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ABSTRACT 

 

 

 

ATC is an index which is determined by considering both static and 

dynamic constraints.    Several researchers have proposed various methods 

for determining SATC, including DC load flow based, stochastic, 

continuation power flow, to mention but a few considerations of dynamic 

constraints. The methods to determine dynamic ATC include the use of 

neural networks, and so on. The existing methods are quite complicated and 

considerably slow in determining ATC especially when TSA is involved in 

the process. In this project, a method to determine ATC under dynamic 

condition using Fast Decoupled Power Flow Solution has been proposed 

and developed. This technique is a powerful analytical tool involving 

numerical analysis based on a famous Newton Raphson method which is 

used for routine solution.  Matlab has been used as a programming tool. 

MATLAB is a high-level technical computing language with interactive 

environment for algorithm development, data visualization, data analysis. 

The developed program has been tested on IEEE 30 bus practical power 

system. The results obtained from the tests have been compared with the 

results from the previous study on dynamic ATC. The results show that the 

proposed technique is comparably accurate and faster than the existing 

method. 
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ABSTRAK 

 

 

 

ATC merupakan indeks yang ditentukan oleh mengingati kedua-dua 

kekangan statik dan dinamik. Beberapa penyelidik telah mencadangkan 

pelbagai kaedah untuk menentukan SATC, termasuk aliran beban 

berasaskan DC, stokastik, kuasa aliran kesinambungan, menyebut tetapi 

pertimbangan beberapa kekangan yang dinamik. Kaedah-kaedah untuk 

menentukan dinamik ATC termasuk penggunaan rangkaian neural, dan 

sebagainya. Kaedah semasa yang agak rumit dan kurang cepat dalam 

menentukan ATC terutamanya apabila TSA yang terlibat dalam proses. 

Dalam laporan projek ini, satu kaedah untuk menentukan ATC di bawah 

keadaan dinamik menggunakan Kuasa Fast dipisahkan Aliran Solution telah 

dicadangkan dan dibangunkan. Fast decouple adalah alat yang berkuasa 

analisis melibatkan analisis berangka yang berdasarkan kaedah Newton 

Raphson terkenal yang digunakan untuk penyelesaian rutin. Matlab telah 

digunakan sebagai alat pengaturcaraan. MATLAB adalah bahasa peringkat 

tinggi pengkomputeran teknikal dengan persekitaran interaktif untuk 

pembangunan algoritma, visualisasi data, analisis data. Program yang 

dibangunkan telah diuji ke atas IEEE 30 kuasa sistem bas praktikal. 

Keputusan yang diperolehi daripada ujian telah dibandingkan dengan 

keputusan daripada kajian sebelumnya dinamik ATC. Keputusan 

menunjukkan bahawa teknik yang dicadangkan comparably tepat dan lebih 

cepat daripada kaedah yang sedia ada. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

The transition of power industry to a market free economy in power industry has 

raised a concern for power consumers to have more choices than ever before. Open-access 

non-discriminatory transmission services are a necessity to ensure these customer choices.  

An index called Available Transfer Capability (ATC) is necessary to be evaluated 

continuously for managing the transfer capability between the generation and the power 

distributors for success handling of power transactions. However, while evaluating ATC 

(Shin, Kim, Kim, & Singh, 2007), it is desirable to quantify the uncertainties such as load 

deviations and transmission outages in ATC calculation as a safety margin so that the power 

system will remain secure despite the uncertainties.  

ATC is a measure of the transfer capability remaining in the physical transmission 

network for further commercial activity over and above already committed uses(Reliability, 

1996).  The ATC between two areas provides an indication of the amount of additional 

electric power that can be transferred from one area to another for a specific time frame under 

a specific set of conditions. ATC calculations may need to be periodically updated from time 

to time to ensure the correct allocation of transmission capacity for a given transaction to 

avoid network interruptions which may result. Because of the influence of conditions 
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throughout the network, the accuracy of the ATC calculation is highly dependent on the 

completeness and accuracy of available network data. 

While determining ATC, both static conditions like voltage limits, thermal limits, 

reactive power limits as well as dynamic constraints such as three phase faults may have to be 

considered to ensure maximum possible accuracy and reliability of the transmission system. 

However, ATC can also be determined separately under dynamic or static conditions 

depending on the nature of the system being analysed. 

Many researchers have proposed techniques (D.-M. Kim, Bae, & Kim, 2010; Vol, Wen-

Juan, Lei, & Qiu-Lan, 2008; Westermann & Sauvain, 2009) to determine ATC based on 

static constraints with little if any, consideration of dynamic constraints. A novel fast 

computational method to determine ATC was proposed in. The ATC limiting factors 

considered in the method are, line thermal limits, bus voltage limits and Generator reactive 

power limits. Mum Kyeom K et al presented a method to determine ATC using multi-

objective contingency constrained optimal power flow with post-contingency corrective 

rescheduling taking voltage and reactive power limits as the static constraints.  A novel 

method for computing ATC in a large-scale power system in was also presented in which full 

details for determining ATC was based on only three input variables through fuzzy 

modelling. A fast and accurate method was proposed in (Busan, Othman, Musirin, Mohamed, 

& Hussain, 2010) by applying Ralston’s method to predict the two trajectory points of 

voltage magnitude, power flow, and maximum generator rotor angle difference. Ref (Hahn, 

Kim, Hur, Park, & Yoon, 2008) proposed a faster method to estimate ATC using fuzzy logic 

with voltage magnitudes and power limits as the constraints. Kumar. A. et al carried out ATC 

assessment in a competitive electricity market by using bifurcation approach. In this method, 

it was assumed there are no static and dynamic security violations and the system operator 

(SO) simply dispatches all the requested transactions and charges for transmission 

services(Kumar, Srivastava, & Singh, 2009).  

All the above methods determined a type of ATC known as static ATC which is 

called so because the ATC value is determined based on static constraints such as line flow 

limits, bus voltage limits, thermal limits, generator real and reactive power limits. The 

limiting condition on some portions of the transmission network can shift among thermal, 

voltage, and stability limits as the network operating conditions change over time. Such 

variations further complicate the determination of transfer capability limits but must be 

addressed in order to come up with relatively accurate value of ATC as well as guaranteeing 

the security in the transmission system for reliability reasons(Natarajan et al., 1992). 



3 
 

 
 

It is therefore desirable to determine ATC by considering dynamic constraints such as 

small disturbance (small signal) rotor angle stability and large-disturbance rotor angle 

stability or transient stability. ATC determined with the additional dynamic constraints is 

termed as dynamic ATC (DATC).  

Some papers have been presented in literature in which DATC has been determined. 

Dynamic ATC has been calculated using energy function based Potential Energy Boundary 

Surface (PEBS) method  (D.M.V.Kumar and C. Venkaiah, 2009), in which ATC was 

computed for real time applications using two different neural networks; Back Propagation 

Algorithm (BPA) and Radial Basis Function (RBF) Neural Network. The limitation with 

neural networks is that they require high processing time and are also expensive to operate. In 

(Yue Yuan, J. Kubokawa, 2004), by establishing a novel method for integrating transient 

stability constraints into conventional steady-state ATC problem, the dynamic ATC problem 

was successfully formulated as an optimal power flow- based optimization problem and ATC 

was further determined by integrating transient stability constraints into ATC calculation. 

However this method is not suitable for large systems because there are many power flow 

path due large number of buses which may affect the fuzzy determination of ATC, since it 

requires less inputs. Structure-preserving energy function model, which retains the topology 

of the network, along with transient stability limit, was used to compute dynamic ATC for 

bilateral as well as multilateral transactions in an electricity market (ain T., Singh S.N., 

2008). The authors presented a hybrid method of computing dynamic ATC by utilising both 

direct and time TDS methods to reduce the computational burden involved in the TDS. 

However, this method proves to be complicated since it involves the computation of several 

indices and algorithms to determine ATC. Enrico. D et al introduced a static optimisation 

approach, based on nonlinear programming techniques, for assessing Dynamic ATC in real-

time environment. This method evaluated ATC with full representation of the power system 

dynamic behaviour on the transient time scale (De Tuglie, Dicorato, La Scala, & Scarpellini, 

2000). Another paper was presented in (Xuemin Zhang, Song Y.H., 2004) where dot product 

was used as a criterion for rotor angle stability and an algorithm based on control variable 

parameterization was implemented to solve the formulated dynamic-constrained optimization 

problem. A differential evolution algorithm (IDE) was established where ATC was calculated 

based on transient stability constrained optimal flow (TSCOPF) (Jun Wang and Xingguo Cai 

and Dongdong Wang, 2009). The model adopted the hybrid method to judge the transient 

stability of the system, which solved imprecision problem in confirming boundaries of the 
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rotor angle relative the center of inertia when the power-angle restriction was made as the 

stability criterion.  

 

1.2 Project objectives  

The objectives of the projects are; 

i. To develop the methodology for determining ATC under dynamic constraints 

ii. To test the developed methodology by using a standard IEEE power system 

iii. To validate the proposed technique using by comparing with the existing 

techniques 

 

1.3 Problem statement 

 

Although some methods have been used to determine DATC, they are very few and 

have a limitation of complexity and are considerably slow. ATC computation requires a 

simple and faster computing technique since it has to be updated every time due to the 

dynamic nature of power systems. In this project therefore ATC determination has been 

formulated using Fast Decouple power flow solution. Its advantages are that it iterates very 

fast, a common method in power system(Gomez & Betancourt, 1990) and simple to 

implement. It is a powerful analytical tool involving numerical analysis based optimizing a 

famous Newton Raphson method which is used for routine solution. Numerical methods are 

very powerful and efficient because they incorporate the physical properties of the system 

being studied.  MATLAB software has been used as a programming language. MATLAB is a 

high-level technical computing language with interactive environment for algorithm 

development, data visualization, data analysis, and numeric computation.  

 

1.4 Project Scope 

The project scope consists of the following; 

i. The general scope was to determine ATC under dynamic constraints. 
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ii. The dynamic constraint that was considered is the variations in the rotor angle 

to analyze the transient stability condition.  

iii. Type of transient stability considered is the small signal stability 

iv. The project involves determining ATC by considering area to area transfer 

capability without considering multilateral transactions.  

 

1.5 Outline of the Project report 

  

This Project report consists of five chapters;  

Chapter 1 gives the background of the problem under this research from which 

objectives, problem statement, scope and the limitation of the project are stated.  

Chapter 2 is about the literature review; it gives a brief context of the theories and 

methods used in accomplishing this research. It deals first with theoretical background of the 

concepts and finally gives the critical review of some selected research papers relevant to 

Project report title.  

Chapter 3 is about methodology of the project. It explains briefly the modifications 

that were done on the primary theories and methods to come up with the design and 

implementation of the project.  

Chapter 4 gives the results, analysis, testing and validation of the results of this 

Project report.  

Finally chapter 5 concludes the Project report as well as the further work related to 

this research. 
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