CONTROLLER DESIGN FOR INDUSTRIAL HYDRAULIC ACTUATOR USING ARTIFICIAL NEURAL NETWORK

NASRUL BIN SALIM PAKHERI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Mechatronic and Automation Control Engineering

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2011

To my beloved father, mother, father in law, mother in law, my wife, my daugther and all of my family member

ACKNOWLEDGEMENTS

Alhamdullillah, a lot of praise to All-Mighty Allah. I wish to express my sincere gratitude and appreciation to my thesis supervisor Associate Professor Dr. Mohd Fua'ad bin Hj. Rahmat for encouragement, guidance, critics and friendship. Without his determination and never ending support, this thesis would not have been the same as presented here. I am also very thankful UTM's Phd student, Mr. Zulfatman, for his idea, assistance and motivation in helping me to handle the Industrial Hydraulic Plant at UTM. Thank you so much!

To Universiti Malaysia Pahang (UMP), thanks a lot for allowing me to further my study in part time mode. I also wish to my friend at Faculty Electrical Engineering & Electronics, Mr. Syakirin Ramli and Associates Professor Ahmed N. Abd Alla for brilliant idea and contribution in helping me completing this project.

Very special thanks to my beloved parents, Hj. Salim Pakheri and Hajjah Azimah Abdullah, for their enduring patience, understanding and pray. My sincere appreciation extends to my fellow colleagues and others who have provided assistance at various occasions. Finally, I would like to express my appreciation to my beloved wife, Nurulasma, my daughter Awatif and Alisya for the sacrifice and constant moral support. I love u so much!

Thank you to all of you.

ABSTRACT

Electro-hydraulic actuators are widely used in motion control application. Its valve needs to be controlled to determine direction of the actuator. Mathematical modeling is a description of a system in terms of equations. It can be divided into two parts, which is physical modeling and system identification. The objective of this study was to determine the mathematical modeling of Industrial Hydraulic Actuator by using System Identification technique by estimating model using System Identification Toolbox in MATLAB. Then, an ANN controller is designed in order to control the displacement of the hydraulic actuator. Finally the controller is validated by implementing in the real time experiments. Experimental works were done to collect input and output data for model estimation and ARX model was chosen as model structure of the system. The best model was accepted based on the best fit criterion and residuals analysis of autocorrelation and cross correlation of the system input and output. Then, PIDNN controller was designed for the model through simulation in SIMULINK. The neural network weights and controller's parameters is tuning by The Particles Swarm Optimization (PSO) method. The simulation work was verified by applying the controller to the real system to achieve the best performance of the system. The result showed that the output of the system with PIDNN controller in simulation mode and experimental works was improved and almost similar. The designed PIDNN with PSO tuning method controller can be applied to the electro-hydraulic system either in simulation or real-time mode. The others automatic tuning method controller could be developed in future work to increase the reliability of the PIDNN controller. Besides, the hydraulic actuator system with non linear model could be modeled.

ABSTRAK

Penggerak elektro hidraulik digunakan dengan meluas dalam applikasi kawalan pergerakan. Injapnya perlu dikawal bagi menentukan haluan penggerak. Permodelan matematik adalah perihal suatu sistem dalam terma persamaan. Ia boleh dibahagikan kepada dua bahagian, iaitu permodelan fizikal dan sistem pengecaman. Objektif kajian adalah untuk mengenalpasti pemodelan matematik bagi penggerak hidraulik industri dengan cara menggunakan teknik sistem pengecaman, iaitu dengan mengangar model dengan menggunakan kotak alatan Sistem Pengecaman di dalam Matlab. Selepas itu, Pengawalan ANN direka bentuk bagi tujuan mengawal pergerakkan penggerak hidraulik. Akhir sekali, pengawal yang direka bentuk disahkan dengan melaksanakan pada ekperimen masa sebenar. Eksperimen dilakukan untuk mengumpul data masukan dan keluaran bagi anggaran model dan model ARX dipilih sebagai struktur model bagi sistem. Model terbaik adalah diterima bepandukan kreteria padanan terbaik dan analisis baki pada hubungkait automatik dan hubungkait silang untuk sistem masukan dan keluaran. Pengawal PIDNN direkabentuk untuk model melaui simulasi di dalam SIMULINK. Pemberat rangkaian saraf dan parameter penggawal adalah ditala dengan kaedah Pengoptimuman Kerumunan Zarah (PSO) dengan mengaplikasikan pengawal pada sistem sebenar bagi mencapai prestasi terbaik sistem. Keputusan menunjukkan keluaran daripada sistem bersama pengawal PIDNN dalam mod simulasi dan eksperimen adalah bertambah baik berserta hampir sama. Pengawal PIDNN yang direkabentuk bersama kaedah larasan pengawal PSO boleh diaplikasikan pada sistem penggerak elektro hidraulik, sama ada dalam mod simulasi ataupun pada masa sebenar. Lain-lain kaedah pelaras automatik bagi pengawal boleh dibangunkan pada masa akan datang untuk meningkatkan kebolehpercayaan bagi pengawal PIDNN. Disamping itu, sistem penggerak hidraulik juga boleh dimodelkan dengan model tidak linear.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
	DEC	CLARATION	ii	
	DED	DICATION	iii	
	ACK	KNOWLEDGEMENTS	iv	
	ABS	TRACT	V	
	ABS	TRAK	vi	
	TAB	BLE OF CONTENTS	vii	
	LIST	Γ OF TABLES	Х	
	LIST	Г OF FIGURES	xi	
	LIST	Γ OF ABBREVIATIONS	xiii	
	LIST	Γ OF SYMBOLS	xiv	
	LIST	Γ OF APPENDICES	XV	
1	PROJECT INTRODUCTION			
	1.1	Project Background	1	
	1.2	Objectives	3	
	1.3	Project Scopes	4	
	1.4	Project Report Overview	5	
2	LITI	ERATURE REVIEWS		
	2.1	Electro-Hydraulic Actuator System	6	
	2.2	Overview of System Identification	9	
		2.2.1 Model Structure Selection	10	
		2.2.1.1 AR Model	11	
		2.2.1.2 ARX Model	12	
		2.2.1.3 ARMAX Model	13	

		2.2.1.4 Box-Jenkins Model	13
		2.2.1.5 Output-Error Model	14
	2.2.2	Parameter Estimation	15
	2.2.3	Model Validation	15
		2.2.3.1 Model Validity Criterion	15
		2.2.3.2 Pole-Zero plots	16
		2.2.3.3 Bode Diagram	16
		2.2.3.4 Residual Analysis	16
2.3	Artific	cial Neural Network Controller	17
	2.3.1	PID Neural	18
	2.3.2	PID Neural Network Structure	19
2.4	Backg	round to Particle Swarm Optimization (PSO)	21
	2.4.1	Basic PSO Algorithm	21
	2.4.2	Fitness Function	24
	2.4.3	Variations to the PSO Algorithm	25
	2.4.4	Steps in Implementing the PSO Method	26
	2.4.5	Factors Affecting PSO Performance	27

3 METHODOLOGY

3.1	Desig	n an Experiment and Experimental Setup	30	
3.2	Model Identification Using Matlab			
3.3	Contro	Control System Design		
	3.3.1	PID Neural Network Controller	41	
	3.3.2	Particles Swarm Optimization Tuning Method	43	
	3.3.3	Implementation of PSO algorithm in Matlab	44	
	3.3.4	PID Controller	45	

ANALYSIS AND RESULT

4

4.1	System	m Modeling	47
4.2	Controller design via simulation		50
	4.2.1	Comparison Performance between PSO	
		Tuning PIDNN with Conventional PID (Z-N)	54
	4.2.2	Training Neural Network Weight with	
		different Number of iterations	55

		4.2.3 Validation of PIDNN (PSO) with Real Time	
		Industrial Hydraulic Actuator	56
	4.3	Conclusion	58
5	CON	CLUSIONS AND RECOMMENDATIONS	
	5.1	Conclusion	59
	5.2	Future Works	60
REFERENCES			61
APPENDIC	APPENDICES		

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Activation Function for each type of neuron	19
3.1	Zeigler-Nichols tuning method	46
4.1	Model Order Analysis	48
4.2	Parameter of industrial hydraulic actuator	51
4.3	Initialization value of PSO	51
4.4	Initialization values of position, Ω^i of agent	52
4.5	Initiliazation values of velocity, φ^i of agent	52
4.6	Performance comparison of PIDNN Controller with Conventional PID controller	55

LIST OF FIGURES

FIGURE NO	. TITLE		
1.0	General idea for this project	3	
2.0	Valve and piston schematic	7	
2.1	System identification approach	10	
2.2	General Linear Model Structure	11	
2.3	AR Model Structure	12	
2.4	ARX Model Structure	12	
2.5	ARMAX Model Structure	13	
2.6	BJ Model Structure	14	
2.7	Output-Error Model Structure	14	
2.8	Biological Neuron	17	
2.9	Neuron Form	18	
2.10	Sub-PID neural network	20	
2.11	PID Neural Multivariable Control System	20	
2.12	Concept of modification of a searching point by PSO	23	
2.13	Flow chart for general PSO algorithm	27	
3.1	Flow Chart of System Identification	29	
3.2	Experimental workbenches for Industrial Hydraulic Actuator	30	
3.3	Actual displacement range of hydraulic actuator with applied input voltage	31	
3.4	Open loop Hydraulic Data Collection Block	31	
3.5	Main ident identification windows	33	
3.6	Import data dialog box	33	
3.7	Additional windows in Import Data dialog box	34	
3.8	Time plot of input-output signal of the measured data	34	
3.9	Selecting range in Preprocess window	35	

3.10	Select range dialog box	35
3.11	Model validation data, datav and model estimation data, datae added to Data View Board	36
3.12	Inserting 'datae' into Working Data and 'datav' into Validation Data window	36
3.13	Select Linear parametric models	37
3.14	Parametric Model dialog box	37
3.15	The icon arx331 is added to Model Views board	38
3.16	Model Output window Views	39
3.17	Residual Analysis window	39
3.18	Pole and zeros plot window	40
3.19	Model info window	40
3.20	Basic PID-NN	41
3.21	SISO process with PID-NN control system	42
3.22	Positioning the PSO optimization algorithm within SISO System	43
3.23	Schematic diagram of the industrial hydraulic actuator system with PID controllers in Simulink	46
4.1	Input and output signal for system identification	47
4.2	Model validation	49
4.3	Residual analysis using correlation function	49
4.4	Pole zero plot for model ARX331	50
4.5	The subsystem block of PIDNN	52
4.6	The Simulink block for the overall System of PIDNN Controller with Industrial Hydraulic Actuator System	53
4.7	Output signal with step input	53
4.8	Output signal with square input	54
4.9	The step response signal with different type of controller used	55
4.10	Output signal of step input with various number iteration of PSO tuning Method	56
4.11	Matlab Simulink real time PID-NN controller	56
4.12	Real time industrial hydraulic actuator system	57
4.13	Output Response of Industrial Hydraulic Actuator in real time experimental with step input	57

LIST OF ABBREVIATIONS

ANN	-	Artificial Neural Network
PSO	-	Particle Swarm Optimization
PID	-	Proportional Derivative Integral Controller
N-Z	-	Zeigler-Nichols tuning method
SI	-	System Identification
PRBS	-	Pseudorandom Binary Sequences
ARX	-	Auto-regressive with Exogenous Input
ARMAX	-	Auto-regressive Moving Average with Exogenous Input
AR	-	Auto-regressive
OE	-	Output Error
BJ	-	Box-Jenkins
DAQ	-	Data Acquisition Systems
LS	-	Least Square Method
IV	-	Instrumental Variables Method
FPE	-	Final Prediction Error
MSE	-	Mean Square Error
ISE	-	Integral Square Error
RMS	-	Root Mean Square
GA	-	Genetic Algorithm
PIDNN	-	Proportional-Integral-Derivative-Neural-Network
NN	-	Neural Network
FPE	-	Final Prediction Error
NI	-	National Instrument
PCI	-	Peripheral Component Interconnect
IV	-	Instrumental Variable method
LC	-	Least Squares method

LIST OF SYMBOLS

v_p	-	Piston velocity
P_L	-	Hydraulic pressure
F_L	-	External load disturbance
x_v	-	Spool value diplacement
Α	-	Piston surface area
т	-	Mass of the load
β	-	Effective bulk mod ulus
b	-	Viscous damping coefficient
V	-	Total volume of hydraulic oil in the piston chamber & connection line
T_s	-	Sampling Time
k	-	Number of Sample
K_p	-	Proportional Gain
K_I	-	Integral Gain
K_D	-	Derivative Gain
u(t)	-	Perturbation in controller output signal from the bias or base value corresponding to the normal operating condition
e(t)	-	Error between the reference input and the process output
φ_i^k	-	Current velocity of agent I at iteration k
φ_i^{k+1}	-	New velocity of agent i at iteration k
η_1	-	Adjustable cognitive acceleration constants (self confidence)
η_2	-	Adjustable social acceleration constant (swarm confidence)
Γ _{1,2}	-	Random number between 0 and 1
Ω_i^k	-	Current position of agent <i>i</i> at iteration <i>k</i>
pbest _i	-	Personal best of agent <i>i</i>
gbes	-	Global best of the population

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Soft code for computation flow of PSO technique	65
В	Soft code for computation of fitness function	70

CHAPTER 1

PROJECT INTRODUCTION

1.1 Project background

Hydraulic Actuators are crucial in engineering field as used in industrial process control. With capability to provide very high forces, high control accuracies, high power to weight ratio, good positioning capability and also have a compact structure to employ hydraulic pressure to drive an output member (Ljung, L., 1987). The fluid used in hydraulic actuator is highly incompressible and so that pressure applied can be transmitted instantaneously to the member attached to it. Due to that reason, research for the control of force and position of electro-hydraulic system attract a great interest to both the researchers and engineers.

An important step in designing a control strategy is to having a proper model for the plant system. An exact system model should produce output responses similar to the actual system. The complexity of most physical systems, however, meets any difficulties in developing the exact models. In case the model and parameters are unknown, appropriate techniques that called System Identification can be applied to overcome all those limitations.

Currently, a number of techniques of system identification have been applied to estimate the hydraulic actuator model in form linear models, non-linear models and intelligent models. Linear model such as Auto-regressive Exogenous (ARX) model with PRBS signal as input signal (Huang, S.H. and Chen, Y.H.C., 2006) and ARX model with multi sine signal with three different frequencies is chosen as the input to the system (Rahmat, M.F. *et al*, 2010). Nonlinear model has proposed in observer canonical form using a modified Recursive Instrument Variable (Jelali, M. and Schwarz, H., 2005), and Hammerstein model which makes the assumption that the nonlinearities of the systems can be separated from the system dynamics (Kwak, B.-J. *et al.*, 1998). Since neural networks have been successfully used in various fields, back-propagation neural networks were applied in identification of electro-hydraulic actuator model (Anyi, H. *et al.*, 1997). In the last few years, neural networks have been developed in form online identification using Recurrent High Order Neural Networks (RHONN) method (Lizarde, C. *et al.*, 2005). Another online identification of the systems parameters is based on recursive least square algorithm, with constant trace (Kaddissi, C. *et al.*, 2007). In this Project, the linear model such as Auto-regressive Exogenous (ARX) model with multi sine with different input frequencies is used.

Regarding on the controller propose for the industrial hydraulic actuator, there are several type of controller has been designed before starting with linear control, which applied a simple poles placement to a linearized model of an electrohydraulic system (Lim,T.J.,1997) and following by classic cascaded loops and proportional-integral-derivative (PID) controllers were employed respectively for the position control of a hydraulic actuator (Plahuta, M.J. et al., 1997), (Zeng, W. and Hu, J., 1999). The next control design is an indirect adaptive controller, based on pole placement for the speed and position feedback of electro-hydraulic systems (Yu, W.S. and Kuo, T.S., 1996). However, the controllers which are based on a linear model of the plant, imposes certain limitations on the efficiency and robustness of the controller. With dynamic characteristics of fluid power leads to uncertain dynamic modeling and thus robust control strategies can increase safety, reliability and availability of hydraulic actuators. As a controller designing stage for the industrial hydraulic actuator, the Proportional Integral Derivative Neural Network (PIDNN) controller is implemented. PID neural network which is proposed by Huaillin et al. (2000) is a new kind of networks and its hidden layer neurons simply work as PID controller terms through their activation functions thus it simultaneously utilizes advantages of both PID controller and neural structure.

To obtain the optimal parameter tuning for the controller, it is highly desirable to increase the capabilities of PIDNN controllers by adding new features. Most in common, artificial intelligence (AI) techniques have been employed to improve the controller performances for a wide range of plants while retaining the basic characteristics. Artificial Intelligent techniques such as artificial neural network, fuzzy system and neural-fuzzy logic have been widely applied in order to get proper tuning of PID controller parameters. In this project is focuses on utilizing a soft computing strategy, namely the particle swarm optimization (PSO) technique that was first proposed by Kennedy, J. and Eberhart, R. (1995), as an optimization strategy to tuning of PID neural network weights adjustment and fine tuning the controller's parameters. Below Figure 1.1 is shown the general idea on this project.

Figure 1.1: General idea for this project

1.2 Objectives

In carrying out of this project, the objectives are as follows in order to fulfill the requirement of system identification and controller design for industrial hydarulic actuator:

i. First objective of this project is determining the mathematical modeling of Industrial Hydraulic Actuator by using System identification technique utilizing real experiment data.

- ii. Second objective is design a controller for an industrial hydraulic actuator's position control or displacement control.
- iii. Third objective is to validate the controller design obtained via simulation through experimental procedure.

1.3 Project Scopes

This project is t intends to concentrate on the scopes as follows:

- i. Familiarize with the Hydraulic Industrial Actuator system. In order to ensure the data are taken in the right manner, the study of the system is must be made. The integration connection between the hydraulic systems with the MATLAB is performing with the DAQ card.
- ii. Experimental data collection with Real Time Workshop. The input-Output for Hydraulic System Actuator are being collected trough the real time Workshop. The multi Sine input are used as a input to the system. Then, the movement of the cylinder that varies with the input is recorded in term of voltage.
- iii. The model is for the industrial hydraulic actuator system performed in linear discrete model to obtain a discrete transfer function for the system. Model estimation and validation procedures are done by using System Identification Toolbox in MATLAB. Data for model estimation is taken from an experimental works.
- iv. Design the artificial neural network (ANN) controller and implement at modeling of industrial hydraulic actuator.

1.4 **Project report overview**

This document is arranged as follows:

- i- Chapter one gives an introduction and general overview of the study. It focuses on the research problem and motivation for the study.
- Chapter two provides a brief outline on Electro hydraulic actuator system, system identification, artificial neural network controller and some background for Particles Swarm Optimization (PSO).
- iii- Chapter three highlights the methodology of the project. Which is includes the experimental setup, modeling by using Matlab, PID neural network controller design and discusses on the PSO tuning approach.
- iv- Chapter four discusses about the result of simulation and real time experimental study that compares the control performance of PIDNN tuning by PSO with the conventional PID controller.
- v- Chapter five concludes the findings of the study and provides direction for further research that could be pursued in the field.

REFERENCES

- [1] Aggarwal, V.Meng Mao O'Reilly, U.-M.A. (2006). Self-Tuning Analog Proportional-Integral-Derivative (PID) Controller in: *Adaptive Hardware and Systems, 2006.* pp. 12-19.
- [2] Anyi H., Yiming R., Zhongfu Z. and Jianjun Hu (1997). Identification and Adaptive Control for Electro-hydraulic Servo Systems Using Neural Networks. In Proceeding of the 1997 IEEE International Conference on Intelligent Processing Systems. 1997. Beijing, China. 688-692.
- [3] Benjamin, C. K. (2005). Automatic Control System. 7th Edition. United States of America: John Wiley & Sons, Inc.
- [4] Clerc, M. (1999). The Swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. *Proceedings of the Conference* on Evolutionary Computation. pp. 1951-1957.
- [5] Eberhart R.C. and Shi Y. (1998). Comparison between genetic algorithms and particle swarm optimization. *IEEE International Conferences*. Evol. Comput., Anchorage. 1998. pp 611-616.
- [6] Flynn A.M. and Sanders S.R. (2002). Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers. *IEEE Transactions* on Power Electronics. Jan, 2002. IEEE. Vol.17, (no.1), p.14.
- [7] Ghazali R., Sam Y.M., Rahmat M.F. and Zulfatman (2009). Open-loop and close-loop recursive identification of an electro-hydraulic actuator system. *Paper SCORE International Journal on Smart Sensing and Intelligent Systems*. Vol. 2, No. 2.

- [8] Huaillin S. and Pi Y. (2000). PID neural networks for time-delay systems. *Computers and Chemical Engineering*. September 24, 859-862.
- [9] Huang S. H. and Chen Y. H. C. (2006). Adaptive Sliding Control with Self-Tuning Fuzzy Compensation for Vehicle Suspension Control. *Mechatronics*. Vol. 16: 607-622.
- [10] Jelali M. and Schwarz H. (1995). Nonlinear Identification of Hydraulic Servo-Drive Systems. *IEEE Control Systems*. October 1995, pp. 17-22.
- [11] Kaddissi C., Kenne J-P., Saad M. (2007). Identification and Real-time Control of an Electrohydraulic Servo System Based on Nonlinear Backstepping. *IEEE Transaction on Mechatronics*. Vol. 12 No.1:12-21.
- [12] Kennedy J., Russell R.C. and Shi Y. (2001). Swarm Intelligence. *The Morgan Kaufmann Series in Evolutionary Computation*. 2001.
- [13] Kennedy J. and Eberhart R. (1995). Particle swarm optimization. *Proc. IEEE Int. Conferences Neural Networks*. Perth, Australia. 1995. Vol. 4, pp 1942-1948.
- [14] Kwak B.-J., Andrew, E. Yagle and Joel A. Levitt. (1998). Nonlinear System Identification of Hydraulic Actuator Friction Dynamics using a Hammerstein Model. *IEEE*: 1998. pp 1933-1936.
- [15] Li X., Yu F. and Wang Y. (2007). PSO Algorithm based Online Self-Tuning of PID Controller. 2007 International Conference on Computational Intelligence and Security. Sept, 2007. Pg 128-132.
- [16] Lim, T. J. (1997). Pole Placement Control of an Electro-hydraulic Servo Motor. In Proc. of 1997 2nd Int. Conf. Power Electronic Drive System. Singapore. Part 1, Vol. 1, 350-356.
- [17] Lizarde C., Loukianov A. and Sanchez E. (2005). Force Tracking Neural control for an Electro-hydraulic Actuator via Second Order Sliding Mode. In Proceeding of the 2005 IEEE International Symposium on Intelligent Control. Limassol, Cyprus. 2005. pp 292-297.

- [18] Ljung, L. (1987). System Identification: Theory for the User. 1stedition.
 United State of America: Prentice Hall.
- [19] Ljung, L. (1999). System Identification: Theory for the User, Upper Saddle River Prentice-Hall, PTR New Jersey.
- [20] Nagaraj B., Subha S. and Rampriya B. (2008). Tuning Algorithms for PID Controller Using Soft Computing Techniques, *IJCSNS International Journal* of Computer Science and Network Security, April 2008. VOL.8 No.4.
- [21] Plahuta M. J., Franchek M. A. and Stern H. (1997). Robust Controller Design for a Variable Displacement Hydraulic Motor. *Proc. of ASME Int. Mech. Eng. Congr. Expo. 1997.* Vol. 4, 169–176.
- [22] Pillay, N. (2008). A Particle Swarm Optimization Approach for Tuning of SISO PID Control Loops. Thesis Masters. Department of Electronics Engineering, Durban University of Terchnology.
- [23] Rahmat M.F., Md Rozali S., Abdul Wahab N., Zulfatman and Kamaruzaman Jusoff (2010). Modeling and Controller Design of an Electro-Hydraulic Actuator System. *American Journal of Applied Sciences* 7 (8): 1100-1108.
- [24] Reynolds, C. (1987). Flocks, Herds and Schools: A Distributed Behavioral Model. *Computer Graphics*. Vol.21, No. 4, pp. 25-34.
- [25] Skarpetis M. G., Koumboulis F. N. and Tzamtzi M. P. (2007). Robust Control Techniques for Hydraulic Actuator. *Proceedings of the 15th Mediterranean Conference on Control & Automation*.
- [26] Soderstrom T. and Stoica P. (1989). System Identification, Prentice Hall Interational (U) Ltd, Hertfordshire.
- [27] Xiaohui Hu. (2006). Particle Swarm Optimization. http://www.swarmintelligence.org/index.php

- [28] Yeoh, K. H. (2005). System Identification and Parameter Estimation of a Hot Air Blower System Using Nonparametric Methods. Universiti Teknologi Malaysia: Thesis Undergraduate.
- [29] Yu W.S., and Kuo T.S. (1996). Robust Indirect Adaptive Control of the Electro-hydraulic Velocity Control Systems. In Proc. of Inst. Elect. Eng.: J. Control Theory Appl., 1996. Vol. 143 (5): 448–454.
- [30] Zeng W. and Hu J. (1999). Application of Intelligent PDF Control Algorithm to an Electro-hydraulic Position Servo System. In Proc. of IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, Atlanta, GA. 1999. 233–238.