ASPECTS OF ANALYSIS OF SIMPLY SUPPORTED BRIDGE DECKS

MUNIRAH BINTI MOHMAD

A report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

JANUARY 2012

Specially dedicated to my beloved mom and dad

I love you.

ACKNOWLEDGEMENT

Assalamualaikum....

Alhamdulillah, first of all I would like to thank God for giving me the strength to complete this thesis. I would also like to extend sincere appreciation and heartfelt gratitude to my project supervisor, **Assoc. Prof. Dr. Arizu B. Sulaiman**, for his guidance, effort, concern, assistance, encouragement and criticism for me being able to complete this project as required.

I would like to thank my fellow classmates and friends for their support and help during the course of my studies. My sincere appreciation extends to all my lecturers in UTM who have encouraged and supported me throughout my degree program.

Last but not least, for this achievement I am grateful to my parents for all the sacrifices, family members, friends and colleagues for being very understanding and supportive in a way or another all the while.

vi

Thank you.

ABSTRACT

Bridge analysis is a process in which one determines the responses of structures due to load effects. The responses usually constitute of deflections, torsions, support reactions, bending moments and shear forces. The analysis can be done based on the types of decks and the characteristic behaviours of the bridge structure itself. There are several types of analysis that can be used to analyze the bridge deck structure. However, it is difficult in terms of the suitability to select the method that is most appropriate for a particular problem. This study is conducted in order to evaluate the common methods of bridge deck analysis and to compare the performance between each type of analysis either by using the manual calculation or software analysis. The focus of this study is on the grillage method of analysis and the finite element method of analysis. Subsequently, the method of analysis that can yields suitable and better results is proposed. One structural form of bridge deck in varying skewness and simply supported has been chosen as the case study. This deck is analyzed using the commercially available software called LUSAS. The results show that the finite element method yields lower values than the grillage method. On the other hand, the values of responses whether deflection, bending moment, shear force, support reaction and torsion decrease as the skewness of the bridge deck increases. Based on these findings, it can be concluded that the finite element method can offer better and suitable results especially with the advent of software and computer technology nowadays.

ABSTRAK

Analisis jambatan adalah satu proses mengenal pasti tindak balas struktur yang berlaku akibat daripada kesan tindakan beban. Tindak balas yang berlaku kebiasaannya terdiri daripada pesongan, kilasan, daya tindak balas, moment lentur dan daya ricih. Analisis boleh dijalankan berpandukan kepada jenis-jenis geladak jambatan dan ciri-ciri struktur jambatan itu sendiri. Terdapat beberapa jenis analisis yang boleh digunakan untuk menganalisa struktur geladak jambatan. Namun begitu, ianya adalah sukar untuk memilih analisis yang sesuai untuk sesuatu masalah berkaitan. Kajian ini adalah bertujuan untuk menilai kaedah yang biasa digunakan untuk mengalisa geladak jambatan dan untuk membuat perbandingan antara setiap kaedah dengan menggunakan samada pengiraan dengan tangan ataupun dengan analisis perisian. Kajian ini lebih tertumpu kepada kaedah jerejak dan kaedah unsur terhingga. Selepas itu, kaedah yang menghasilkan keputusan yang sesuai dan baik akan dipilih. Satu struktur geladak jambatan dengan kecondongan yang berbeza dan disokong mudah telah dipilih dalam kajian ini. Geladak ini telah dianalisa dengan menggunakan perisian yang telah dikomersialkan di pasaran iaitu LUSAS. Keputusan menunjukan bahawa kaedah unsur terhingga menghasilkan nilai yang lebih rendah daripada kaedah jerejak. Disebaliknya, nilai tindak balas bagi pesongan, kilasan, daya tidak balas, moment lentur dan daya ricih juga menurun dengan kecondongan geladak jambatan meningkat. Berdasarkan kepada dapatan, ianya boleh disimpulkan bahawa kaedah unsur terhingga boleh menawarkan keputusan yang sesuai dan baik khususnya dengan kemajuan perisian and teknologi komputer pada masa kini.

TABLE OF CONTENT

1

2

PAGE

DEC	LARATION	ii	
DED	v		
ACK	NOWLEDGEMENT	vi	
ABS	TRACT	vii	
ABS	TRAK	viii	
ТАВ	LE OF CONTENT	ix	
LIST	FOF TABLE	xiii	
LIST	FOF FIGURE	XV	
LIST	COF ABBREVIATION	xviii	
LIST	LIST OF SYMBOL		
INTI	RODUCTION	1	
1.1	General Review	1	
1.2	Problem Statement	3	
1.3	Objective of Study	3	
1.4	Scope of Study	4	
LITI	ERATURE REVIEW OF BRIDGE DECK		
ANA	LYSIS	5	
2.1	Introduction	5	
2.2	Bridge Responses	6	

	2.2.1	Longitudinal Moments	7
	2.2.2	Longitudinal Shear	8
	2.2.3	Transverse Moments	9
	2.2.4	Transverse Shear	10
2.3	Types	of Deck and Their Behavior	11
	2.3.1	Beam Decks	11
	2.3.2	Solid Slab Decks	12
	2.3.3	Voided Slab decks	14
	2.3.4	Cellular Slab Decks	15
	2.3.5	Box Beam Decks	16
	2.3.6	Composite Beam/Slab Decks	17
2.4	Types	of Deck Analysis	18
2.5	Grillag	ge Analysis	22
	2.5.1	Grillage Program	23
	2.5.2	Grillage Examples	24
		2.5.2.1 Solid Slab	24
2.6	Finite	Element Analysis	27
	2.6.1	Properties of finite element	28
	2.6.2	Types of Element	29
	2.6.3	Guidelines for Finite Element Analysis	32
	2.6.4	Examples Finite Element Analysis	34
		2.6.4.1 Solid Slab	34
2.7	Bridge	e Loading	36
RES	EARCH	METHODOLOGY FOR BRIGE	39
	K ANA		
3.1	Introd	uction	39
3.2	Bridge	e Data	42
3.3	Grilla	ge Analysis	44

3.3.1 Grillage Modeling

3.3.2 Creating Longitudinal Beam,

		Transverse Beam, Edge Beam and	
		End Diaphragm Model	46
	3.3.3	Creating Grillage Model	48
	3.3.4	Adding Section Library Items and	
		Materials to the Treeview	52
	3.3.5	Loading	54
		3.3.5.1 Dead Load and Superimposed	
		Dead Load	54
		3.3.5.2 HA Loading	56
		3.3.5.3 HB Loading	57
		3.3.5.4 Load Cases	59
		3.3.5.5 Live Load Combinations	59
		3.3.5.6 Smart Load Combinations	62
3.4	Finite	Element Analysis	63

4 RESULTS AND DISCUSSION OF STUDY

Introduction 4.1 68 4.2 Grillage Results 69 4.3 Finite Element Results 75 Comparison between Grillage and 4.4 Finite Element Analysis 81 Manual Calculation for Simple Span 4.5 87 4.6 Discussions 89

5 CONCLUSION AND RECOMMENDATIONS 90

5.1	Conclusion	90
5.2	Recommendations	91

68

LIST OF REFERENCES	92
LIST OF APPENDICES	94

LIST OF TABLE

TABLE NO.

TITLE

PAGE

2.1	Structural Responses on Bridge Deck		
2.2	Applicability of Analyses		
2.3	Notional Lanes		
2.4	HA Lane Factors	37	
3.1	HA + KEL on all lanes	60	
3.2	HB on lane 1 and HA + KEL on lane 3 and 4	61	
3.3	HB on the middle lane and HA + KEL on		
	lane 1 and 4	61	
3.4	HB all alone at lane 1	61	
3.5	Smart Load Combination	62	
4.1	Description of Load Cases		
4.2	Deflection Values for 6 Load Cases	69	
4.3	Torsion Values for 6 Load Cases	71	
4.4	Bending Moment Values for 6 Load Cases	72	
4.5	Shear Force Values for 6 Load Cases	73	
4.6	Support Reaction Values for 6 Load Cases	74	
4.7	Deflection Values for 6 Load Cases	75	
4.8	Torsion Values for 6 Load Cases	77	
4.9	Bending Moment Values for 6 Load Cases	78	
4.10	Shear Force Values for 6 Load Cases	79	
4.11	Support Reaction Values for 6 Load Cases	80	

4.12 Maximum Value for Deflect	ion 81
4.13 Maximum Value for Torsion	n 83
4.14 Maximum Value for Bendin	g Moment 84
4.15 Maximum Value for Shear H	Force 85
4.16 Maximum Value for Suppor	t Reaction 86

LIST OF FIGURE

FIGURE NO. TITLE

PAGE

1.1	Portion of Bridge Illustrating Bridge			
	Engineering Terms	1		
2.1	Longitudinal Strip of T-Beam	7		
2.2	Actions of Vx at a Transverse Section	8		
2.3	Action of Transverse Moment	9		
2.4	Shear Force Responses in Shear Keys	10		
2.5	Beam Decks Bending and Twisting	Beam Decks Bending and Twisting		
	Without Change of Cross-Section	12		
2.6	Solid Slab Decks Section	13		
2.7	Load Distribution in Slab Deck by			
	Bending and Torsion in Two Directions	13		
2.8	Voided Slab Decks	14		
2.9	Cellular Slab Decks	15		
2.10	Box Beam Decks	16		
2.11	Contiguous Beams and Slab Deck and			
	Slab Contiguous Beam and Slab Deck	17		
2.12	Main Geometrical Platforms for the Deck	18		
2.13	Single Span Solid Slab Deck	25		
2.14	One Dimensional Elements	29		
2.15	Examples of Higher Order Elements	30		
2.16	Two Dimensional Elements	31		

2.17	Possible Shape of Quadrilateral Finite	
	Elements and Meshes of Finite Elements	33
2.18	Single Span Solid Slab Deck	34
2.19	Dimensions of HB Vehicle	38
3.1	Flow of Study	40
3.2	Bridge Cross Section A-A	41
3.3	Grillage member section properties	44
3.4	Section Properties Calculator for	
	Longitudinal Beam	46
3.5	Section Properties Calculator for End	
	Diaphragm	47
3.6	Grillage Wizard's Menu	48
3.7	Grillage Wizard's Window	49
3.8	Skew Angle Section	50
3.9	Width of Grillage Section	50
3.10	Length of Span Section	51
3.11	Grillage Model	51
3.12	Section Library	52
3.13	Material Library	53
3.14	Selfweight	55
3.15	Superimposed Dead Load	55
3.16	HA + KEL loading on lane 1	57
3.17	HB loading on lane 1	58
3.18	Basic Combination Windows	60
3.19	Section Properties Calculator for	
	Longitudinal Beam	63
3.20	Line Mesh	64
3.21	Surface Mesh	65
3.22	Thicknesses and Eccentricity	65
3.23	Material Library	66
3.24	Beam and Shell Element	67
3.25	3D Model Beam and Shell Element	67

4.1	Deflection Diagram	70
4.2	Torsion Diagram	71
4.3	Bending Moment Diagram	72
4.4	Shear Force Diagram	73
4.5	Support Reaction Diagram	74
4.6	Deflection Diagram	76
4.7	Torsion Diagram	77
4.8	Bending Moment Diagram	78
4.9	Shear Force Diagram	79
4.10	Support Reaction Diagram	80
4.11	Graph Comparisons for Maximum Deflection	
	between Finite Element and Grillage Analysis	82
4.12	Graph Comparisons for Maximum Torsion	
	between Finite Element and Grillage Analysis	83
4.13	Graph Comparisons for Maximum Bending	
	Moment between Finite Element and Grillage	
	Analysis	84
4.14	Graph Comparisons for Maximum Shear Force	
	between Finite Element and Grillage Analysis	85
4.15	Graph Comparisons for Maximum Support	
	Reaction between Finite Element and Grillage	
	Analysis	86

LIST OF ABBREVIATION

2D	=	Two Dimensional
3D	=	Three Dimensional
LUSAS	=	London University Structural Analysis Software
HA	=	Normal Load of Live Load
HB	=	Abnormal Load
UDL	=	Uniform Distributed Load
KEL	=	Knife Edge Load

LIST OF SYMBOL

kN	=	kiloNewton
m	=	meter
mm	=	millimeter
BMS3	=	3D Engineering Thick Beam Element
QTS4	=	3D Thick Shell Element
δ	=	deflection
γf1	=	Variable Factor

CHAPTER 1

INTRODUCTION

1.1 General Review

A bridge is a structure built to span physical obstacles such as a body of water, valley, or road for the purpose of providing passage over the obstacle. Designs of bridges vary depending on the function of the bridge, the nature of the terrain where the bridge is constructed, the material used to make it and the funds available to build it. A bridge is designed for trains, pedestrian or road traffic, a pipeline or waterway for water transport or barge traffic.

Bridges may be classified by how the forces of tension, compression, bending, torsion and shear are distributed through their structure. The analysis have been developed in the last thirty years by using hand methods and recently the application of digital computers have enabled engineers to analyze decks with complex and complicated structure. There are several types of deck construction divided into beam, slab, beam and slab and cellular slab. Each type of deck has their different geometric and behavioural characteristics. The method of analysis can be determined based on deck behaviors characteristics. Figure 1.1 shows the component that is usually found on a typical bridge.

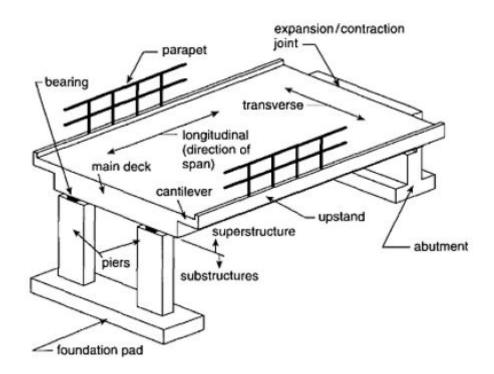


Figure 1.1 Portion of Bridge Illustrating Bridge Engineering Terms (O'Brien and Keogh, *Bridge Deck Analysis*, 1999)

1.2 Problem Statement

Recently most of the engineer was using finite element method as their method of analysis. Although for the simple structure, it will become costly because the finite element method is quite difficult and it may take time-consuming process compare to the grillage method of analysis. Moreover, some of the methods of analysis of are not suitable for certain types of bridge deck because of their geometric and their behavior characteristics. As such there is a need to conduct a thorough comparison between each type of analysis method in order to know and understand which analysis method is more suitable for a particular type of decks.

1.3 Objective of Study

The objectives of this study are as follows:

- 1. To evaluate the available methods of bridge deck analysis
- To compare the performance between each type of analysis methods for analyzing bridge deck
- 3. To conduct the analysis of bridge deck using grillage method and finite element method
- 4. To propose which method of analysis that can provide better and suitable results

1.4 Scope of Study

There are several types of bridges commonly constructed and this study is focused on a Highway Bridge. Among the structural forms of bridge deck, simply supported beam and slab deck is selected to be studied. This study is conducted in order to evaluate the common methods of bridge deck analysis and to compare the performance between each type of analysis either by using the manual calculation or software analysis. The focus of this study is on the grillage method of analysis and the finite element method of analysis. Subsequently, the method of analysis that can yields suitable and better results is proposed. One structural form of bridge deck in varying skewness and simply supported has been chosen as the case study. This deck is analyzed using the commercially available software called LUSAS. Besides that, only vertical loadings are considered which are dead load, superimposed dead load and HA and HB loading.

REFERENCES

- Bakht B. and Jaeger L. G. (1985). *Bridge Analysis Simplified*. New York: McGraw Hill
- British Standard Institution (2001). *Design Manual for Road and Bridges: Part 14* Loads for Highway Bridge, London, BD 37/01.
- Cusen A.R and Pama R.P, (1975). Bridge Deck Analysis. London: John Wiley
- Geeves D., (1994). IEM Training Seminar. A Comparison of Bridge Deck Analysis Techniques. October 6, 1994. Petaling Jaya, Malaysia: The Institution of Engineers Malaysia
- Hambly E. C. (1976). *Bridge Deck Behaviour. First Edition*. New York: Taylor and Francis Group
- Hambly E. C. (1991). *Bridge Deck Behaviour. Second Edition.* New York: Taylor and Francis Group
- Iles, D. C. (1991). *Design Guide for Simply Supported Composite Bridges*. Ascot : SCI Publication, Steel Construction Institute.
- Kakish M. (2007). American Journal of Applied Sciences: Bending Moments Distribution at the Main Structural Elements of Skew Deck Slab and Their Implementation on Cost Effectiveness. 4 (12): 1036-1039.
- Kyoung, B. H, Kwang, S. K., Young, J. L. and Sun, K. P. (2003). KSCE Journal of Civil Engineering: Analysis Method for PSC-Girder Bridge Deck Slab with Flexible Girder. Vol. 7, No.5: 515-524.
- LUSAS Software Manual, Version 14, United Kingdom

- O'Brien, E.J and Keogh, D.L. (1999). *Bridge Deck Analysis*. 1st Edition. New York: Taylor and Francis Group
- Sabeeh Z.A, Ammar A.A and Rana A.A. (2009). Eng. & Tech. Journal: Analysis of Composite Bridge Superstructures Using Modified Grillage Method, Vol.27, No.5.
- Shahrin M., Yusuf A. and Nur Fardzilah A. R. (2002). 2nd World Engineering Congress: *The Performance of Steel Bridge Deck with Additional Steel Plate at the Bottom Flange*. July 22-25, 2002. Sarawak, Malaysia.

www.LUSAS.com