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ABSTRACT 

 

 

 

 

Imbalanced data set had tendency to effect classifier performance in machine 

learning due to the greater influence given by majority data that overlooked the 

minority ones. But in classifying data, more important class is given by the 

minority data. In order to solve this problem, original Naïve Bayes was purposed 

as classifier for imbalanced data set. Our main interest is to investigate the 

performance of original Naïve Bayes classifier in imbalanced datasets. From the 

four UCI imbalanced datasets that been used, the purposed techniques show that, 

Naïve Bayes doing well in Herbaman’s datasets and satisfying results in other 

datasets. 
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ABSTRAK 

 

 

 

 

Ketidakseimbangan di dalam kumpulan data mempengaruhi kebolehan sistem 

mesin dalam mengelaskan  data ke kelas masing-masing. Ini kerana “teknik 

pengelasan” yang digunakan dipengaruhi oleh kelas majoriti data walhal kelas data 

yang ingin dikenal pasti selalunya berada di kelas minoriti. Bagi mengatasi masalah 

ini, teknik pengelasan yang dipanggil “Naïve Bayes” telah digunakan terhadap 

kumpulan data yang tidak seimbang. Tujuan utama projek ini adalah untuk 

mengenalpasti tahap kebolehan Naïve Bayes dalam mengelaskan kumpulan data 

yang tidak seimbang. Hasil daripada pengaplikasian teknik ini terhadap empat 

kumpuan data, “Naïve Bayes” hanya menunjukkan keputusan yang baik terhadap 

kumpulan data Herbaman dan keputusan yang memberangsangkan terhadap 

kumpulan-kumpulan data yang lain. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background of study 

 

 

 Adapting from human capability in learning from previous experience, 

researcher come out with methodologies for the machine to learn from prior dataset. 

The motivation, generally to come out with a computer system that improve from 

experience and capable in predicting the new outcome. In order to do that, a system 

must have capability in discovering knowledge in data set, model the pattern and 

from that model the system can predict future types of event that will happen.  

 

 

One of common practice in machine learning is classification task. In 

classification, an algorithm was developed to discover knowledge from prior 

datasets. The prior datasets will provide information in terms of trends that available 

in each class. These trends will help the system in predicting the class for new 

instances. Because of this concept, a lot of attention had given towards classification 

method and eventually this concept largely implement in various fields. The 

applications cover medicine [1], industry [2], bussines and economy [3], fraud 

detection [4], remote sensing [5], and pattern recognition [6] area.   
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Due to the importance of classification task in machine learning, the best 

performance of learning algorithm is expected. So the practitioner made the 

algorithm with the objective of high accuracy in predicting the class and they assume 

the distribution between classes is the same or balanced. This assumption creates 

problem in real case implementation since there is difficulty in getting balanced 

dataset. With the imbalanced datasets problem, the classifier tends to favor the 

majority data (also called negative data) and treat the minority data (also called 

positive data) as noise but the important class is the minority class.  For example, 

existing data for non cancer over cancer patient is 90% to 10%. If the classifier 

ignores the imbalanced data distribution, the results will be accuracy of 90% which is 

in majority data and ignore the important class of 10% cancer patients. But the 

important class to predict is on the minority data, cancer patients.  

 

 

In this project, focus will be on studying the classification method that able to 

handling the imbalanced dataset. This project will give an insight view of 

implementation traditional classifier, Naïve Bayes. The contribution will be on the 

performance of traditional Naïve Bayes in imbalanced datasets and how much it 

differs from the other methods. This project will also discuss in what kind of 

environment that suitable in implementing this kind of method. 

 

 

 

 

1.2 Problem statement 

 

 

One of common classifier that been used for imbalanced datasets is Naïve 

Bayes [7]. However, in recent research activities on Naïve Bayes, the researchers 

tend to upgrade the original approach of Naïve Bayes method. It seems the original 

Naïve Bayes cannot uphold the best performance in classifying imbalanced datasets. 

Thus the researcher adds on sampling technique, features selection or mixture 

classifier agent with Naïve Bayes classifier in imbalanced dataset cases. But other 

problems arise. By implementing the Under Sampling will leads to the data loss in 
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classification task whereas the Oversampling method increase the simulation time 

and overlapped data may occurs. Other than that, mixtures of classifier agent add in 

complexity when implementing the method in real case scenario. Due to this 

problem, a study on performance of traditional Naïve Bayes Classification method is 

done in this project based on easy interpretation in modeling and algorithm. The 

comparison was made towards other methods in the end of this project.  

 

 

 

 

1.3 Objective 

 

 

The main objective of this project is to investigate the performance of 

original Naïve Bayes classification task for imbalanced datasets problems. It is hope 

that, in the end of project, this study will give initial overview towards original Naïve 

Bayes classifier performance. 

 

 

 

 

1.4 Scope of study 

 

 

This project will focus on the implementation of original Naïve Bayes in 

binary classification. Binary classification means either class “1” or class “0”. The 

datasets chosen consist of numbered value with multivariable inputs. This project is 

not dealing with any text classification datasets. The dataset been used based on the 

typical  benchmarking datasets that usually implement for classification problem  

from University of California, Irvine (UCI) machine learning repository website 

without any data loss.  
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1.5 Outline of Project Report 

 

 

This project was explained in five chapters. Chapter 1 states on the general 

idea of classification of imbalanced dataset, problem statement, the objective of 

project and scope of study. 

 

 

Chapter 2 discover in more details the classification and imbalanced datasets 

concepts. After that overviews of previous approach done by researcher in the area 

will be discussed. Lastly, the writer will relates those literature with the one that used 

in this project, Naïve Bayes 

 

 

Chapter 3 will describes the Naïve Bayes classification method and the 

implementation of this method in MATLAB programming environment. 

 

 

Chapter 4 is for result and discussion section. In this chapter the performance 

of Naïve Bayes classification method was explained and comparison to other method 

was made.  

 

 

Lastly, final conclusion was made in chapter 5.  This chapter will conclude 

the result that we obtained in chapter 4 and come out with some suggestion for future 

work.  
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