COMPARISON STUDY OF NEXT GENERATION FTTH PON ARCHITECTURES

MOHAMED ELMAGZOUB ABDALLA ZEINELABDIN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical- Electronics & Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JANUARY 2012

To my beloved mother and father

To my brothers and sisters

To the Islamic nation

ACKNOWLEDGEMENT

In The Name Of Allah, Most Gracious, Most Merciful

First and foremost, I must be thankful to Allah SWT on His blessing for finishing the research.

I would like to express my sincere thanks and appreciation to my supervisor Assoc. Prof Dr. Sevia M. Idrus, for his precious guidance, encouragement, constructive criticisms, advice and motivation. Without his continual support and interest, this project report would not have been that same as presented here.

Besides that, my highly appreciation extended to my parents for their supporting, patience, love, prayer and sacrifice are unbounded during my study. My special thanks must be extended to Prof. Abu Bakar bin Mohammad who taught me Optical Communication and showed to me how this area is interesting. Also, I would like to express my thanks to Mr. Redhwan Qasem Shaddad for introducing me to Optisystem software.

ABSTRACT

Recent research activities in the area of optical networks technology are focusing on possible extensions of current GPON and EPON since these systems may suffer bandwidth limitations in the future, and they do not make use of the full optical bandwidth. In this project two network architectures were proposed to satisfy the requirements of NG-PON1 while being compatible with the standardized GPON to protect the investment that have been spent. The two proposed architectures have been simulated by using Optisystem simulation tool, and then analyze the performances of the networks according to simulation results. The performance evaluation parameters were the Q Factor (BER) and optical power budget. The first architecture is a TDM-PON based. The main reason behind using TDMA in the first architecture (10G TDM-PON) is to allow co-existence with the current generation PONs. The second architecture is Hybrid TDM-WDM PON. After knowing the optimum performance for each architectures by considering numbers of users (32, 64 and 128) and different length fiber (from 20 to 100 km), a comparison between the architectures is done. The Hybrid TDM-WDM PON architecture has more power budget capability than the 10G TDM-PON architecture. Therefore Hybrid TDM-WDM PON architecture was found capable to serve longer distance than 10G TDM-PON architecture. The two proposed architectures meet the requirements of NG PON1, such as providing higher splitting ratio, higher bandwidth and longer reach then current GPON system.

ABSTRAK

Aktiviti penyelidikan terkini dalam bidang teknologi rangkaian optik banyak memberi tumpuan kepada bentuk sambungan yang mungkin bagi konfigurasi GPON dan EPON kerana sistem ini juga akan mengalami had jalurlebar pada masa akan datang, ini kerana ia tidak menggunakan jalur lebar optik sepenuhnya. Dalam projek ini, dua seni bina rangkaian telah dicadangkan untuk memenuhi keperluan NG-PON1 dan pada masa yang sama diserasikan dengan GPON diseragamkan untuk melindungi pelaburan yang telah dibelanjakan. Kedua-dua seni bina yang dicadangkan telah diuji dan disimulasikan dengan menggunakan program simulasi komesial Optisystem 7.0, dan kemudiannya prestasi rangkaian dianalisi berdasarkan hasil keputusan simulasi. Parameter penilaian prestasi Q-Factor (BER) dan anggaran kuasa optik juga dianalisa. Seni bina pertama adalah berasaskan TDM-PON, yang menggunakan teknik TDMA adalah dengan membenarkan kewujudan kaedah yang mendokong generasi semasa PONs. Seni bina kedua pula ialah Hibrid TDM-WDM PON. Setiap senibina rangkaian terpilih diuji untuk mengetahui prestasi optima bagi setiap bilangan pengguna (32, 64 dan 128) dengan mengambilkira berbagai panjang gentian (20-100 km), untuk membuat perbandingan keupayaan di antara seni bina rangkaian. Dalam simulasi ini didapati, senibina hibrid TDM-WDM PON mempunyai keupayaan bajet kuasa yang lebih mampan daripada seni bina rangkaian 10G TDM-PON. Oleh itu senibina Hibrid TDM-WDM PON mempunyai keupayaan jarak penhantaran yang lebih jauh daripada seni bina 10G TDM-PON. Kedua-dua seni bina yang dicadangkan memenuhi kehendak NG PON1, seperti kemampuan menyediakan nisbah belahan spektra lebih tinggi, lebar jalur yang lebih luas dan jarak capaian ketibaan yang lebih jauh berbanding sistem GPON semasa.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiv

TITLE

INTRODUCTION1.1Introduction

CHAPTER

1

2

1.2	Problem Statement	2
1.3	Project Objectives	3
1.4	Scopes of Project	3
1.5	Methodology	4
1.6	Thesis Outline	6

FIBER TO THE HOME PASSIVE OPTICAL NETWORK

2.1	Introduction	7
2.2	What Is FTTx?	8

PAGE

2.3	FTTH	Access A	rchitectur	e			8
2.4	Multip	olexing M	ethods in	FTTH F	ONs		10
	2.4.1	TDM-PO	DN				11
		2.4.1.1	Advanta	ges and	Limit	tations	12
			of TDM	-PON			
	2.4.2	WDM-P	ON				12
		2.4.2.1	Advanta	ges and	l Lim	itations	13
			of WDN	1-PON			
	2.4.3	Hybrid V	VDM/TD	M-PON	[14
2.5	PON S	System Po	wer Budg	gets			15
	2.5.1	PON	System	Powe	er	Budget	16
		Specific	ations				
2.6	PON S	Standards					17
	2.6.1	APON					17
	2.6.2	BPON					17
	2.6.3	EPON					18
	2.6.4	GPON					19
	2.6.5	Compari	son of xP	ON Star	ndards	5	20
NEXT	GENH	ERATION	N PASSIV	VE OPT	FICAI	Ĺ	
NETV	VORK						
3.1	Introd	uction					26
3.2	NG-PO	ON Requi	rements				22
3.3	NG-PO	ON Roadr	nap				22
3.4	NG-PG	ON1 Tech	nologies				24
	3.4.1	10 G-PO	N (XG-PO	ON)			24
	3.4.2	10 G-EP	ON				25
	3.4.3	Compari	son of NC	G-PON1	Stand	dards	26
3.5	NG-PG	ON2					27
3.6	Litera	ture R	eview	on 1	the	Latest	28
	Devel	opments c	on NG-PC)Ns			

NG-PON ARCHITECTURES SIMULATION

4.1 Introduction

3

4

Design Methodology 4.2 31 Simulation Using Optisystem Software 4.3 32 10G TDM-PON Architecture Network Model 4.4 33 4.4.1 Simulation setup 35 4.4.2 The ODN Model Parameters for 10G 36 **TDM-PON** Architecture 4.4.3 OLT and ONU Models for 10G 36 **TDM-PON** Architecture 4.5 Hybrid TDM-WDM PON Architecture 38

4.5 Hybrid IDM-wDM PON Architecture 38 Network Model

5 SIMULATION RESULT AND PERFORMANCE ANALYSIS

5.1	Introduction	40
5.2	Performance Analysis of 10G TDM-PON	40
	Architecture	
	5.2.1 Analysis of Q Factor Performance to	41
	the Fiber Length	
	5.2.2 Analysis of Q Factor Performance to	42
	the Input Power	
5.3	Performance Analysis of Hybrid TDM-WDM	49
	PON Architecture	
	5.3.1 Analysis of Q Factor Performance to	49
	the Fiber Length	
5.4	Comparison between 10G TDM-PON and	52
	Hybrid TDM-WDM PON	
CONC	CLUSION AND FUTURE WORKS	
6.1	Conclusion	54
6.2	Future Works	55

6

LIST OF TABLES

TABLE NO.

TITLE

PAGE

Typical ITU Power Budget classes	16
BPON downstream/upstream bit-rate combinations	18
GPON downstream/upstream bit-rate combinations	19
Comparison Table of xPON standards	20
10G-EPON and XG-PON downstream/upstream bit-rate	27
TDM-PON general parameters	33
global parameter simulation setup	35
Optical Fiber Parameters	36
OLT parameters	37
Hybrid TDM-WDM PON general parameters	39
Q Factor performance of varied fiber length for 32 users	43
Q Factor performance of varied fiber length for 64 users	44
Q Factor performance of varied fiber length for 128 users	45
Summary for the maximum transmission distance for	46
different number of users (32, 64 and 128)	
Optimizing the upstream input power for 32 user (from 5	46
to 2.5 dBm)	
Optimizing the upstream input power for 64 user (from 5	47
to 3.5 dBm)	
Optimizing the upstream input power for 128 user (from	48
5 to 3.5 dBm)	
	BPON downstream/upstream bit-rate combinations GPON downstream/upstream bit-rate combinations Comparison Table of xPON standards 10G-EPON and XG-PON downstream/upstream bit-rate TDM-PON general parameters global parameter simulation setup Optical Fiber Parameters OLT parameters Hybrid TDM-WDM PON general parameters Q Factor performance of varied fiber length for 32 users Q Factor performance of varied fiber length for 64 users Q Factor performance of varied fiber length for 128 users Summary for the maximum transmission distance for different number of users (32, 64 and 128) Optimizing the upstream input power for 32 user (from 5 to 2.5 dBm) Optimizing the upstream input power for 64 user (from 5 to 3.5 dBm)

5.8	Summary for the upstream input power after and before	49
	the optimization	
5.9	Summary for the maximum transmission distance for	52
	different number of users (32, 64 and 128) for the two	
	architectures	
5.10	The main advantage and disadvantage for the two	53
	architectures	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Methodology flow chart	4
2.1	Some FTTx scenarios	9
2.2	Architecture of a typical FTTH passive optical network	10
2.3	Operation of a time-division multiplexing process	11
2.4	Architecture of WDM-PON	13
2.5	Example of hybrid WDM/TDM topology	14
3.1	FSAN NG-PON roadmap	23
3.2	Some of XG-PON scenarios	26
4.1	The general architecture for 10G TDM-PON network	33
	model	
4.2	proposed 10G TDM-PON network model in the	34
	Optisystem layout	
4.3	ONU subsystem	38
4.4	The general architecture of the Proposed Hybrid TDM-	39
	WDM PON network model	
5.1	Q Factor performance of varied fiber length for 32 users	43
5.2	Q Factor performance of varied fiber length for 64 users	44
5.3	Q Factor performance of varied fiber length for 128 users	45
5.4	Q Factor performance of varied input power for 32 users	46
5.5	Q Factor performance of varied input power for 64 users	47
5.6	Q Factor performance of varied input power for 128	48
	users	

5.7Q Factor performance of varied fiber length for 32 users505.8Q Factor performance of varied fiber length for 64 users515.9Factor performance of varied fiber length for 128 users515.10Q Factor performance for varied data link rate for the53two architectures53

LIST OF ABBREVIATIONS

10G-EPON	-	10 Gigabit Ethernet Passive Optical Network
AES	-	Advanced Encryption Standard
APON	-	ATM Passive Optical Network
ATM	-	Asynchronous Transfer Mode
BER	-	Bit Error Rate
BPON	-	Broadband Passive Optical Network
CAPEX	-	Capital Expenditures
СО	-	Central Office
CWDM	-	Coarse Wavelength Division Multiplexing
DS	-	Downstream
DWDM	-	Dense Wavelength Division Multiplexing
EFM	-	Ethernet in the First Mile
EPON	-	Ethernet Passive Optical Network
FEC	-	Forward Error Correction
FSAN	-	Full-Services Access Networks
FTTB	-	Fiber-To-The-Building
FTTC	-	Fiber-To-The-Curb
FTTH	-	Fiber-To-The-Home
FTTN	-	Fiber-To-The-Node
FTTP	-	Fiber-To-The-Premises
GEM	-	GPON Encapsulation Method
GEPON	-	Gigabit Ethernet Passive Optical Network
GPON	-	Gigabit Passive Optical Network
IEEE	-	Institute of Electrical and Electronics Engineers

ITU	-	International Telecommunication Union
IPTV	-	Internet Protocol Television
MAC	-	Media Access Control
NG-PON	-	Next-Generation Passive Optical Network
OCDMA	-	Optical Code Division Multiple Access
ODN	-	Optical Distribution Network
OFDMA	-	Orthogonal Frequency Division Multiple Access
OLT	-	Optical Line Terminal
ONUs	-	Optical Network Unit
P2MP	-	Point to Multi-Point
P2P	-	Point to Point
PON	-	Passive Optical Network
Q Factor	-	Quality Factor
QoS	-	Quality of Service
R&D	-	Research and Development
RN	-	Remote Node
TDMA	-	Time Division Multiple Access
US	-	Upstream
WDM	-	Wavelength Division Multiplexing
XG-PON	-	10 Gigabit Passive Optical Network

CHAPTER 1

INTRODUCTION

1.1 Introduction

Demands on bandwidth are growing rapidly, and end users have killer applications such as IPTV and peer-to-peer downloading, which they need huge bandwidth. It becomes ever harder to support the fast growing capacity demands of the users, as these copper-based technologies are facing their fundamental bandwidth limitations. That has become the driving force for the recent enthusiasm in PONs and FTTx developments. In a fiber-to-the-home (FTTH) system, fiber is connected all the way from the service provider to household users.

Gigabit-capable Passive Optical Network systems, such as GPON (standardized in ITU-T Rec. G.984 series) and EPON (IEEE 802.3ah) have been standardized and are now being mass-deployed in various markets around the world. With the continuous increase in bandwidth demand generated by consumer and business applications, the need for a new, higher capacity access architecture is more than obvious. Therefore, one

of the principal requirements for next-generation PON (NG-PON) is to provide a substantial increase of the bandwidth available to end-subscribers, when compared with GPON and EPON. Additionally, the investment made for deploying gigabit-capable PON systems, NG-PON must be able to protect the investment of the legacy networks by ensuring a subscriber seamless migration from GPON/EPON to NG-PON.

In this project, the discussion will be focused on the performance analysis of NG-PON to investigate and compare the performances of the two candidate NG-PON architectures.

This chapter presents the problem statement, project objectives, scopes of project, methodology and finally the thesis outline.

1.2 Problem Statement

GPON (ITU-984) and EPON (IEEE 802.3ah) have been standardized and are now widely deployed. With the ever increasing bandwidth demand from consumer and business applications, these standards are running out of bandwidth. Therefore, there is a high need for next generation PON.

The most general requirement for a NG- PON is to provide higher bandwidth than Gigabit PON. In addition, given the major investments by operators in deploying Gigabit PON, NG-PON must be able to protect the investment of the legacy Gigabit PONs by ensuring a subscriber seamless migration from Gigabit PON to NG-PON.

1.3 Project Objectives

The objectives of this project are:

- 1. To study and investigate the performance of candidate architectures for next generation FTTH PONs.
- 2. To do performance comparison for the architectures in terms of bandwidth and distance.
- 3. To facilitate higher bandwidth provision, higher number of users and extended network reach than current PON architectures (GPON & EPON).

In this project, will try as much as possible to consider the current GPON architecture and flow its standard, as long as we meet the next generation objectives (increasing the bandwidth, the number of users and the reached distance).

1.4 Scopes of Project

The scopes of this project are:

- 1. Literature review on the previous PONs and current. Then, Review on the current progress towards the NG PON that to be compatible with GPON.
- 2. Design and simulation different NG PON architectures. The simulation tool that will be used to achieve the objectives is Optisystem software.
- 3. Systems performance analysis, optimization and comparison.
- 4. Performance analysis: Analysis for the system performance will be done. The performance evaluation will be in terms of the Q Factor (BER) and optical power budget.

1.5 Methodology

The methodology of this research is shown in the flow chart in Figure 1.1 below:

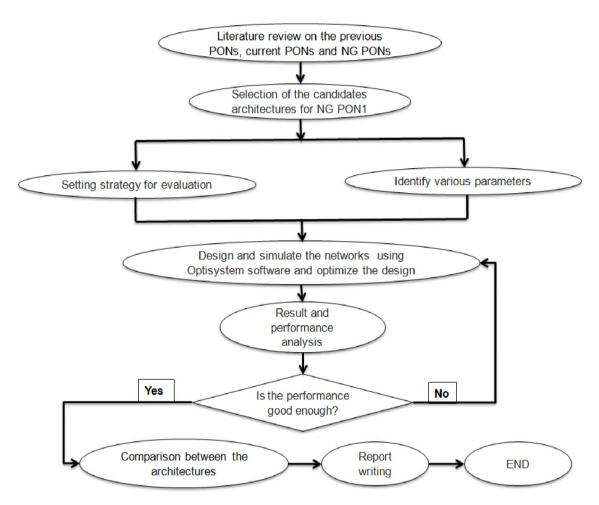


Figure 1.1: The methodology flow chart

First of all, to design and simulate NG-PONs, full understanding and literature review on the previous PONs and current have to be done. Then, review on the current progress towards the NG PON that to be compatible with GPON.

After completing the comprehensive literature review, two candidate architectures for NG PON can be selected to be design, simulated and Compared.

The next two steps can be done in parallel. Identifying various parameters and set the strategy for evaluation.

After knowing the various parameters of the design, simulate the networks by using Optisystem software.

The performance evaluation as the evaluation strategy is set, will be in terms of the Q Factor (BER) and optical power budget.

If the performance satisfies the specified criteria, comparison between the architectures will be done. Otherwise, optimizing in the design has to be done. Finally, writing the report.

1.6 Thesis Outline

Chapter 1 consists of introduction of the project. It includes the problem statement, project objectives, scopes of project and the methodology.

Chapter 2 explains about the basic theory of Passive Optical Network and Fiber to the Home. Then, brief explaining on Gigabit-capable Passive Optical Network systems. Chapter 3 focuses on the Next Generation Passive Optical Network and literature review on the latest developments on NG-PONs.

Chapter 4 presents the simulation network models of the candidate architectures for the NG-PON.

Chapter 5 discusses the simulation results and performance analysis based on the plotted graphs which were obtained after simulate the network model.

Chapter 6 describes the summary of all have been done, conclusion and suggests for future work.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiv

TITLE

INTRODUCTION1.1Introduction

CHAPTER

1

2

1.2	Problem Statement	2
1.3	Project Objectives	3
1.4	Scopes of Project	3
1.5	Methodology	4
1.6	Thesis Outline	6

FIBER TO THE HOME PASSIVE OPTICAL NETWORK

2.1	Introduction	7
2.2	What Is FTTx?	8

PAGE

2.3	FTTH Access Architecture 8			8			
2.4	Multip	Multiplexing Methods in FTTH PONs			10		
	2.4.1	TDM-P(DN				11
		2.4.1.1	Advanta	iges an	d Limi	itations	12
			of TDM	-PON			
	2.4.2	WDM-P	ON				12
		2.4.2.1	Advanta	iges ar	nd Lin	nitations	13
			of WDM	1-PON	[
	2.4.3	Hybrid V	VDM/TD	M-PO	N		14
2.5	PON S	System Po	wer Budg	gets			15
	2.5.1	PON	System	Pov	ver	Budget	16
		Specific	ations				
2.6	PON S	Standards					17
	2.6.1	APON					17
	2.6.2	BPON					17
	2.6.3	EPON					18
	2.6.4	GPON					19
	2.6.5	Compari	son of xP	ON St	andard	ls	20
NEXT	GENH	ERATION	N PASSI	VE OF	ТІСА	L	
NETV	VORK						
3.1	Introd	uction					26
3.2	NG-PO	ON Requi	rements				22
3.3	NG-PO	ON Roadr	nap				22
3.4	NG-PG	ON1 Tech	nologies				24
	3.4.1	10 G-PO	N (XG-PO	ON)			24
	3.4.2	10 G-EP	ON				25
	3.4.3	Compari	son of NG	G-PON	11 Stan	dards	26
3.5	NG-PG	ON2					27
3.6	Litera	ture R	eview	on	the	Latest	28
	Devel	opments o	on NG-PC)Ns			

NG-PON ARCHITECTURES SIMULATION

4.1 Introduction

3

4

Design Methodology 4.2 31 Simulation Using Optisystem Software 4.3 32 10G TDM-PON Architecture Network Model 4.4 33 4.4.1 Simulation setup 35 4.4.2 The ODN Model Parameters for 10G 36 **TDM-PON** Architecture 4.4.3 OLT and ONU Models for 10G 36 **TDM-PON** Architecture 4.5 Hybrid TDM-WDM PON Architecture 38

4.5 Hybrid IDM-wDM PON Architecture 38 Network Model

5 SIMULATION RESULT AND PERFORMANCE ANALYSIS

5.1	Introduction 4				
5.2	Performance Analysis of 10G TDM-PON	40			
	Architecture				
	5.2.1 Analysis of Q Factor Performance to	41			
	the Fiber Length				
	5.2.2 Analysis of Q Factor Performance to	42			
	the Input Power				
5.3	Performance Analysis of Hybrid TDM-WDM	49			
	PON Architecture				
	5.3.1 Analysis of Q Factor Performance to	49			
	the Fiber Length				
5.4	Comparison between 10G TDM-PON and	52			
	Hybrid TDM-WDM PON				
CONC	CLUSION AND FUTURE WORKS				
6.1	Conclusion	54			
6.2	Future Works	55			

6

LIST OF TABLES

TABLE NO.

TITLE

PAGE

Typical ITU Power Budget classes	16
BPON downstream/upstream bit-rate combinations	18
GPON downstream/upstream bit-rate combinations	19
Comparison Table of xPON standards	20
10G-EPON and XG-PON downstream/upstream bit-rate	27
TDM-PON general parameters	33
global parameter simulation setup	35
Optical Fiber Parameters	36
OLT parameters	37
Hybrid TDM-WDM PON general parameters	39
Q Factor performance of varied fiber length for 32 users	43
Q Factor performance of varied fiber length for 64 users	44
Q Factor performance of varied fiber length for 128 users	45
Summary for the maximum transmission distance for	46
different number of users (32, 64 and 128)	
Optimizing the upstream input power for 32 user (from 5	46
to 2.5 dBm)	
Optimizing the upstream input power for 64 user (from 5	47
to 3.5 dBm)	
Optimizing the upstream input power for 128 user (from	48
5 to 3.5 dBm)	
	BPON downstream/upstream bit-rate combinations GPON downstream/upstream bit-rate combinations Comparison Table of xPON standards 10G-EPON and XG-PON downstream/upstream bit-rate TDM-PON general parameters global parameter simulation setup Optical Fiber Parameters OLT parameters Hybrid TDM-WDM PON general parameters Q Factor performance of varied fiber length for 32 users Q Factor performance of varied fiber length for 64 users Q Factor performance of varied fiber length for 128 users Summary for the maximum transmission distance for different number of users (32, 64 and 128) Optimizing the upstream input power for 32 user (from 5 to 2.5 dBm) Optimizing the upstream input power for 64 user (from 5 to 3.5 dBm)

5.8	Summary for the upstream input power after and before		
	the optimization		
5.9	Summary for the maximum transmission distance for	52	
	different number of users (32, 64 and 128) for the two		
	architectures		
5.10	The main advantage and disadvantage for the two	53	
	architectures		

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Methodology flow chart	4
2.1	Some FTTx scenarios	9
2.2	Architecture of a typical FTTH passive optical network	10
2.3	Operation of a time-division multiplexing process	11
2.4	Architecture of WDM-PON	13
2.5	Example of hybrid WDM/TDM topology	14
3.1	FSAN NG-PON roadmap	23
3.2	Some of XG-PON scenarios	26
4.1	The general architecture for 10G TDM-PON network	33
	model	
4.2	proposed 10G TDM-PON network model in the	34
	Optisystem layout	
4.3	ONU subsystem	38
4.4	The general architecture of the Proposed Hybrid TDM-	39
	WDM PON network model	
5.1	Q Factor performance of varied fiber length for 32 users	43
5.2	Q Factor performance of varied fiber length for 64 users	44
5.3	Q Factor performance of varied fiber length for 128 users	45
5.4	Q Factor performance of varied input power for 32 users	46
5.5	Q Factor performance of varied input power for 64 users	47
5.6	Q Factor performance of varied input power for 128	48
	users	

5.7Q Factor performance of varied fiber length for 32 users505.8Q Factor performance of varied fiber length for 64 users515.9Factor performance of varied fiber length for 128 users515.10Q Factor performance for varied data link rate for the53two architectures53

LIST OF ABBREVIATIONS

10G-EPON	-	10 Gigabit Ethernet Passive Optical Network
AES	-	Advanced Encryption Standard
APON	-	ATM Passive Optical Network
ATM	-	Asynchronous Transfer Mode
BER	-	Bit Error Rate
BPON	-	Broadband Passive Optical Network
CAPEX	-	Capital Expenditures
СО	-	Central Office
CWDM	-	Coarse Wavelength Division Multiplexing
DS	-	Downstream
DWDM	-	Dense Wavelength Division Multiplexing
EFM	-	Ethernet in the First Mile
EPON	-	Ethernet Passive Optical Network
FEC	-	Forward Error Correction
FSAN	-	Full-Services Access Networks
FTTB	-	Fiber-To-The-Building
FTTC	-	Fiber-To-The-Curb
FTTH	-	Fiber-To-The-Home
FTTN	-	Fiber-To-The-Node
FTTP	-	Fiber-To-The-Premises
GEM	-	GPON Encapsulation Method
GEPON	-	Gigabit Ethernet Passive Optical Network
GPON	-	Gigabit Passive Optical Network
IEEE	-	Institute of Electrical and Electronics Engineers

ITU	-	International Telecommunication Union
IPTV	-	Internet Protocol Television
MAC	-	Media Access Control
NG-PON	-	Next-Generation Passive Optical Network
OCDMA	-	Optical Code Division Multiple Access
ODN	-	Optical Distribution Network
OFDMA	-	Orthogonal Frequency Division Multiple Access
OLT	-	Optical Line Terminal
ONUs	-	Optical Network Unit
P2MP	-	Point to Multi-Point
P2P	-	Point to Point
PON	-	Passive Optical Network
Q Factor	-	Quality Factor
QoS	-	Quality of Service
R&D	-	Research and Development
RN	-	Remote Node
TDMA	-	Time Division Multiple Access
US	-	Upstream
WDM	-	Wavelength Division Multiplexing
XG-PON	-	10 Gigabit Passive Optical Network