FACE IMAGE QUALITY INSPECTION SYSTEM ACCORDING TO ISO STANDARD

ONG PAIK WEN

UNIVERSITI TEKNOLOGI MALAYSIA

FACE IMAGE QUALITY INSPECTION SYSTEM ACCORDING TO ISO STANDARD

ONG PAIK WEN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Computer and Microelectronic System)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2012

Specially dedicated to my beloved parents, brother and sister for their continuous love, encouragement, guidance, motivation, support and inspiration throughout my journey of education....

ACKNOWLEDGEMENT

First and foremost, I would like to grab this opportunity to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Syed Abdul Rahman for the guidance, motivation, inspiration and inputs provided throughout the duration of completing this project report. Without his never ending support and guidance, this project report would not have been the same as presented here.

My sincere appreciation also extends to all my friends and colleagues who have rendered their assistance at various occasions.

My fellow postgraduate course mates should also be recognized for sharing a lot of technical knowledge with me and provided lots of encouragement throughout the journey of completing this project report.

Last but not least, to my beloved family who have always been there to encourage, comfort and give their fullest support when I most needed them.

ABSTRACT

Poor quality of face images is one of the reasons leading towards face recognition performance degradation. Therefore, this gives the motivation to have an International Standard (ISO/IEC 19794-5 Document) to provide guidelines for the usage of proper facial photographs for applications such as the E-Passport so that the face recognition process can be carried out more effectively. Nevertheless, despite the emergence of the ISO/IEC 19794-5 Standard, traditional passport photographs quality acceptance presently used is based on human visual perceptions and is very subjective. This is because there is no standardized checking system utilized which is able to give the same result on the quality acceptance of a photo regardless where or when it is being evaluated. As a result, there is a need for a system that is able to perform automatic checking on a passport size image to be developed. This project develops a system to perform automatic checking on a passport size image to ensure that it satisfies the image quality requirements according to the ISO/IEC 19794-5 Standard. The criteria considered in this project are image resolution, image aspect ratio, image brightness, image background colour, image eye distance, image head height and head width as well as image head rotation. The system developed managed to achieve at least 90% accuracy on all the attributes evaluated.

ABSTRAK

Gambar pasport dengan kualiti yang kurang memuaskan adalah salah satu sebab utama yang akan menjejaskan proses pengenalpastian identiti individu berdasarkan proses pengenalan muka. Dengan ini telah tercetusnya motivasi untuk pembentukan satu Standard Antarabangsa (Dokumen ISO/IEC 19794-5) bagi menyediakan garis panduan untuk penggunaan gambar-gambar yang sesuai dan berpadanan dalam dokumen pengenalan diri seperti E-Pasport supaya proses pengenalan muka dapat dijalankan dengan lebih lancar dan berkesan. Namun begitu, walaupun Dokumen ISO/IEC 19794-5 telah sedia ada untuk rujukan, tetapi penilaian kualiti gambar pasport yang digunakan pada masa kini masih berdasarkan persepsi visual manusia. Oleh itu, penerimaan atau penolakan kualiti gambar pasport masih merupakan sesuatu proses yang sangat subjektif. Ini kerana tidak adanya satu sistem penilaian yang selaras dan seragam yang dapat digunakan untuk memberi keputusan yang seragam kepada penerimaan kualiti gambar pasport tidak kira bila atau di mana gambar tersebut dinilai. Dengan ini, wujudnya keperluan untuk membangunkan satu sistem yang mampu menilai kualiti gambar bersaiz pasport secara automatik. Projek ini bertujuan untuk melahirkan satu sistem untuk melaksanakan penyemakan automatik kualiti gambar bersaiz pasport untuk memastikan bahawa ia memenuhi kualiti seperti mana yang telah ditetapkan dalam Standard ISO/IEC 19794-5. Kriteria yang dipertimbangkan dalam projek ini adalah resolusi imej, nisbah aspek imej, kecerahan imej, warna latar belakang imej, jarak mata imej, ketinggian dan lebar kepala imej serta sudut putaran kepala imej. Sistem yang dibina berjaya mencapai ketepatan sekurang-kurangnya 90% ke atas semua kriteria yang dinilai.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECLARATION		ii
	DEDICATION		iii
	ACKNOWLEDG	EMENT	iv
	ABSTRACT		V
	ABSTRAK		vi
	TABLE OF CON	TENTS	vii
	LIST OF TABLE	S	Х
	LIST OF FIGUR	ES	xi
	LIST OF ABBRE	VIATIONS	xvi
1	INTRODUCTION	N	1
	1.1 Project Bac	kground	1
	1.2 Problem St	atement	3
	1.3 Objective		4
	1.4 Scope of W	″ork	4
	1.5 Project Rep	oort Outline	6
2	LITERATURE R	EVIEW	7
	2.1 Researches	on Face Image Quality Evaluation	8
	2.2 Researches	on Face Region Detection	10
	2.3 Researches	on Eye Detection	15

METI	HODO	LOGY		20
3.1	Software Selection for Project Implementation			20
3.2	Colou	r Space S	Selection for Image Processing	21
3.3	Stages for Implementation 21			21
	3.3.1	Pre-Pro	Pre-Processing Stage 22	
	3.3.2	Detection	on Stage	23
		3.3.2.2	Image Width & Image Height	23
		3.3.2.2	Image Aspect Ratio	23
		3.3.2.3	Image Brightness	23
		3.3.2.4	Background Colour	25
		3.3.2.5	Eye Position	28
		3.3.2.6	Head Width & Head Height	29
		3.3.2.7	Head Rotation	31
	3.3.3	Recogn	ition Stage	31
		3.3.3.1	Image Width & Image Height	32
		3.3.3.2	Image Aspect Ratio	33
		3.3.3.3	Image Brightness	33
		3.3.3.4	Background Colour	35
		3.3.3.5	Eye Position	36
		3.3.3.6	Head Width & Head Height	38
		3.3.3.7	Head Rotation	40
		3.3.3.8	Overall Quality Check Result	41
	3.3.4	Display	Stage	41
3.4	Projec	et Milesto	one	42
EXPE	RIME	NTS, RI	ESULTS & ANALYSIS	44
4.1	Pre-Pr	rocessing	Stage	44
4.2	Detec	tion & R	ecognition Stage	46
	4.2.1	Image	Width, Image Height & Image	
		Aspect	Ratio	46
	4.2.2	Image H	Brightness	48
	4.2.3	Backgro	ound Colour	52

4.2.4 Warning Box 56

		4.2.5 Eye Distance	57
		4.2.6 Head Width & Head Height	61
		4.2.7 Head Rotation	64
		4.2.8 Overall Quality Check Result	66
	4.3	Display Stage	68
	4.4	Performance Comparison	70
5	CON	ICLUSION & FUTURE WORK	72
	5.1	Conclusion	72
	5.2	Future Work and Improvements	73
REFERENCES			74

REFERENCES

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	General face image requirements in the ISO/IEC 19794-5 Standard	2
1.2	Criteria from the ISO/IEC 19794-5 Standard that will be evaluated by the Face Image Quality Inspection System	5
4.1	Measured mean values for image brightness assessment	49
4.2	Recognition results for the Face Image Quality Inspection System	71

LIST OF FIGURES

FIGURE N	O. TITLE	PAGE		
1.1	Generic face image recommended in the ISO/IEC 19794-5 Standard	3		
	Stanuaru	3		
2.1	Colour Triangle Model by Jun Zhang et al.	11		
2.2	The CCS Model used by Jun Zhang et al.	11		
2.3	Modified Golden Ratio approximation used by Y.H. Chan			
	et al.	13		
2.4	Skin detection algorithm by V. A. Oliveira et al.	14		
2.5	The proposed eye detection method by Qiong Wang et al.	16		
2.6	Proposed method for eye detection by Kun Peng et.al.	19		
3.1	High level block diagram of the overall implementation	22		
3.2	Mean computation region for the colour elements	24		
3.3	Brightness alteration of the test images by applying			
	different gamma values	25		
3.4	Cropped regions for background colour check	26		
3.5	HSV colour palette used for background colour			
	computation	27		
3.6	Detection of eyes in a passport size image	28		
3.7	Face region segmentation and extraction29			

3.8	Diagram showing the detected eye locations and the	
	corresponding head width and height computation	30
3.9	Head rotation computation	31
3.10	Overall flow chart for the computation and evaluation of the	
	image width, image height and image aspect ratio	32
3.11	Overall flow chart for the computation and assessment of	
	the image brightness for an input image	34
3.12	Overall flow chart for the computation of the image	
	background colour	36
3.13	Overall flow chart for the computation of the image eye	
	distance	37
3.14	Overall flow chart for the computation of the image head	
	width and head height	39
3.15	Overall flow chart for the computation of the image head	
	rotation	40
3.16	GUI developed for the Face Image Quality Inspection	
	System	42
3.17	Project Gantt chart	43
4.1	Conversion of RGB image to Gray image	45
4.2	Conversion of RGB image to YCbCr image and separation	
	to their individual components	45
4.3	Conversion of RGB image to HSV image and separation to	
	their individual components	46
4.4	An example where the computation of the image width,	
	image height and image aspect ratio is meeting the ISO	4-
	Standard	47

4.5	An example where the computation of the image width, image height and image aspect ratio is not meeting the ISO	
	Standard	48
4.6	Example of input image with appropriate brightness	50
4.7	Example of input image which is considered as bright because there are some faded shades in the face region	50
4.8	Example of input image which is considered as dark	51
4.9	Instance where the brightness of the input image is misclassified due to the colour of the clothing worn is almost similar to the image background	52
4.10	Samples where the background colour of the input image is meeting the ISO Standard because the background is either white or blue	53
4.11	Instances where the background colour of the input image is not meeting the ISO Standard because it is not in light blue, white or grey in colour	54
4.12	A case where the background is detected as non-uniform as there is an outlier spot in the top right corner of the H Element image	55
4.13	Another sample where the background is detected as non- uniform as there is some non-uniform spots in the H Element image	55
4.14	Warning Box to prompt user for the continuation of the image quality assessment of the input image	56
4.15	Condition where the user selected " <i>No</i> " at the warning box and the computation for the subsequent categories under the biometric attributes will be skipped	57
	concerte autoaces and co suppor	51

xiii

4.16	Example where the eyes are successfully detected and measured on the input image. The eyes are marked with red	
	markers	59
4.17	Example where the input image is a spectacles wearer and the eyes are not detected if the " <i>Person is wearing</i>	
	spectacles" checkbox is not checked	59
4.18	Example of the successful eye detection if the "Person is wearing spectacles" checkbox is checked. The eyes are	
	marked with red markers	60
4.19	Demonstration of a case where the eye distance measurement is slightly inaccurate due to the reflection on	
	the spectacles of the input image	60
4.20	Example where the head height and head width are accurately measured for an adult. The measurement points	
	for the head width and head height are marked with greeen	
	markers and yellow markers respectively	62
4.21	Illustration where the head height and head width are accurately measured for a child below 11 years old. The	
	measurement points for the head width and head height are	
	marked with green markers and yellow markers respectively	63
4.22	Example where the head height measurement is not accurate	
	due to the shadow induced by the head scarf	63
4.23	Example where the head height and head width measurement is not computed because the face region of the	
	input image cannot be deteced. This is because the image	
	does not contain the required colour information for the face region detection	64
4.24	Illustration where the head rotation of the input image is	
⊣.∠ ,	musuation where the near rotation of the input image is	

meeting the ISO / IEC 19794-5 Standard recommendation

xiv

4.25	Instance where the head rotation of the input image is not	
	meeting the ISO Standard recommendation because the	
	rotation goes above 5 degrees	65
4.26	Another case where the head rotation of the input image is	
7.20		
	not meeting the ISO Standard recommendation because the	
	rotation goes above 5 degrees	66
4.27	An example where the input image is meeting the ISO	
1.27		
	Standard as all of the attributes are within the desired range	
	and dimensions	67
4.28	An example where the input image is not meeting the ISO	
	Standard because the head height is smaller than the	
	-	68
	required dimension	08
4.29	The final GUI which is deployed to the eventual Face Image	
	Quality Inspection System	69
4.30	Face Image Quality Inspection System after completing the	
	evaluation of the quality of an input image	70

LIST OF ABBREVIATIONS

ACC	-	Adaptive Cross-Correletion Algorithm
E-Passport	-	Electronic Passport
GUI	-	Graphic User Interface
HSV	-	Colour space based on the Hue, Saturation and Value elements
ISO	-	International Organization for Standardization
RGB	-	An additive colour model in which the Red, Green and Blue light is added together in various ways to reproduce a broad array of colours
YCbCr	-	A family of colour spaces used as a part of colour image pipeline in video and digital photography systems. Y is the luma component while Cb and Cr are the blue-difference and red-difference chroma components

CHAPTER 1

INTRODUCTION

1.1 Project Background

Nowadays, many countries including Malaysia have started to implement the usage of biometric passport as the identification document for travelers. This approach is to limit the usage of falsified documents by irresponsible individuals. Over the years, fingerprints have been employed as the key differentiator to distinguish between different individuals. Nevertheless, to further enhance the security measures, facial image has also been added as one of the mandatory biometric identifier to be used in the biometric passport. Unfortunately, face image of bad quality is one of the reasons leading towards face recognition performance degradation. Poor illumination, tilting of the facial pose and bad focus are among the fundamental reasons that create degraded quality photograph which eventually may lead to disqualification of the facial image to be used in identification documents. Therefore, this creates the motivation to have an International Standard (ISO/IEC 19794-5 Document) to provide guidelines for the usage of proper facial photograph for applications such as the E-Passport so that the face recognition process can be carry out more effectively in order to achieve a tighter security control.

The ISO/IEC 19794-5 Standard proposes the defined thresholds and allowable ranges for the biometric parameters of a face image. It also specifies the recommended size for the photograph to be used in the E-Passport. The standard also includes instructions for proper lighting, facial pose and focus distance when the

photograph is taken. Generally, the ISO/IEC 19794-5 Standard categorized the face image qualities into three main aspects. The aspects are scene requirements, photographic requirements and digital requirements which are summarized in Table 1.1 below. In addition, Figure 1.1 shows the generic face image recommended in the ISO/IEC 19794-5 Standard.

Clause	Attribute	Constraint
	Posture	Control on deviation from frontal
	Illumination	Uniformly illuminated with no
		shadow
Scene	Background	Plain light coloured
	Eyes	Open and clearly visible
	Mouth	Close and clearly visible
	Head Position	Placed in the center
Photographic	Distance to Camera	Moderate head size
	Colour	Neutral colour
	Exposure	Appropriate brightness
Digital	Focus	Not out of focus
	Resolution	Width constraint of the head

Table 1.1: General face image requirements in the ISO/IEC 19794-5 Standard [1]

Figure 1.1: Generic face image recommended in the ISO/IEC 19794-5 Standard [1]

1.2 Problem Statement

Traditional passport photographs quality acceptance presently used are based on human visual perceptions. Therefore, the pass or fail criteria is very subjective as it really depends on the leniency of the evaluator to judge the quality of the image provided. An image maybe considered acceptable by evaluator A but it may not be the same verdict when it is being examined by evaluator B. Hence, the gap that exists today is that there is no standardized checking system utilized which is able to give the same result on the quality acceptance of a photo regardless where or when it is being evaluated.

As a result, there is a need for a system that is able to perform automatic checking on a passport size image to be developed. This system will be utilized to

ensure that the passport photograph used in the identification document satisfies the image quality requirements according to the ISO/IEC 19794-5 Standard. Furthermore, this system can then be employed across all the immigration offices or at the centers where the passport photos are captured so that a standardized checking process can be realized.

1.3 Objective

The purpose of this project is to develop a software system that is able to evaluate the quality of a digital passport size photograph to ensure that the image complies with the ISO/IEC 19794-5 Standard. In addition, a recommendation will be provided at the end of the test to confirm if the image presented is suitable for use in identification documents such as the E- Passport. The developed system is called the Face Image Quality Inspection System and this naming convention will be used in the subsequent sections of this project report.

1.4 Scope of Work

The Face Image Quality Inspection System involves a series of research work on digital image processing to develop a system that is capable to automatically validate the face images provided to check if it satisfies the ISO/IEC 19794-5 Standard. The system is developed based on the following assumptions:

- The Face Image Quality Inspection System is a purely software based system developed with the Matlab software.
- The input to the system is a passport size photograph.
- The input image provided is guaranteed to contain a human face.
- The input image is assumed to be containing only one face and is captured under controlled environment.

• Images wearing head gear and sunglasses are not covered in the context of this project.

There are actually a lot of criterions listed in the ISO/IEC 19794-5 Standard to specify the requirements of a recommended facial image. However, only a subset of the criterions as listed in Table 1.2 will be covered and evaluated by the Face Image Quality Inspection System.

		ISO / IEC 19794-5 Recommendation
	Criteria	(Full Frontal Image)
	Image Width	Minimum 420 pixels
	Image Height	Minimum 525 pixels
Image	Image Aspect Ratio	Between 1:1.25 to 1:1.34
General	(Width : Height)	
Attributes	Image Brightness	Appropriate brightness level
	Image Background	Plain and light coloured background
	Colour	(grey, light blue or white)
	Image Eye Position	Inter eye distance between 20% to 30%
Image		of the Image Width
Biometric	Image Head Width	Occupy 50% to 70% of the Image
Attributes		Width
	Image Head Height	Occupy 70% to 80% of the Image
		Height
	Image Head Rotation	Less than +/- 5 degrees

Table 1.2: Criteria from the ISO / IEC 19794-5 Standard that will be evaluated by the Face Image Quality Inspection System

The results of the image quality evaluation from the Face Image Quality Inspection System will be displayed onto a GUI developed using Matlab. Recommendation on whether the image is appropriate to be used in identification documents will be provided based on these results. If image resolution is the only condition that is failing on the input image while the other criterions fulfill the required specifications, the Face Image Quality Inspection System is capable to help resize the image to the minimum recommended size and certify the image for use in the identification document. Otherwise, if any one of the other image attributes fail, then the image will not be approved for use in identification document.

1.5 Project Report Outline

The organization of this project report is as follows. Chapter 1 provides some insights on the project background and problem statement that exists today which leads to the motivation of developing the Face Image Quality Inspection System as the research work for this project report. In addition, the project objectives and scope of work is also discussed in Chapter 1. Meanwhile, literature reviews covering the previous work on image quality evaluation, face detection as well as eye detection are discussed in Chapter 2. The methodological approach to realize the Face Image Quality Inspection System is depicted in Chapter 3. Implementation results with the Matlab software applying all the algorithms discussed in the methodology section are presented in Chapter 4. Finally, Chapter 5 covers the conclusion along with the recommendations for future research work and possible improvements to further enhance the Face Image Quality Inspection System.

REFERENCES

- ISO/IEC JTC 1/SC 37 N 506. Biometric Data Interchange Formats Part 5: Face Image Data, 22 March 2004
- [2] ISO/IEC FCD 19794-5 Conformance Test Methodology Document
- [3] M. Subasic, S. Loncaric, T. Petkovic, H. Bogunovic, *Face Image Validation System*, Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005
- [4] Jitao Sang, Zhen Lei, Stan Z. Li, *Face Image Quality Evaluation for ISO/IEC* Standards 19794-5 and 29794-5, Center for Biometrics and Security Research, Beijing, China, 2009
- [5] Y.H. Chan, S.A.R. Abu-Bakar, Face Detection System Based on Feature-Based Chrominance Colour Information, Proceedings of the International Conference on Computer Graphics, Imaging and Visualization (CGIV'04), 2004
- [6] Jun Zhang, Qieshi Zhang, Jinglu Hu, RGB Color Centroids Segmentation (CCS) for Face Detection, ICGST-GVIP Journal, ISSN 1687-398X, Volume(9), Issue(II), April 2009
- [7] V. A. Oliveira, A. Conci, Skin Detection using HSV Color Space, Computation Institute, Universidade Federal Fluminense, Brazil, 2009
- [8] Tanmay Rajpathaka, Ratnesh Kumarb, Eric Schwartzb, Eye Detection Using Morphological and Color Image Processing, 2009 Florida Conference on Recent Advances in Robotics, FCRAR 2009
- [9] Qiong Wang, Jingyu Yang, Eye Detection in Facial Images with Unconstrained Background, Journal of Pattern Recognition Research 1 (2006) 55-62, 2006
- [10] Kun Peng, Liming Chen, Su Ruan, Georgy Kukharev, *Robust Algorithm for Eye Detection on Gray Intensity Face without Spectacles*, JCS&T Vol. 5 No.
 3, October 2005