GRADIENT IMAGE GENERATOR HARDWARE/SOFTWARE CO-DESIGN

ABBAS HAGHI

UNIVERSITI TEKNOLOGI MALAYSIA

GRADIENT IMAGE GENERATOR HARDWARE/SOFTWARE CO-DESIGN

ABBAS HAGHI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Computer and Microelectronic System)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JULY 2012

To my parents for their love, endless support and encouragement.

ACKNOWLEDGEMENT

First and foremost, I would like to thank to my supervisor of this project, Dr. Muhammad Nadzir Marsono for his valuable guidance and advice. He inspired me greatly to work in this project. His willingness to motivate me contributed tremendously to my project.

Furthermore, I wish to express my gratitude towards my family especially my parents. There is no word I could write which is adequate to depict how much they mean to me. The reason that has been keeping me going on through these times.

Lastly, I must to thank to my friends and coursemates for their kind encouragement and constant support throughout the project.

Skudai, Johor - Malaysia Abbas Haghi

ABSTRACT

This project proposes a software and hardware architecture for computing image gradients in order to reduce the input image size. The only way to transfer data in real time using lower speed wireless communication systems is to reduce the frame size; if a 24bit image is binarized the size will be reduced 24 times. In this project the Canny algorithm is analyzed and written in Matlab and C programming language for NiosII CPU. Then it is implemented in a Field Programmable Gate Array (FPGA) hardware and the timing result for every step is measured. Based on these timing results, a final co-design is proposed. The output image after processing is a binary image that is at least 24 times smaller than the original image. For a sample 98×183 , 24bit image and a working frequency equal to 50MHz, total logic elements for final co-design increased about 4 times of software design, but execution time in co-design architecture is 19 times faster than software. The hardware implementation in this paper is done on Altera CycloneII FPGA board.

ABSTRAK

Projek ini mereka bentuk perisian dan perkakasan bagi pengiraan kecerunan imej untuk tujuan pengurangan saiz imej. Penghantaran data imej secara "real time" melalui komunikasi wayarles hanya dapat dilaksanakan sekiranya saiz frame imej dikurangkan. Contohnya, saiz imej 24 bit yang dibinarikan akan berkurangan sebanyak 24 kali. Projek ini menganalisis algoritma Canny dan menterjemahkannya kepada kod Matlab dan seterusnya pengatucaraan C untuk dilaksankan oleh pemproses NiosII. Rekabentuk perkakasan kemudiannya dilaksanakan menggunakan Field Programmable Gate Array (FPGA) dan analisa masa untuk setiap langkah diukur. Berdasarkan keputusan daripada analisa masa, co-design peringkat akhir dicadangkan. Imej ouput daripada pemprosesan merupakan imej binari yang sekurang-kurangnya 24 kali lebih kecil daripada imej asal. Untuk sampel imej 24 bit dengan resolusi 98×183 dan 50MHz frekuensi operasi , jumlah elemen logik bagi rekabentuk akhir meningkat kepada 4 kali ganda berbanding dengan rekabentuk yang menggunakan perisian sahaja. Walau bagaimanapun, masa pemprosesan rekabentuk akhir adalah 19 kali lebih cepat berbanding menggunakan perisian. Rekabentuk perkakasan akhir untuk projek ini dilaksanakan dengan menggunankan papan Altera CycloneII FPGA.

TABLE OF CONTENTS

CHAPTER	TITLE		ГLЕ	PAGE
	DECLA	ARATION		ii
	DEDIC	ATION		iii
	ACKN	OWLEDGEMENT		iv
	ABSTR	ACT		v
	ABSTR	AK		vi
	TABLE	OF CONTENTS		vii
	LIST O	F TABLES		Х
	LIST O	FFIGURES		xii
	LIST O	FABBREVIATIONS	5	xiv
	LIST O	PF SYMBOLS		XV
1	INTRO	DUCTION		1
	1.1	Background of the S	tudy	1
	1.2	Statement of the Pro	blem	1
	1.3	Objective of the Stud	ly	2
	1.4	Scope of Work		2
	1.5	Methodology		2
	1.6	Report Outline		3

LITER	LITERATURE REVIEW			
2.1	Smart (Camera	4	
	2.1.1	Classification of Smart Cameras	5	
	2.1.2	Functionalities of ASIP	7	
2.2	Canny Algorithm		7	
	2.2.1	Image Smoothing	9	
	2.2.2	Edge Detection	10	
	2.2.3	Directional Non-maximum Suppression		
		(DNS)	14	

2

	2.2.4	Thresholding	15	
2.3	Altera	Cyclone II Board	16	
	2.3.1	DE2 Control Panel Facility	17	
2.4	NTSC	NTSC and PAL Standards		
2.5	Bitmap	Image	18	
2.6	Motiva	tion of Extended Work	18	
MOD	IFIED CA	NNY ALGORITHM	22	
3.1	Implen	nenting RGB to GrayScale	22	
3.2	Implen	nenting Smoothing in Hardware	23	
3.3	Compu	ting Magnitude and Orientation of Gradient		
	of Imag	ge	25	
3.4	Implen	nenting Thinning in Hardware	29	
3.5	Implen	nenting Hysteresis	29	
3.6	Chapte	r Summary	30	
HARI	DWARE A	RCHITECTURE	31	
4.1	Chapte	r Summary	34	
RESU	ULTS AND	DISCUSSION	35	
5.1	Matlab	Results	35	
	5.1.1	RGB to GravScale	35	
	5.1.2	Smoothing	35	
	5.1.3	Magnitude and Direction of Gradient	38	
	5.1.4	Directional Non-maximum Suppression		
		(DNS)	38	
	5.1.5	Hysteresis	39	
5.2	Co-Des	sign Results	42	
	5.2.1	All Steps in NiosII	42	
	5.2.2	Computing only Grayscale in Hardware		
		and the Rest in NiosII	42	
	5.2.3	Computing only Smoothing in Hardware		
		and the Rest in NiosII	43	
	5.2.4	Computing only Magnitude and Direction	-	
		of Gradient and the Rest in NiosII	45	
	5.2.5	Only Thinning in Hardware and the Rest	-	
		in NiosII	46	

6	CONCLUSION		52
	6.1	Future Works	53
REFEREN	CES		54

LIST OF TABLES

TAI	BLE	NO.
-----	-----	-----

TITLE

2.1	Types of smart cameras, typical characteristics, and	
	sample applications.	5
2.2	Addresses of different information located in a bitmap	
	header file.	20
5.1	Execution time for every step of the canny algorithm in	
	software.	42
5.2	Execution time when only computing grayscale is in	
	hardware.	43
5.3	Numbers of SOPC builder generated module resources	
	when only computing grayscale is in hardware.	43
5.4	Numbers of computing grayscale designed module	
	resources.	43
5.5	Execution time when only smoothing in hardware using	
	method1.	44
5.6	Execution time when only smoothing in hardware using	
	method2.	44
5.7	Numbers of SOPC builder generated module resources	
	when only smoothing is in hardware.	45
5.8	Numbers of smoothing designed module resources.	45
5.9	Execution time when only computing gradient is in	
	hardware.	45
5.10	Numbers of SOPC builder generated module resources	
	when only computing gradient is in hardware.	46
5.11	Numbers of computing gradient designed module	
	resources.	46
5.12	Execution time when only thinning is in hardware.	46
5.13	Numbers of SOPC builder generated module resources	
	when only thinning is in hardware.	47
5.14	Numbers of thinning designed module resources.	47

5.15	Execution time for every step of the canny algorithm		
	implemented in hardware.	47	
5.16	Execution time difference between hardware and		
	software of the canny algorithm.	48	
5.17	Execution time when computing grayscale, smoothing		
	and computing gradient are in hardware.	48	
5.18	Numbers of SOPC builder generated module resources		
	for final co-design.	48	
5.19	Numbers of final co-design, designed module resources.	49	
5.20	Execution time for different operations.	50	

LIST OF FIGURES

TITLE

1.1	Steps of implementing algorithms on hardware.	3
2.1	Functional structure of a smart camera.	4
2.2	Classification of smart cameras based on levels of	
	integration.	6
2.3	Canny algorithm steps.	9
2.4	Gaussian shape in respect to different standard devia-	
	tions.	10
2.5	Gaussian kernel.	10
2.6	Image results of a Gaussian function with different	
	standard derivations applied to an image.	10
2.7	Additive Gaussian noise applied to images of rows	
	number 2, 3 and 4 with a standard deviation of 0.1,1 and	
	10, respectively.	11
2.8	Roberts, Prewitt and Sobel masks using for implement-	
	ing first order derivative in x and y direction.	13
2.9	An example of how gradient works.	14
2.10	An example of how thresholding works.	15
2.11	Altera DE2 development and education board.	16
2.12	The DE2 control panel concept.	17
2.13	Bitmap header file.	19
3.1	Gaussian function.	24
3.2	Graphical show of convolution an image with Gaussian	
	mask.	24
3.3	Sobel masks in x and y directions.	25
3.4	Central pixel and directions of it's neighbors.	26
3.5	Division of trigonometric circle to four directions.	27
3.6	Upper half of trigonometric circle.	28
3.7	Black central pixel and its corresponding neighbors for	
	thinning, based on the direction.	29

Black central pixel and its corresponding neighbors for		
thresholding, based on the direction.	30	
Sequence of canny algorithm implementation.	31	
Hardware architecture of final design.	32	
Sequence of passing data from one step to another one.	33	
Sequence of input/output data to/from system.	34	
Grayscale results using three different methods.	36	
Smoothed results using Gaussian mask.	37	
The measured bit difference between smoothed images		
using original and estimated Gaussian mask.	37	
Magnitude of gradient.	38	
Simple thresholded and thinned image results		
(<i>Th</i> =100).	39	
A horizontal edge with 3 different values. 39		
Image results before and after hysteresis ($Th=200$ and		
<i>Tl</i> =50).	40	
Image results before and after hysteresis ($Th=100$ and		
<i>Tl</i> =50).	41	
Matlab results of modified Canny algorithm.	41	
A set of pixels; central pixels and corresponding		
neighbors that should be send to hardware for		
smoothing.	44	
24bit input image versus binary output image.	49	
	Black central pixel and its corresponding neighbors for thresholding, based on the direction.Sequence of canny algorithm implementation.Hardware architecture of final design.Sequence of passing data from one step to another one.Sequence of input/output data to/from system.Grayscale results using three different methods.Smoothed results using Gaussian mask.The measured bit difference between smoothed imagesusing original and estimated Gaussian mask.Magnitude of gradient.Simple thresholded and thinned image results $(Th=100)$.A horizontal edge with 3 different values.Image results before and after hysteresis ($Th=200$ and $Tl=50$).Matlab results of modified Canny algorithm.A set of pixels; central pixels and correspondingneighbors that should be send to hardware forsmoothing.24bit input image versus binary output image.	

LIST OF ABBREVIATIONS

ASIC	-	Application Specific Integration Circuit
ASIP	-	Application Specific Information Processing
ATSC	-	Advanced Television Systems Committee
DAC	-	Digital to Analog Converter
DNS	-	Directional Non-maximum Suppression
DSP	-	Digital Signal Processor
FPGA	-	Field Programmable Gate Array
HD	-	High Definition
IP	-	Internet Protocol
LED	-	Light Emitting Diode
NTSC	-	National Television Standards Committee
PAL	-	Phase Alternating Line
PLD	-	Programmable Logic Device
RTL	-	Register Transfer Level
SDRAM	-	Synchronous Dynamic Random Access Memory
SOPC	-	System on a Programmable Chip
SRAM	-	Static Random Access Memory
USB	-	Universal Serial Bus
VTR	-	Video Tape Recorder

LIST OF SYMBOLS

Tl	-	Low Threshold Value
Th	_	High Threshold Value
Hz	_	Hertz
MBps	-	Megabytes Per Second
Mbps	-	Megabits Per Second
M	-	Mega
σ	_	Standard Derivative

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

A new generation of cameras that have been appeared since the late 1990s is called smart cameras. A smart camera is not just a camera that take pictures but it can perform tasks and do some processing depending on situations. Motion detection, object measurement, read vehicle number plates and even recognizing human behavior are some examples of smart camera processing [1].

Based on the quality of a camera, the size of the frames is different. Large frame requires high bandwidth communication. The size of an 24bit uncompressed digital 720×480 NTSC (National Television Standards Committee) frame is about 8.3Mega bit per frame. For 30 frames per second, it is around 250Mega bit per second. Furthermore, it may not necessary to send all data of frame as some especial data of the image are sufficient. The gradient of an image can be used to extract important detail of the image [2]. If the 24bit image is binarized, a speed of 1.3MBps or 10.4Mbps for wireless image transfer is sufficient. Canny algorithm is one of the optimum methods to compute the gradient of an image [3].

1.2 Statement of the Problem

Canny algorithm requires very high computation power because it needs a large amount of computation for different steps such as smoothing, thinning and thresholding. These steps contain many functions that are using multiplications, divisions and even more complex operations such as *Arctan* which are very time consuming.

Achieving this level of processing power using programmable DSP (Digital Signal Processor) requires multiple processors. In order to efficiently use the hardware resources and increase the speed, hardware features like pipelining must be employed. A single FPGA (Field Programmable Gate Array) with an embedded soft processor can deliver the requisite level of computing power more cost-effectively, while simplifying board complexity [4].

1.3 Objective of the Study

The main objective of this project is to propose a software and hardware co-design architecture of Canny edge detection algorithm using FPGA for a fast image analysis. To achieve this aim, it is necessary to know the mathematical properties of edge detection. Therefore, the first objective of the project is to analyze the mathematical properties of Canny edge detection. The second objective is to map the mathematical operations as a hardware architecture model. Then several hardware/software Canny architectures are analyzed to evaluate each architecture trade-off. Finally execution time for every step in hardware and software compare together to determine which step should be done in software and which one is faster if implemented in hardware.

1.4 Scope of Work

The Modified Canny algorithm is benchmarked with a Matlab based implementation. The algorithm is simulated in Altera Quartus II and implemented in hardware to make a binary image of input image that contains just desired features, and has a less size in compare with original input image. The hardware architecture is based on RTL (Register Transfer Level) design methodology on Altera FPGA and input the image is a 24bit bitmap image.

1.5 Methodology

Figure 1.1 illustrates the steps of high-level implementing algorithms in hardware. At first step, RGB image is converted to grayscale to be ready for computing

Figure 1.1: Steps of implementing algorithms on hardware.

gradient, in the next step the magnitude of first order derivative in x and y directions are computed using the Canny algorithm and are added together to yields gradient of the image. At last step the image is compressed as much as possible to get minimum size for a fast image transfer.

Canny algorithm step is written in Matlab (without modification). Some parts of Canny algorithm i.e. *Arctan*, are modified and compared with results from step 1. If the difference between results is negligible then modification is applied. The modified algorithm is written in NiossII Processor by Altera for various models of its FPGAs. execution time of every step is measured. Each processing step is separately analyzed as hardware structure. If the execution time is faster in software, the step is written in software else, it is implemented in hardware.

1.6 Report Outline

This rest of the report is organized as follows. Chapter 2 introduces a brief about smart cameras and Canny algorithm and it's complexity, DE2 Altera board, PAL (Phase Alternating Line) and NTSC standards and bitmap image. Chapter 3 describes how Canny algorithm modified to suit hardware implementation. Chapter 4 talks about the designed hardware architecture. Chapter 5 illustrates and compares the theoretical and experimental results. finally Chapter 6 summarizes this project and proposes directions for future work.

REFERENCES

- 1. Shi, Y. and Real, F. D. *Smart Cameras: Fundamentals and Classification*, Springer US, chap. 2. 2009, 19–34.
- Chen, G. H., Yang, C. L. and Xie, S. L. Gradient-Based Structural Similarity for Image Quality Assessment. 2006 IEEE International Conference on Image Processing. 2006. 2929–2932.
- 3. Canny, J. A Computational Approach to Edge Detection. *IEEE Transactions* on *Pattern Analysis and Machine Intelligence*, 1986. 8(6): 679–698.
- 4. Neoh, H. S. and Hazanchuk, A. Adaptive Edge Detection for Real-Time Video Processing using FPGAs. *Global Signal Processing Expo and Conference* (*GSPx 2004*). 2004.
- 5. Real, F. D. and Berry, F. *Smart Cameras: Technologies and Applications*, Springer US, chap. 3. 2009, 35–50.
- 6. Shi, Y. and Lichman, S. Smart Cameras: A Review. *Proceedings of 2005* Asia-Pacific Workshop on Visual Information Processing. 2005. 95–100.
- 7. Pflugfelder, R. and Micusik, B. *Self-Calibrating Cameras in Video Surveillance*, Springer US, chap. 9. 2009, 161–180.
- 8. Cavallaro, A. *Change Detection for Object Segmentation*, Springer US, chap. 10. 2009, 181–198.
- 9. Dominguez, G. F., Beleznai, C., Lizenberger, M. and Delbruck, T. *Object Tracking on Embedded Hardware*, Springer US, chap. 11. 2009, 199–223.
- Wang, X. and Jin, J. Q. An Edge Detection Algorithm Based on Improved CANNY Operator. Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007). 2007. 623–628.
- 11. He, W. and Yuan, K. An Improved Canny Edge Detector and its Realization on FPGA. 2008. 6561–6564.
- 12. Wang, B. and Fan, S. An Improved CANNY Edge Detection Algorithm. Second International Workshop on Computer Science and Engineering (WCSE 2009). 2009. 497–500.

- Zhao, H., Qin, G. and Wang, X. Improvement of canny algorithm based on pavement edge detection. *3rd International Congress on Image and Signal Processing*. 2010. 964–967.
- Rao, D. V. and Venkatesan, M. An efficient reconfigurable architecture and implementation of edge detection algorithm using Handle-C. *International Conference on Information Technology: Coding and Computing (ITCC 2004)*. 2004. 843–847.
- 15. Gonzalez, R. C. and Woods, R. E. *Digital Image Processing*. 2nd ed. Prentice Hall. 2002.
- 16. DE2-70 DE2 Development and Education Board UserManual, 2007.
- 17. DE2 Development and Education Board UserManual, 2007. URL www.altera.com.
- DE2 Development and Education Board UserManual, 2006. URL www.altera.com.
- 19. Keith, J. *NTSC, PAL, and SECAM Overview*, Newnes, chap. 8. 2007, 257 387.
- 20. Miano, J. *Compressed Image File Formats : JPEG, PNG, GIF, XBM, BMP*. Longman Pub Group. 1999.
- 21. Jack, K. YCbCr to RGB Considerations. Technical report. Intersil. 1997.
- 22. Rao, D. V., Pati, S., Babu, N. A. and Muthukumar, V. Implementation and Evaluation of Image Processing Algorithms on Reconfigurable Architecture using C-based Hardware Descriptive Languages. *International Journal of Theoretical and Applied Computer Sciences*, 2006. 1(1): 9–34.
- 23. Nios II Software Developer's HandBook, 2011. URL www.altera.com.