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ABSTRACT 

 

 

 

 

The increasing rate of the global surface temperature in climate change will 

have a significant impact on local hydrological regimes and water resources. This 

situation leads to the assessment of the climate change impacts has become a 

priority. The objectives of this study are to determine the current and future climate 

change scenario using the downscaling methods and to assess the climate change 

impact on stream flow discharge. It describes the investigation on precipitation and 

temperature changes which influenced by the large-scale atmospheric variables for 

several selected rainfall stations in the Kerian watershed and one selected 

temperature station in the Ipoh watershed, Peninsular Malaysia. In this study, the 

Global Climate Models (GCMs) simulations from Hadley Centre 3rd generation with 

scenario A2 (HadCM3 A2)  have been used, and downscaled into a fine resolution 

daily rainfall and temperature series appropriate for local scale hydrological impact 

studies. The proposed downscaling methods applied in this study are the Long 

Ashton Research Station Weather Generator (LARS-WG) and Statistical Down-

Scaling Model (SDSM). The changes in stream flow discharge are assessed using 

Identication of Unit Hydrograph and Component Flows from Rainfall, Evaporation 

and Streamflow Data (IHACRES) and Artificial Neural Networks (ANN) methods. It 

describes the investigation on possible future stream flow changes for four selected 

flow gauging stations represent the Kerian watershed. The SDSM and LARS-WG 

similarly are able to simulate the mean daily rainfall satisfactory. However, the 

SDSM model is better than the LARS-WG model in downscaling of the daily 

maximum and minimum temperature. Both models give an increase trend on 

projection of future temperature for all months. The LARS-WG and SDSM models 

obviously are feasible and reliable methods for use as tools in quantifying effects of 

climate change condition on a local scale. The rainfall and temperature data 

downscaled with the SDSM and LARS-WG models obviously are not similar in the 

simulation of stream flow discharge using the ANN and IHACRES models. ANN 

yields a better performance than IHACRES. The study area is apparently will gain 

consistently increasing trend in the mean annual temperature of about 0.24-4.23
o
C, 

and facing varying rainfall depth for the next 100 years. While the data downscaled 

with SDSM resulted in an increase in mean daily flow of about 10-40% in the 

coming 100 years, the one downscaled with LARS-WG resulted in a decrease in 

mean daily flow of up to 40%. This is a clear indication of how the outcome of a 

hydrologic impact study can be affected by the selection of any one particular 

downscaling technique over the other. The implication that the flood or drought may 

frequently experienced in the future corresponding to climate scenario HadCM3 A2. 
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ABSTRAK 

 

 

 

 

Peningkatan kadar pemanasan suhu permukaan global akibat perubahan 

iklim, telah memberi kesan ketara kepada kawasan hidrologi berskala tempatan, serta 

kepada kawasan pengurasan sumber air. Situasi ini membawa kepada keutamaan 

kajian berdasarkan kesan perubahan iklim. Objektif dalam kajian ini, adalah untuk 

menentukan perubahan senario iklim semasa dan masa hadapan, dengan 

menggunakan kaedah penurunan-skala (downscaling methods), serta penilaian kesan 

perubahan aliran air (streamflow) terhadap perubahan iklim. Dalam kajian ini, 

siasatan turut dijalankan kepada perubahan hujan dan suhu, berdasarkan pada 

pemboleh-ubah atmosfera berskala-besar (large-scale atmospheric variables) di 

beberapa stesen hujan yang terpilih di kawasan Kerian, dan satu stesen suhu yang 

terpilih di kawasan Perak, semenanjung Malaysia. Kajian turut dijalankan dengan 

menggunakan kaedah penurunan-skala dari Global Climate Models (GCMs), iaitu 

Hadley Centre 3rd generation dengan senario A2 (HadCM3 A2)  bagi mendapatkan 

set hujan dan suhu yang mempunyai resolusi kecil, dan sesuai untuk digunakan untuk 

kajian mengenai kesan iklim terhadap hidrologi berskala tempatan. Kaedah 

penurunan-skala yang dicadangkan untuk diaplikasi dalam kajian ini ialah kaedah 

Stochastic Weathers of Long Ashton Research Station Weather Generator (LARS-

WG) dan Statistical Down-Scaling Model (SDSM). Disamping itu, perubahan kadar 

aliran air dikaji dengan menggunakan kaedah Identication of Unit Hydrograph and 

Component Flows from Rainfall, Evaporation and Streamflow Data (IHACRES) dan 

Artificial Neural Network (ANN). Kajian turut dijalankan bagi mendapatkan kadar 

aliran air untuk masa hadapan di kawasan tadahan di Kerian, yang diwakili oleh 

empat stesen cerapan aliran air yang terpilih. Kaedah SDSM dan LARS-WG 

didapati, dapat mengsimulasi purata hujan harian dengan memuaskan. Walau 

bagaimanapun, model SDSM didapati lebih baik dalam menurun-skala suhu 

maksimum dan minimum, berbanding model LARS-WG. Disamping itu, kedua-dua 

model turut menunjukkan peningkatan suhu disetiap bulan pada masa hadapan . Oleh 

itu, model LARS-WG dan SDSM jelas adalah kaedah yang boleh dilaksanakan, dan 

boleh dipercayai untuk digunakan sebagai alat untuk mengukur kesan keadaan 

perubahan iklim pada skala tempatan. Data hujan dan suhu yang diturun-skala 

dengan model SDSM dan LARS-WG didapati tidak menghasilkan simulasi aliran air 

yang sama apabila menggunakan model ANN dan IHACRES. Didapati, ANN 

menghasilkan prestasi yang lebih baik daripada IHACRES. Kawasan kajian didapati 

menerima peningkatan perubahan suhu tahunan sebanyak 0.24-4.23
o
C, serta 

menerima ketidaktentuan curahan hujan untuk 100 tahun akan datang. Data SDSM 

didapati akan meningkatkan aliran air harian sebanyak 10-40% untuk 100 tahun akan 

datang, berbanding data LARS-WG yang mengurangkan aliran air harian sebanyak 

40%. Keputusan ini jelas membuktikan penilaian impak hidrologi dipengaruhi oleh 

penggunaan jenis kaedah penurunan-skala. Implikasinya ialah banjir atau kemarau 

yang kerap dialami pada masa hadapan turut disimulasi di kawasan kajian 

berdasarkan iklim senario HadCM3 A2. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Problem 

 

 

Human activities, primarily the burning of fossil fuels and changes in land 

cover and use, are nowadays believed to be increasing the atmospheric 

concentrations of greenhouse gases (Xu 1999). Those activities are perturbing the 

global energy balance, heating up atmosphere, and causing global warming. In terms 

of hydrology, climate change can cause significant impacts on water resources by 

resulting changes in the hydrological cycle. Temperature and precipitation are main 

parameters that closely related to the climate change. Changing on both parameters 

can have a direct consequence on the quantity of evapotranspiration and on both 

quality and quantity of the runoff component. Therefore, there is a growing need for 

an integrated analysis that can quantify the impacts of climate change on various 

aspects of water resources such as precipitation, hydrologic regimes, drought, dam 

operations, etc. Although the impact of climate change is forecasted at the global 

scale, the type and magnitude of the impact at a catchment scale are not investigated 

in most part of the world. Hence, study a local impact of climate change at the 

watershed level is needed. It will give enough room to consider possible future risks 

in all phases of water resource development projects such as changes in water 

availability and crop production under climate change scenarios. 

 

 

To estimate future climate change resulting from the continuous increase of 

greenhouse gas concentration in the atmosphere, Global Climate Models (GCMs) are 

used. GCMs output cannot directly be used for hydrological assessment due to their 



2 
 

coarse spatial resolution. Hydrological models deal with small catchment scale 

processes, whereas GCMs simulate planetary scale and parameterize many regional 

and smaller-scale processes (Yimer et al., 2009; Dibike and Coulibaly, 2005). 

Therefore, statistical downscaling methods which Statistical Down-Scaling Model 

(SDSM) and Long Ashton Research Station Weather Generator (LARS-WG) are 

used in this study to convert the coarse spatial resolution of the GCMs output into a 

fine resolution. Both models have their own advantages on downscaling rainfall and 

temperature corresponding to GCMs model.  

 

 

The relationship between climate and water basin can be investigated and 

studied by the hydrological models (Xu, 1999). Identication of Unit Hydrograph and 

Component Flows from Rainfall, Evaporation and Streamflow Data (IHACRES) and 

Artificial Neural Networks (ANNs) are applied. Both models are metric based 

model. The successes of both models depend on the expertise of the modeler with 

prior knowledge of the information input being modeled. This tedious nonlinear 

structure calibration process sometime may produce uncertainty results due to the 

subjective factors involved. Therefore, the study also focuses on developing an 

effective and efficient calibration procedure. 

 
 

 

 

1.2 Statement of the Problem 

 

 

According to the Intergovernmental Panel on Climate Change (IPCC) report, 

the global temperature surface has increased by 0.74
0
C in 1906-2005, and the 

increasing rate is about 0.13
0
C per 100 years in the next 20 years (IPCC, 2007). The 

report also state that the temperature would increase by about 1.1–6.4°C during the 

next century. It will have significant impact on hydrological cycles and subsequent 

changes in river flow regimes, and toward agriculture production.  

 

 

Therefore, the only way to study climate changes is by studying GCMs 

model. The coarse resolution of GCMs model cannot be used directly for a small 

catchment study. It is necessary to study the effect of climate change at this scale in 
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order to take the effect into account by the policy and decision makers when 

planning water resources management (Shaka, 2008). Hence, SDSM and LARS-WG 

model are applied to downscale GCMs into catchment scale. Both models have their 

own advantages and disadvantages (Dibike and Coulibaly, 2005). Comparisons of 

both models are well discussed in many journal papers, but the relationship between 

both models and hydrological models are still not well published. Normally, 

hydrologic impacts of climate change are usually analyzed by using conceptual 

and/or physically based hydrological models (Dibike and Coulibaly, 2005). 

Therefore, the study will use IHACRES and Artificial Neural Networks (ANNs) 

which applied metric based hydrological models to assess climate change 

assessment. The success of both depends on the expertise of the modeller with prior 

knowledge of the information input being modelled. This tedious nonlinear structure 

calibration process sometime may produce uncertainty results due to the subjective 

factors involved. Therefore, the study also focuses on developing an effective and 

efficient calibration procedure. 

 

 
 

 

1.3 Objectives  

 

 

The main aim is to explore and establish the relationship between climate 

change model with hydrological response using various climate downscaling models 

and hydrological models. The specific objectives are outlined as follows; 

 

 

i. To calibrate the statistical downscaling models in a tropical 

agricultural area. 

ii. To simulate the future rainfall and temperature variation based on the 

climate change scenario. 

iii. To simulate the future flow variation using rainfall-runoff models. 

iv. To evaluate the climate change impact on the rainfall, temperature and 

flow variations.  
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1.4 Scope of the Study  

 

 

The study will focus on the calibration and simulation of the climate models 

by using the SDSM and LARS-WG models for the future rainfall and temperature. 

Hence, result of the climate models, will be used as an input to the hydrological 

models, which are IHACRES and ANN.  In addition, a few statistical methods and 

drought indices will be used to evaluate the climate change impact. The study has 

focused on 13 selected rainfall stations in the Kerian watershed, and one selected 

temperature station in the Ipoh watershed. The investigation on the possible future 

stream flow for four selected flow gauge stations represent the Kerian watershed also 

being discussed in this study. 

 

 

 

 

1.5 Significance of the Study 

 

 

There are several benefit and significance of the study, which are; 

 

I. Find the way to manage the water in irrigation.  

II. Increasing the irrigation efficiency with the data that we obtain from climate 

simulation programs.  

III. Change in land use or change in life style of people with adaptation to climate 

change.  
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