CAPACITANCE TOMOGRAPHY TECHNIQUE FOR IMAGING MIXTURE OIL AND WATER

MASTURAH TUNNUR BINTI MOHAMAD TALIB

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical – Mechatronics & Automatic Control)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2012

To my lovely husband, parent and supportive friends

Thank you for all your support, may god bless all of you.

ACKNOWLEDGEMENTS

Firstly I would to thank my project supervisor Prof. Dr. Ruzairi bin Abdul Rahim for his guidance, support and advice along this period of time. Without his support, difficult to me to completed this project.

My special thanks to Mr. Nor Muzakkir who has always stand by my side, willingly given his time and effort whenever I need help, advice and guidance during develop this project. I also wish to express my thank to Mr. Hafiz Fazalul for his opinion and supported and not forget to all supportive member of PROTOM group. Without you guys, the thing may difficult to me.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

Electrical Capacitance Tomography (ECT) sensor is non-invasive device that used the Electrical Capacitance Tomography Techniques which is non – intrusive technique to measure the concentration of flow inside the pipeline. By develop 12 ECT sensors with MATLAB programming software, the distribution of fluids inside pipeline or vessel can be visualized easily. By design a simple 12 ECT sensor with portable electrodes may reduce the difficulties on sensor construction and configuration. Perhaps that, this project can give some idea to anyone out there to develop better ECT system in practice. This system also can be used to investigate volume ratio of mixture oil and water particularly in horizontal-stratified distribution inside a flowing pipeline. Data from hardware system can be computed using MATLAB software in order to visualize the cross-section image of pipeline. Linear Back projection algorithm is taken in to account as a projection method use in this project.

ABSTRAK

Pengesan Tomografi Kapasitan Electrik(ECT) merupakan alat yang tidak merbahaya yang menggunakan kaedah atau teknik tomografi kapacitan yang tidak intrusif untuk mengukur dan mengetahui taburan kandungan bahan dalam paip. Dengan membina 12 pengesan Tomografi Kapasitan Electrik bersama dengan pengaturcaraan perisian MATLAB, pengagihan bendalir dalam sesuatu paip dapat diketahui dan dilihat dengan mudah. Rekabentuk yang ringkas dan mudah alih ini dapat masalah dalam pembinaan dan pengyelenggaraan pengesan ini. Diharapkan melalui projek ini, seseorang di luar sana dapat membina Sistem Tomografi Kapasitan yang lebih baik untuk kegunaan yang sebenar. Sistem ini juga boleh digunakan bagi mengetahui nisbah campuran air dan minyak terutamanya dalam pengaliran bendalir secara mendatar dan berlapis di dalam paip. Selain itu, data daripada sistem perkakasan boleh di analisa secara terus oleh perisian MATLAB dalam usaha untuk memaparkan gambar keratan rentas sesuatu paip. Unjuran belakang linear (Linear Back projection algorithm) diambil kira sebagai cara penayangan dalam projek ini.

TABLE OF CONTENTS

CHAPTER		PAGE	
	DECLARA	ATION	ii
	DEDICAT	ION	iii
	ACKNOW	LEDGEMENT	iv
	ABSTRAC	CT	V
			vi
	ABSTRAK		
	TABLE O	F CONTENTS	vii
	LIST OF 7	Х	
	xi		
	LIST OF S	SYMBOLS	xiii
	LIST OF A	APPENDICES	XV
1	INTRODU	ICTION	1
	1.1	An overview	1
	1.2	Problem Statement	2
	1.3	Objective of project	3
	1.4	Research Scope	4

2	ELECTRI	CAL T	OMOGRAPHY SYSTEM	5
	2.1	Elect	rical Capacitance Tomography System	6
	2.2	ECT	System Design of capacitance sensor	7
		electr	odes.	
	2.3	Switc	hing Circuit	8
	2.4	Meas	urement Capacitance	9
	2.5	Image	e Reconstruction	10
	2.6	Summ	nary of Literature Review	12
3	HARDWA	RE DE	VELOPMENT	14
	3.0	Desig	n the ECT sensor	14
	3.1	Imple	ementation of Sensor Construction	16
	3.2	Mech	anical Part Construction	17
	3.3	Elect	rical Part Construction	20
	3	3.3.1	Design of capacitance circuit	20
	3	3.3.2	Sine wave generator circuit	22
	3	3.3.3	Switching circuit	24
	3	3.3.4	AC capacitance measuring circuit	25
	3	3.3.5	Absolute value circuit	27
	3	3.3.6	Low pass filter	29
	3.4	PCB	Design	31
	3.5	Imple	ementation of ECT sensor	32
4	SOFTWAI	RE DEV	ELOPMENT	33
	4.1	ECT	System Calibration Procedure	34
	4.2	Adva	ntage of Normalization	38
	4.3	Effec	tive Permittivity	38
	4.4	Image	e Reconstruction	41
	4.5	Linea	r Back Projection	42
	4.6	Progr	amming Flow Chart	46

5	EXPERIM	ENTAL RESULT	47
	5.1	Output signal from hardware	48
	5.2	Gapping Between Guard and Electrode	49
	5.3	LBP and System Calibration	51
	5.4	Image Reconstruction	52
	5.5	Comparison of Actual Simulation and	58
		Measurement Image	
6	CONCLUS	SION AND DISCUSSION	59
	6.1	Problem Facing	60
	6.2	Suggestion Future Work	61
	6.3	Conclusion	61
REFERENCE	S		62
Appendices A-	D		64 - 88

ix

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Summary of Literature Review Finding	12
5.1	Example of voltage recorded at detection electrodes for	50
	gapping 2mm	
5.2	Example of voltage recorded at detection electrodes for	50
	gapping 4mm	
5.3	Comparison of actual simulation and measurement	58
	image	

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		
1.0	Capacitance tomography imaging system	2
2.0	The switched capacitor charge-transfer circuit	8
2.1	AC Capacitance measuring circuit	10
2.2	Image projection	10
3.0	12 section of the circumference pipe line	15
3.1	overall ECT process	16
3.2	Dimension of electrode	17
3.3	Bending electrode	17
3.4	Lead wire connected to the electrode plate	18
3.5	Electrode mounted together with outer screen	18
3.6	Axial guard and driven guard	19
3.7	electrode was shield with outer screen	20
3.8	ECT system topology	21
3.9	Cross-sectional of ECT sensor	21
3.10	Sine wave generator circuit using MAX038	22
3.11	Sine wave generator output	23
3.12	Switching circuit	24

3.13	AC Capacitance Measuring Circuit	26
3.14	Absolute Value Circuit	28
3.15	Low Pass Filter Circuit	29
3.16	Reciever Circuit	30
3.17	Complete Receiving Circuit with switching	31
3.18	Design PCB layout of receiving circuit	31
3.19	ECT Hardware	32
4.1	Example of data collection under analysis	37
4.2	parallel plate capacitance cells	39
4.3	Capacitance cell filled with horizontal - stratifies of	39
	water and oil.	
4.4	Example of Sensitivity Maps	43
4.5	Flowchart for image reconstruction process	46
5.1	output signal from detection electrode and AC	48
	capacitance measuring circuit.	
5.2	Example of data collection under analysis	52
5.3	2D image reconstructed of 50% oil and 50% water	53
	mixture	
5.4	3D image reconstructed of 50% oil and 50% water	54
	mixture	
5.5	GUI for 50% oil and 50% water mixture	54
5.6	Normalized voltage vs electrode pair for mixture of 50%	55
	oil and 50% water	
5.7	2D image reconstructed of 20% oil and 80% water	56
	mixture	
5.8	3D image reconstructed of 20% oil and 80%water	56
	mixture	
5.9	GUI for 20% oil and 80% water mixture	57
5.10	Normalized voltage vs electrode pair for mixture of	57
	20% oil and 80% water	

LIST OF SYMBOLS

А	-	Total gain of measurement system
A/D	-	Analog to digital
С	-	Matrix of inter-electrode capacitance
СН	-	Capacitance measured at higher permittivity
CL	-	Capacitance measured at lower permittivity
СМ	-	Measured capacitance
CN	-	Normalized capacitance
Coil	-	Relative capacitance of oil
Cr	-	Relative capacitance
Cs1	-	Stray capacitance of connecting lead
Cs2	-	Stray capacitance at Op-Amp feedback point
Cwater	-	Relative capacitance of water
Cx	-	unknown standing capacitance
d	-	Distance of 2 parallel plate
D	-	Sensor diameter
3	-	Effective permittivity
ε ₀	-	Permittivity of free space
ε _{oil}	-	Relative permittivity of oil
ε _r	-	Relative permittivity
ε water	-	Relative permittivity of water
f	-	Frequency

funitygain –	-	Unity gain frequency
К	-	Matrix of permittivity
Ke	-	Effective pixel permittivity
Ken	-	Normalized effective pixel permittivity
КН	-	Pixel permittivity at lower permittivity
KL	-	Pixel permittivity at higher permittivity
L	-	Length of electrode
Μ	-	Number of individual standing capacitance
Μ	-	Total number of pixels
Ν	-	Total number of pixels
Ν	-	Number of measuring electrodes
Q	-	Unknown matrix
S	-	Sensitivity matrix
S ⁻¹	-	Inverse sensitivity matrix
SNR	-	Signal to Noise Ratio
$\mathbf{S}^{\mathbf{T}}$	-	Transpose sensitivity matrix
Vi	-	Input voltage
Vo	-	Output voltage
VR	-	Volume ratio
W	-	Width of electrode
Х	-	Volume ratio
$\Delta \mathbf{C}$	-	Error capacitance matrix
ΔΚ	-	Error pixel matrix
ωο	-	Corner frequency

LIST OF APPENDICES

APPENDIX.	TITLE	PAGE
А	Receiver circuit	64
В	MATLAB Programming	66
С	Image of ECT Sensor	83
D	Isometry Drawing of ECT Sensor	86

CHAPTER 1

INTRODUCTION

1.5 An overview

An Electrical Capacitance Tomography (ECT) system has been developing to visualize the component or dielectric distribution in the flow processes since 1980's. This tomography technique is non-invasive, low cost, fast response, good safety performance and wide application in industries compare to other conventional tomography techniques. By definition tomography is define as:

Radiography in which an image of a predetermined plane in the body or other object is obtained by rotating the detector and the source of radiation in such a way that pints outside the plane give blurred image. Also in extended use, any analogous technique using other form of radiation.

(William et al., 1995)

Normally, Electrical Capacitance Tomography (ECT) is use for visualized and measured the permittivity distribution in a cross section by using multi-electrode capacitance sensor. The measurement of the ECT is based on the capacitance of the permittivity () of the medium between electrode plates over the entire sensing volume. For n electrodes, it must have (n(n-1)/2) measurement. This system is consist of three main parts which is sensor array providing the projection information, signal transformation and adjusting circuit and image reconstruction from projection and display unit.

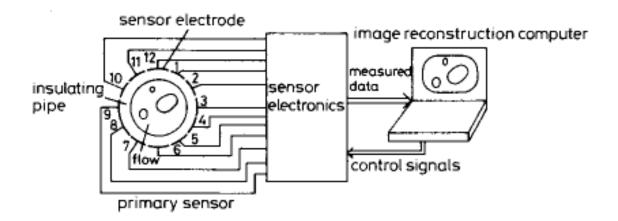


Figure 1: Capacitance tomography imaging system

1.6 Problem Statement

There some problem statements are listed by researchers during their task like data acquisition performances where the data transfer rate can't achieve the maximum rate due to pooling time, hardware and software processing time and data losses on the transmission line (cable). Problem regarding image reconstruction algorithm if we use Linear Back Projection (LBP) method because image produced are blurred. Another problem is how to visualize the cross-section image which it may take a long time to study and understand the program language.

1.7 **Objective Project:**

The main objective of this project is aims to visualize the image of two component fraction inside the pipeline (oil and water). However to achieve this main objective, there are some specific objectives need to consider:

- i. Familiarize with the concept of ECT system including the projection type and image reconstruction.
- ii. Designing the ECT sensors and develop the hardware and software.
- iii. Successful testing the system.

1.4 Research Scope:

This project is consists of 2 stages which at the early stage is design the ECT sensors and next stage is development of hardware (implementation of ECT System). In order to achieve the main objective, there is several research scopes have been done for this project as listed below:

i) Designing of sensor electrodes and hardware system

The construction of ECT system can divide into 2 stages which is mechanical part and electrical part. The mechanical part also includes searching suitable materials for used as ECT capacitance sensor, radial and outer screen. Then for electrical part, we need implements the measurement system and digital controlling circuit on printed circuit board (PCB) and design of PCB. All the activities as material survey, sensor fabrication, coaxial cable connection technique and also budget cost of those materials needed to be consider..

ii) Study and design Software using MATLAB.

Study on how to use MATLAB software for ECT system image reconstruction. This part including investigation of data acquisition system, study on how image reconstruction can be done using MATLAB and how this software to acquired data from hardware.

REFERENCES

- Ruzairi Abdul Rahim.,2011. Optical Tomography: Principles, Techniques and Applications, Penerbitan UTM Press, First Edition 2011, 7-9.
- [
- [2] R.A.Williams, M.S.Beck, 1995. Process Tomography: Principles, Techniques and Applications, Electrical Tomography, 301-319..
- [3] R.A.Williams, M.S.Beck, 1995. Process Tomography: Principles, Techniques and Applications, Image Reconctruction, 281-295
- [4] E.Johana,2011. Electronic Design for Portable Electrical Capacitance Sensor: A Multiphase Flow Measurement, 4th International Conference on Mechatronics (ICOM)
- [5] S.M.Huang,1992. Design of sensor electronics for electrical capacitance tomography, IEEE PROCEEDINGS –G, Vol.139, No.1
- [6] Yan Li, 2011. Image Reconstruction Algorithm for Electrical Capacitance Tomography, Information Technology Journal 10(8):1614-1619,2011
- [7] Wuqiang Yang, 2010. Topical Review: Design of electrical capacitance tomography sensors, Measurement. Science and Technology. 21(2010) 042001(13pp)
- [
- [8] C.Yossontikul, 2002. An Electrical Capacitance Tomography, ICSP'02 Proceeding

[

- [9] Yan Li, 2007. The Study on Image Data Acquisition System for Electrical Capacitance Tomography System, IEEE Conference on Industrial Electronics and Applications.
- [
- [10] A.Martinez Olmos, 2007. Influence of design parameters of ECT sensors on the quality of image reconstruction, Journal of Physics: Conference Series 76(2007)012051
- [11] Chan Kok Seong, "Electrical Capacitance Tomography (ECT) System with Mobile Sensor for the liquid measurement." Universiti Teknologi Malaysia: Meng.Thesis,2008..
- Kjell Joar Alme and Saba Mylvaganam, 2006. Electrical Capacitance
 Tomography- Sensor Models, Design, Simulation and Experimental Verification,
 IEEE Sensor Journal, Vol 6, No.5, October 2006.