a camera that take pictures but it
can perform tasks and do some processing depending on situations. Motion detection,
object measurement, read vehicle number plates and even recognizing human behavior
are some examples of smart camera processing [1].

Based on the quality of a camera, the size of the frames is different. Large
frame requires high bandwidth communication. The size of an 24bit uncompressed
digital 720×480 NTSC (National Television Standards Committee) frame is about
8.3Mega bit per frame. For 30 frames per second, it is around 250Mega bit per second.
Furthermore, it may not necessary to send all data of frame as some especial data of the
image are sufficient. The gradient of an image can be used to extract important detail
of the image [2]. If the 24bit image is binarized, a speed of 1.3MBps or 10.4Mbps for
wireless image transfer is sufficient. Canny algorithm is one of the optimum methods
to compute the gradient of an image [3].

1.2 Statement of the Problem

Canny algorithm requires very high computation power because it needs a
large amount of computation for different steps such as smoothing, thinning and
thresholding. These steps contain many functions that are using multiplications,
divisions and even more complex operations such as Arctan which are very time
consuming.



2

Achieving this level of processing power using programmable DSP (Digital
Signal Processor) requires multiple processors. In order to efficiently use the hardware
resources and increase the speed, hardware features like pipelining must be employed.
A single FPGA (Field Programmable Gate Array) with an embedded soft processor can
deliver the requisite level of computing power more cost-effectively, while simplifying
board complexity [4].

1.3 Objective of the Study

The main objective of this project is to propose a software and hardware
co-design architecture of Canny edge detection algorithm using FPGA for a fast
image analysis. To achieve this aim, it is necessary to know the mathematical
properties of edge detection. Therefore, the first objective of the project is to analyze
the mathematical properties of Canny edge detection. The second objective is to
map the mathematical operations as a hardware architecture model. Then several
hardware/software Canny architectures are analyzed to evaluate each architecture
trade-off. Finally execution time for every step in hardware and software compare
together to determine which step should be done in software and which one is faster if
implemented in hardware.

1.4 Scope of Work

The Modified Canny algorithm is benchmarked with a Matlab based
implementation. The algorithm is simulated in Altera Quartus II and implemented
in hardware to make a binary image of input image that contains just desired features,
and has a less size in compare with original input image. The hardware architecture
is based on RTL (Register Transfer Level) design methodology on Altera FPGA and
input the image is a 24bit bitmap image.

1.5 Methodology

Figure 1.1 illustrates the steps of high-level implementing algorithms in
hardware. At first step, RGB image is converted to grayscale to be ready for computing



3

Figure 1.1: Steps of implementing algorithms on hardware.

gradient, in the next step the magnitude of first order derivative in x and y directions
are computed using the Canny algorithm and are added together to yields gradient of
the image. At last step the image is compressed as much as possible to get minimum
size for a fast image transfer.

Canny algorithm step is written in Matlab (without modification). Some parts
of Canny algorithm i.e. Arctan, are modified and compared with results from step
1. If the difference between results is negligible then modification is applied. The
modified algorithm is written in NiossII Processor by Altera for various models of its
FPGAs. execution time of every step is measured. Each processing step is separately
analyzed as hardware structure. If the execution time is faster in software, the step is
written in software else, it is implemented in hardware.

1.6 Report Outline

This rest of the report is organized as follows. Chapter 2 introduces a brief
about smart cameras and Canny algorithm and it’s complexity, DE2 Altera board,
PAL (Phase Alternating Line) and NTSC standards and bitmap image. Chapter 3
describes how Canny algorithm modified to suit hardware implementation. Chapter
4 talks about the designed hardware architecture. Chapter 5 illustrates and compares
the theoretical and experimental results. finally Chapter 6 summarizes this project and
proposes directions for future work.



REFERENCES

1. Shi, Y. and Real, F. D. Smart Cameras: Fundamentals and Classification,
Springer US, chap. 2. 2009, 19–34.

2. Chen, G. H., Yang, C. L. and Xie, S. L. Gradient-Based Structural Similarity
for Image Quality Assessment. 2006 IEEE International Conference on Image

Processing. 2006. 2929–2932.

3. Canny, J. A Computational Approach to Edge Detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 1986. 8(6): 679–698.

4. Neoh, H. S. and Hazanchuk, A. Adaptive Edge Detection for Real-Time Video
Processing using FPGAs. Global Signal Processing Expo and Conference

(GSPx 2004). 2004.

5. Real, F. D. and Berry, F. Smart Cameras: Technologies and Applications,
Springer US, chap. 3. 2009, 35–50.

6. Shi, Y. and Lichman, S. Smart Cameras: A Review. Proceedings of 2005

Asia-Pacific Workshop on Visual Information Processing. 2005. 95–100.

7. Pflugfelder, R. and Micusik, B. Self-Calibrating Cameras in Video

Surveillance, Springer US, chap. 9. 2009, 161–180.

8. Cavallaro, A. Change Detection for Object Segmentation, Springer US,
chap. 10. 2009, 181–198.

9. Dominguez, G. F., Beleznai, C., Lizenberger, M. and Delbruck, T. Object

Tracking on Embedded Hardware, Springer US, chap. 11. 2009, 199–223.

10. Wang, X. and Jin, J. Q. An Edge Detection Algorithm Based on Improved
CANNY Operator. Seventh International Conference on Intelligent Systems

Design and Applications (ISDA 2007). 2007. 623–628.

11. He, W. and Yuan, K. An Improved Canny Edge Detector and its Realization
on FPGA. 2008. 6561–6564.

12. Wang, B. and Fan, S. An Improved CANNY Edge Detection Algorithm.
Second International Workshop on Computer Science and Engineering (WCSE

2009). 2009. 497–500.



55

13. Zhao, H., Qin, G. and Wang, X. Improvement of canny algorithm based on
pavement edge detection. 3rd International Congress on Image and Signal

Processing. 2010. 964–967.

14. Rao, D. V. and Venkatesan, M. An efficient reconfigurable architecture and
implementation of edge detection algorithm using Handle-C. International

Conference on Information Technology: Coding and Computing (ITCC 2004).
2004. 843–847.

15. Gonzalez, R. C. and Woods, R. E. Digital Image Processing. 2nd ed. Prentice
Hall. 2002.

16. DE2-70 DE2 Development and Education Board UserManual, 2007.

17. DE2 Development and Education Board UserManual, 2007. URL
www.altera.com.

18. DE2 Development and Education Board UserManual, 2006. URL
www.altera.com.

19. Keith, J. NTSC, PAL, and SECAM Overview, Newnes, chap. 8. 2007, 257 –
387.

20. Miano, J. Compressed Image File Formats : JPEG, PNG, GIF, XBM, BMP.
Longman Pub Group. 1999.

21. Jack, K. YCbCr to RGB Considerations. Technical report. Intersil. 1997.

22. Rao, D. V., Pati, S., Babu, N. A. and Muthukumar, V. Implementation and
Evaluation of Image Processing Algorithms on Reconfigurable Architecture
using C-based Hardware Descriptive Languages. International Journal of

Theoretical and Applied Computer Sciences, 2006. 1(1): 9–34.

23. Nios II Software Developer’s HandBook, 2011. URL www.altera.com.




