AN IMPROVED FEED-FORWARD LINEARISATION OF OPTICAL TRANSMITTER FOR RADIO OVER FIBER SYSTEM

SURYANI ALIFAH

UNIVERSITI TEKNOLOGI MALAYSIA

AN IMPROVED FEED-FORWARD LINEARISATION OF OPTICAL TRANSMITTER FOR RADIO OVER FIBER SYSTEM

SURYANI ALIFAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2012

To the Beneficent, the Merciful for Your protect, blessing, strength and unlimited love

To my beloved parents, my beloved husband, my beloved children and my beloved siblings for their continous loves and support

ACKNOWLEDGEMENT

Alhamdulillah, praise to Allah S.W.T that has given me the continous blessing, strength and guidance to accomplish this thesis.

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Sevia Mahdaliza Idrus, Deputy Director I, School of Graduate Studies, Universiti Teknologi Malaysia (UTM) for her excellent support, guidance and encouragement throughout my graduate studies. I also would like to thank my cosupervisor, Assoc. Prof. Dr. Norazan M. Kassim for his guidance and valuable advice.

I would like to thank Assoc. Prof. Dr. Norazan M. Kassim, Director of Centre of Optoelectronics Technology (CoeT), UTM, for providing the opportunity and facilities to conduct the practical measurement in his laboratory and also I want to acknowledge the technician Mr. Akhmad Hassan and Mr. Mohd K. Rusydan Kassim for helping me to use the accommodation at their laboratory.

I would like to thank Associate Professor Dr Mohamad Kamal A Rahim, staff of Antenna Technology Research Group (ATRG), UTM, for providing the facilities to conduct the experiments in his laboratory, and also I want to acknowledge the technician Mr Fairuz of its laboratory for helping me in setting up the experiments.

I want to acknowledge the Ministry of Higher Education for their financial support through the Escience Funds (01-01-06-SF0360) Vot 79236.

I want to acknowledge the Universitas Islam Sultan Agung Semarang, Indonesia, for their financial support of my studies.

Finally, I would like to thank to the members of Photonics Technology Laboratory for their help and support. I am also indebted to my parents, husband, children, siblings, colleagues, friends for their constant support and encouragement.

ABSTRACT

Radio over fiber (RoF) technology provides an efficient and cost effective solution to increase the capacity of mobile communication systems and the coverage of wireless broadband communication systems. This is due to the growing data traffic and bandwidth demands. However, the performance of an RoF system is limited by the linearity of the optical transmitter that contributes to major nonlinear distortions in the links. Meanwhile, in multichannel applications, high linearity is required to avoid a channel interference due to nonlinear distortions. The feedforward linearisation technique offers a number of advantages compared to other techniques such as a broadband distortion reduction at high frequencies and simultaneous reduction in all orders of distortion. Therefore, it is suitable for linearisation of the optical transmitter. But, the existing design uses many electronic components causing difficulty for the amplitude and phase matching to achieve the optimum distortion reduction and also generate the parasitic parameter at high frequency. This thesis aims to improve the performance of the optical feedforward transmitter by reducing the electrical component without decreasing the distortion reduction performance; thus reducing the difficulty for the amplitude and phase matching and the parasitic parameter at high frequency. System characterisation is carried out by the mathematical analysis using Volterra series approach and simulation using a commercial optical design software which is validated by the practical measurement. It shows that the IMD3 reduction is good for high frequency. More than 15 dB IMD3 reduction is achieved over the carrier frequency 1.2 to 2.4 GHz using the proposed system practically. In addition, the proposed system is simpler and less sensitive in the amplitude and phase matching to obtain the optimum distortion reduction since the distortion suppression is influenced by less electrical parameters compared to other works.

ABSTRAK

Teknologi isyarat radio melalui gentian (RoF) merupakan satu penyelesaian yang cekap dan kos efektif untuk meningkatkan kapasiti system perhubungan bergerak dan liputan sistem perhubungan jalur lebar wayarles. Ini disebabkan oleh lalu lintas data dan permintaan lebar jalur yang sentiasa bertambah. Walau bagaimanapun, prestasi sistem RoF telah dihadkan oleh kelinearan pemancar optik yang menyumbang kepada herotan tak linear yang besar dalam pautan-pautannya. Sementara itu, dalam aplikasi berbilang saluran, kelinearan yang tinggi diperlukan untuk mengelakkan gangguan saluran yang disebabkan oleh herotan tak linear. Teknik pelinearan suap depan mempunyai beberapa kebaikan berbanding dengan teknik-teknik lain, seperti pengurangan herotan jalur lebar pada frekuensi tinggi dan pengurangan serentak herotan dari semua tertib. Oleh sebab itu, teknik tersebut sesuai untuk linearisasi pemancar optik. Tetapi, reka bentuk yang ada menggunakan banyak komponen elektrik yang menyebabkan kesulitan daripada padanan amplitud dan fasa untuk mencapai pengurangan herotan yang optimum dan juga membangkitkan parameter parasit pada frekuensi tinggi. Tesis ini bertujuan untuk memperbaiki prestasi pemancar suap depan optik dengan mengurangkan komponen elektrik tanpa menurunkan prestasi pengurangan herotan; sehingga kesulitan daripada padanan amplitud dan fasa dan parameter parasit pada frekuensi tinggi dapat dikurangkan. Pencirian sistem dijalankan dengan analisis matematik menggunakan penghampiran siri Volterra dan simulasi menggunakan perisian reka bentuk optik komersial. Reka bentuk tersebut disahkan oleh pengukuran praktik. Didapati bahawa pengurangan IMD3 adalah baik pada frekuensi tinggi. Lebih daripada 15 dB pengurangan IMD3 telah dicapai pada frekuensi pembawa 1.2 hingga 2.4 GHz menggunakan sistem yang dicadangkan secara praktik. Tambahan pula, sistem yang dicadangkan adalah lebih ringkas dan kurang sensitif dalam padanan amplitud dan fasa untuk mendapatkan pengurangan herotan yang optimum, disebabkan penindasan herotan dipengaruhi oleh pengurangan parameter elektrik berbanding kajian-kajian lain.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xviii
	LIST OF ABBREVIATIONS	xix
	LIST OF APPENDICES	xxii
1	INTRODUCTION	1
	1.1 Radio over Fiber Technology	1

1	Radio	over Fibe	er Technology	1
	1.1.1	Benefits	of RoF Technology	4
		1.1.1.1	Low Attenuation Loss	4
		1.1.1.2	Large Bandwidth	5
		1.1.1.3	Immunity to Electro-Magnetic	6
			Interference	
		1.1.1.4	Easy Installation and Maintenance	6
		1.1.1.5	Reduced Power Consumption	7
		1.1.1.6	Multi-Operator and Multi-Service	7
			Operation	

	1.1.1.7 Dynamic Resource Allo	cation 7
	1.1.2 Applications of RoF Technology	8
	1.1.2.1 Mobile Communication	Network 8
	1.1.2.2 Broadband Wireless Net	work 9
	1.1.2.3 Video Distribution Servi	ices 11
	1.1.2.4 Intelligent Transport Sys	stem 11
	1.1.3 Performance Limitation of RoF	12
1.2	Motivation	13
1.3	Problem Statement	14
1.4	Research Objectives	15
1.5	Project Scope	15
1.6	Research Methodology	16
	1.6.1 Literature Review	17
	1.6.2 Architectural Design	18
	1.6.3 Performance Analysis	18
	1.6.4 Modelling and Simulation	18
	1.6.5 Experimental Setup	19
	1.6.6 Measurement and Analysis	19
1.7	Thesis Outline	19
LITI	ERATURE REVIEW ON OPTICAL	22
NON	NLINEARITY MITIGATION TECHNIQ	UES
2.1	Introduction	22
2.2	Predistortion Linearisation Technique	23
	2.2.1 Predistortion Technique Principle	23
	2.2.2 Related Works	24
2.3	Feedback Linearisation Technique	28
	2.3.1 Feedback Technique Principle	28
	2.3.2 Related Works	29
2.4	Optical Injection Linearisation Technique	e 31
	2.4.1 Optical Injection Principle	31
	2.4.2 Related Works	32
2.5	Dual Parallel Modulation Technique	33

	2.5.1 Dual Parallel Modulation Principle	33
	2.5.2 Related Works	34
2.6	Quasi Feedforward Technique	35
	2.6.1 Quasi Feedforward Principle	35
	2.6.2 Related Works	36
2.7	Feedforward Linearisation Technique	37
	2.7.1 Feedforward Technique Principle	37
	2.7.2 Related Works	39
2.8	Summary of the Linearisation Works in Optical	44
	Domain	
DES	IGN AND ANALYSIS OF OPTICAL	56
FEE	DFORWARD TRANSMITTER	
3.1	Introduction	56
3.2	Performance of RoF Link	57
3.3	Performance Criteria of Laser Transmitter	59
	3.3.1 Output Power / Slope Efficiency	60
	3.3.2 Relative Intensity Noise	62
	3.3.3 Laser Nonlinearity	64
3.4	Volterra Model of Directly Modulated Laser	65
3.5	Intermodulation Distortion Analysis of the	66
	Previous OFT Design	
3.6	Design and Analysis of an Improved Feedforward	74
	Optical Transmitter	
	3.6.1 Design Methodology	75
	3.6.2 Architectural System of the Proposed OFT	76
	3.6.3 Component Selection	77
	3.6.4 Performance Analysis	78
	3.6.5 Design Consideration	86
	3.6.5.1 Linearity of the Second Laser	86
	3.6.5.2 Selection of the Coupling Ratio	86
	3.6.5.3 Optical Interference in the Optical	87
	Coupler	

		3.6.5.4 Effect of Loop Imbalance	87
		3.6.5.5 Dispersion Penalty	88
	3.7	Summary	89
			0.1
4	MOI	DELING AND SIMULATION OF THE	91
	OPT	TICAL FEEDFORWARD TRANSMITTER	
	4.1	Introduction	91
	4.2	Schematic Setup for Simulation	92
	4.3	Simulation Procedures	97
		4.3.1 Loop Adjustment of the OFT System	97
		4.3.2 Power Efficiency of the OFT System	104
		4.3.3 Harmonic Distortion	106
		4.3.4 Intermodulation Distortion	108
	4.4	Summary	110
5	MEA	ASUREMENT AND ANALYSIS	112
	5.1	Introduction	112
	5.2	Experimental System Configuration	112
	5.3	Component Used and Specification	115
		5.3.1 Equipment	115
		5.3.2 Laser Diode Circuits	116
		5.3.3 Electrical Combiner/Splitter	117
		5.3.4 Digital Step Attenuator	118
		5.3.5 Optical Coupler	119
		5.3.6 Optical Isolator	119
		5.3.7 Optical Phase Shifter	120
		5.3.8 Photodetector	121
	5.4	Measurement Procedures	122
		5.4.1 Harmonic Distortion Test	122
		5.4.2 Intermodulation Distortion Test	126
	5.5	Result Analisys	129
	5.6	Summary	131

6	CON	NCLUSIONS	133
	6.1	Discussions and Conclusions	133
	6.2	Achievements and Publications	136
	6.3	Recommendations for Future works	130
REFERENCES		140	

Appendices A-L	148 - 175

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Bandwidth of various telecommunication medium	5
1.2	Comparison of the mobile communication technology	9
1.3	Comparison of the broadband wireless technology	11
2.1	Previous works on predistortion linearisation technique	45
2.2	Previous works on feedback linearisation technique	47
2.3	Previous works on external optical injection technique	48
2.4	Previous works on dual parallel modulation technique	49
2.5	Previous works on quasi feedforward technique	50
2.6	Previous works on feedforward linearisation technique	50
2.7	Quantitative comparisons of various linearisation	53
	techniques	
2.8	Qualitative comparisons of various linearisation techniques	53
2.9	The advantages and disadvantages of various linearisation	54
	techniques	
3.1	Laser parameter of the main and second laser	71
5.1	Specification of the optical isolator	120
5.2	Specification of the optical phase shifter	121

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Statistics of ICT access in the world	1
1.2	Statistics of internet bandwidth growth in the world	2
1.3	Basic RoF system	3
1.4	Comparison of attenuation loss for electronic and	
	optical cables	5
1.5	Evolution of wireless technology	8
1.6	Types of wireless data network	10
1.7	RF spectrum of nonlinear distortion	14
1.8	Flowchart of the research methodology	17
2.1	Principle of predistortion linearisation	23
2.2	Block diagram of a nonlinear system	23
2.3	Block Diagram of a third-order predistortion system	24
2.4	The basic principle of feedback linearisation	28
2.5	Feedback Linearizer of Mach Zehnder Modulator	29
2.6	The Principle of Optical Injection Linearisation	31
2.7	The Principle of Dual Parallel Modulation Linearisation	34
2.8	The Principle of Quasi Feedforward Linearisation	36
2.9	Basic feedforward architecture	38
3.1	Spurious Free Dynamic Range	59
3.2	Representative plot of a diode laser's optical power, $p_{l,t}$,	61
	vs. the current through the laser, $i_{\rm bt}$, with the threshold	
	current, $I_{\rm T}$, and a typical bias current, $i_{\rm L}$, for analog	
	modulation	
3.3	The equivalent circuit of an RF link for NF calculation	63
	with RIN dominated noise and a directly modulated	
	laser	
3.4	Representation of the previous OFT design	67

3.5	Representation of Volterra model counterpart	67
3.6	Variation of IMD3/C with frequency f_1 before and after	72
	linearisation at bias current 30 mA, index modulation	
	0.1 and Δf 100 kHz at frequency range up to 10 GHz	
3.7	Variation of IMD3/C with frequency f_1 before and after	72
	linearisation at bias current 30 mA, index modulation	
	0.1 and Δf 100 kHz at frequency range up to 2.4 GHz	
3.8	Variation of IMD3 reduction with frequency f_1 at bias	73
	current 30 mA, index modulation 0.1 and Δf 100 kHz at	
	frequency range up to 10 GHz	
3.9	Variation of IMD3 reduction with frequency f_1 at bias	74
	current 30 mA, index modulation 0.1 and Δf 100 kHz at	
	frequency range up to 10 GHz	
3.10	Logical flow of the system design methodology	75
3.11	Architecture of the proposed optical feedforward	76
	transmitter (OFT)	
3.12	System representation using Volterra approach	79
3.13	Volterra transfer function of overall system	79
3.14	Variation of IMD3/C with frequency f_1 before and after	83
	linearisation at bias current 30 mA, index modulation	
	0.1 and Δf 100 kHz up to 10 GHz	
3.15	Variation of IMD3/C with frequency f_1 before and after	84
	linearisation at bias current 30 mA, index modulation	
	0.1 and Δf 100 kHz up to 2.4 GHz	
3.16	Variation of IMD3 reduction with frequency f_1 at bias	85
	current 30 mA, index modulation 0.1 and Δf 100 kHz up	
	to 10 GHz	
3.17	Variation of IMD3 reduction with frequency f_1 at bias	85
	current 30 mA, index modulation 0.1 and Δf 100 kHz up	
	to 10 GHz	
4.1	Schematic setup for one-tone simulation of the	92
	nonlinearised system	

4.2	Schematic setup for one-tone simulation of the OFT	92
4.3	Schematic setup for two-tone simulation of the nonlinearised system	93
4.4	Schematic setup for two-tone simulation of the OFT system	93
4.5	Main parameters of the first laser for OFT system simulation	94
4.6	Physical parameters of the first laser for OFT system simulation	95
4.7	Main parameters of the second laser for OFT system simulation	96
4.8	Physical parameters of the second laser for OFT system simulation	96
4.9	Schematic setup for tuning the signal cancellation loop	98
4.10	RF carrier power of signal cancellation loop for frequency range 5.2 GHz - 6.2 GHz optimized at 5.8 GHz for amplitude and phase matching	98
4.11	RF carrier power of signal cancellation loop optimized at 5.8 GHz for amplitude and phase matching	99
4.12	Schematic setup for tuning the distortion cancellation loop	100
4.13	The value of beta (β) as a function of C_1 and C_2	100
4.14	The value of Beta (β) as a function of ($C_1 + C_2$)	101
4.15	IMD3 of distortion cancellation loop for frequency range of 5.2 GHz - 6.2 GHz optimized at 5.8 GHz for amplitude and phase matching	102
4.16	IMD3 reduction of the new design vs. varying coupling coefficient	103

4.17	IMD3 reduction of the new design vs. gain and phase imbalance	104
4.18	Variation of output power with input power for the nonlinearised and OFT system for the nonlinearised system	105
4.19	RF spectrum of the nonlinearised system with harmonic distortion at 2.4 GHz of the carrier frequency	106
4.20	RF spectrum of the OFT system with harmonic distortion at 2.4 GHz of the carrier frequency	107
4.21	HD2 of the nonlinearised and OFT system optimized at 2.4 GHz of the carrier frequency	108
4.22	Normalized RF output spectrum of the nonlinearised and OFT system	109
4.23	IMD3 variation with carrier frequency of the nonlinearised and OFT system	110
5.1	Experimental setup for system testing without linearisation	113
5.2	Experimental setup for one-tone testing of the proposed OFT	114
5.3	Experimental setup for two-tone testing of the proposed OFT	115
5.4	The equipments used for the measurement	116
5.5	Laser diode circuits used for measurement	117
5.6	Electrical combiner and electrical splitter	118
5.7	Digital step attenuator	118
5.8	Optical couplers used for the testing	119
5.9	Optical isolators for testing	120
5.10	Optical phase shifter used for testing	121
5.11	Photodetector used for testing	122
5.12	HD spectrums of (a) the nonlinearised and (b) OFT	122
	system at 0.9 GHz of the carrier frequency	

5.13	HD spectrums of(a) the nonlinearised and (b) OFT	123
	system at 1.8 GHz of the carrier frequency	
5.14	HD spectrums of (a) the nonlinearised and (b) OFT	124
	system at 2 GHz of the carrier frequency	
5.15	HD spectrums of (a) the nonlinearised and (b) OFT	124
	system at 2.4 GHz of the carrier frequency	
5.16	Variation of HD2 with carrier frequency from 0.7 GHz	125
	to 2.4 GHz optimized at 2.4 GHz of the carrier	
	frequency	
5.17	IMD3 spectrums of (a) the nonlinearised and (b) OFT	126
	system at 0.9 GHz of the carrier frequency	
5.18	IMD3 spectrums of (a) the nonlinearised and (b) OFT	127
	system at 1.8 GHz of the carrier frequency	
5.19	IMD3 spectrums of (a) the nonlinearised and (b) OFT	127
	system at 2 GHz of the carrier frequency	
5.20	IMD3 spectrums of (a) the nonlinearised and (b) OFT	128
	system at 2.4 GHz of the carrier frequency	
5.21	Variation of HD2 with carrier frequency from 0.7 GHz	129
	to 2.4 GHz optimized at 2.4 GHz	
5.22	Result comparison of (a) the mathematical analysis (b)	130
	the simulation (c) the measurement	

LIST OF SYMBOLS

С	-	coupling coefficient
e	-	electron charge
g	-	optical gain factor
gi, gt	-	intrinsic link gain
I, i	-	laser current
k	-	Boltzmann constant
m	-	optical modulation depth
Ν	-	carrier density
Р, р	-	optical power
<i>Q</i> , <i>q</i>	-	photon density
R	-	resistance
r_d	-	responsivity of photodetection device
S _{md}	-	slope efficiency of modulation device
Т	-	temperature
V	-	volume of active region
β	-	fraction of spontaneous emission
Γ	-	optical confinement factor
Е	-	gain compression parameter
λ	-	wavelength
$ au_n$	-	recombination lifetime
$ au_p$	-	photon lifetime

LIST OF ABBREVIATIONS

1G	-	First Generation		
2G	-	Second Generation		
3G	-	Third Generation		
4G	-	Fourth Generation		
AM	-	Amplitude Modulation		
AMPS	-	Advanced Mobile Phone Service		
ASK	-	Amplitude Shift Keying		
BER	-	Bit-Error Rate		
BS	-	Base Station		
CATV	-	Cable Television		
CDMA	-	Code-Division Multiple Access		
CMOS	-	Complementary Metal-Oxide-Semiconductor		
CNR	-	Carrier to Noise Ratio		
COTS	-	Commercial-Off-The-Shelf		
CS	-	Central Station		
CSO	-	Composite Second Order		
СТВ	-	Composite Triple Beat		
CW	-	Continuous Wave		
D/A	-	Digital-to-Analog Converter		
DC	-	Direct Current		
DCL	-	Distortion Cancellation Loop		
DCS	-	Digital Cellular System		
DFB	-	Distribution Feedback		
DML	-	Directly Modulated Laser		
DSP	-	Digital Signal Processing		
DWDM	-	Dense Wavelength Division Multiplexing		

EA	-	Electroabsorption		
EAM	-	Electroabsorption Modulator		
EDGE	-	Enhanced Data Rate for GSM Evolution		
EMI	-	Electro-Magnetic Interference		
EML	-	Electroabsorption Modulated Laser		
EO	-	Electrical-to-Optical		
ETC	-	Electronic Toll Collection		
FDMA	-	Frequency-Division Multiple Access		
FPGA	-	Field Programmable Gate Array		
FWM	-	Four-Wave Mixing		
GPRS	-	General Packet Radio Service		
GSM	-	Global System for Mobile-Communications		
HD	-	Harmonic Distortion		
HSCSD	-	High Speed Circuit Switched Data		
ICT	-	Information and Communication Technologies		
IDA	-	Instantaneous Digital Adaptation		
IMD3	-	Third order Intermodulation Distortion		
IMDD	-	Intensity Modulation and Direct Detection		
IIP3	-	Third-order Intercept Point		
ISM	-	Industrial, Scientific, and Medical		
ITS	-	Intelligent Transportation System		
LD	-	Laser Diode		
LED	-	Light-Emitting Diode		
LUT	-	Look-Up Table		
MQW	-	Multiquantum Well		
MVDS	-	Multipoint Video Distribution Services		
MZM	-	Mach Zehnder Modulator		
NF	-	Noise Figure		
NPR	-	Noise Power Ratio		
NRZ	-	Non-Return-to-Zero		
OFT	-	Optical Feedforward Transmitter		
OMD	-	Optical Modulation Depth		
OMI	-	Optical Modulation Index		

OSNR	-	Optical Signal-to-Noise Ratio		
OTDM	-	Optical Time Domain Multiplexing		
PD	-	Photo Diode		
PM	-	Phase Modulation		
RAU	-	Remote Antenna Unit		
RF	-	Radio Frequency		
RIN	-	Relative Intensity Noise		
RoF	-	Radio over Fiber		
SCL	-	Signal Cancellation Loop		
SCM	-	Sub-Carrier Multiplexing		
SFDR	-	Spurious Free dynamic Range		
SHD	-	Second Harmonic Distortion		
SMF	-	Single-Mode Fiber		
SNDR	-	Signal-to-Noise and Distortion Ratio		
SOA	-	Semiconductor Optical Amplifier		
TDMA	-	Time-Division Multiple Access		
TETRA	-	Terrestrial Trunked Radio		
THD	-	Third Harmonic Distortion		
UWB	-	Ultra-Wideband		
VCSEL	-	Vertical-Cavity Surface-Emitting Laser		
VICS	-	Vehicle Information and Communication System		
WCDMA	-	Wideband CDMA		
WDM	-	Wavelength Division Multiplexing		
WiMAX	-	Worldwide Interoperability for Microwave Access		
WLAN	-	Wireless Local Area Network		
WMAN	-	Wireless Metropolitan Area Network		
WoF	-	Wireless-over Fiber		
WPAN	-	Wireless Personal Area Networks		
XGM	-	Cross-Gain Modulation		

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Volterra Model of a Directly Modulated Laser	148
В	Derivation of the Equation 3.25	153
С	Derivation of Fourier transformation from the	156
	equation 3.26 into 3.27	
D	Derivation of Fourier transformation from the	159
	equation 3.28 into 3.29	
Е	Proof of the equation 3.30	162
F	Proof of the equation 3.31 and 3.32	165
G	Derivation of the equation 3.36	167
Н	Proof of the equation 3.42 and 3.43	170
Ι	Datasheet of Laser Transmitter Agilent 83430A	172
J	Datasheet of Power Splitter/Combiner of	173
	Minicircuits ZFRSC-123+	
Κ	Datasheet of Digital Step Attenuator of	174
	Minicircuits ZX76-15R5-PP+	
L	Datasheet of Fiber Coupled Photodetector of	175
	Thorlabs PDA8GS	

CHAPTER 1

INTRODUCTION

1.1 **Radio over Fiber Technology**

The fast growth of mobile-cellular telephone subscribers and mobile or fixed broadband internet users has triggered a traffic explosion and raised the demands for high broadband capacity and wide coverage network. Figure 1.1 shows the global ICT access from 2006 to 2011. It shows that the mobile-cellular subscriptions reached 5.9 billion in 2011 with a global penetration ratio of 87%. Meanwhile the mobile-broadband subscriptions have grown 45% annually over the last four years and today there are twice as many mobile-broadband as fixed broadband subscriptions[1].

Figure 1.1 Statistics of ICT access in the world [1]

International internet bandwidth, a key factor for providing high-speed internet access to the growing number of internet users, has grown exponentially over the last five years, from 11,000 Gbit/s in 2006 to close to 80,000 Gbit/s in 2011 as shown in Figure 1.2 [1]. Therefore, the future network is encouraged to have a larger capacity to handle the ever-growing data traffic and also a wider coverage to serve broader areas. However there is a trade off between capacity and coverage.

Source: ITU World Telecommunication/ICT Indicators database

Figure 1.2 Statistics of internet bandwidth growth in the world [1]

The capacity of mobile communication system can be increased by converting the architectures into smaller cells, namely micro or pico cells, together with increasing the carrier frequency. A smaller cell allows more simultaneous mobile users, however the interconnection task will increase while the number of micro-cells in the network increases. Therefore, higher carrier frequency is necessary to overcome the congested ISM band frequencies since it offers a greater modulation bandwidth.

Unfortunately, the system cost will increase while the number of base stations (BSs) increases in the smaller cell and the BSs operate in higher frequencies. In order to overcome this problem, Radio-over-Fibre (RoF) technology has been considered as an attractive solution. In an RoF system, the radio system functionalities in BSs

are centralized at the Central Station (CS) thereby making the BSs simpler and cheaper.

RoF technology is a technique to deliver radio signals through optical networks. A basic RoF system is described in Figure 1.3 [2]. In the downlink transmission, RF signals modulate the laser diode directly and result in intensity modulated optical signals at the CS. After that, they are transmitted through an optical fiber to the BS. At the BS, the signals are demodulated directly employing a photodiode (PD) for recovering the RF signals. Furthermore, they are amplified and radiated by an antenna. Based on modulation and detection perspective, RoF technology is known as intensity modulation and direct-detection (IMDD) that is the simplest method for optically distributing RF signals.

The opposite process is carried out in the uplink transmission. At the BS, RF signals from the antenna directly modulate the laser diode and then the resulting optical signals are transmitted through an optical fiber to the CS. At the CS, the intensity modulated optical signals are demodulated directly employing a PD for recovering the RF signals. After that, the signals are amplified and further processed.

1.1.1 Benefits of RoF Technology

RoF technology is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing these interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data, and multimedia services that require the access network to support high data rates at any time and any place inexpensively. Next, several key advantages of RoF technology are discussed further.

1.1.1.1 Low Attenuation Loss

The distribution of RF signal electronically suffers from a significant loss at high carrier frequencies because of the impedance increment with frequency. As an alternative solution, optical fiber can be used to distribute RF signals at high frequencies due to its low attenuation loss. This loss varies depending on the fiber type and the operating wavelength. The comparison of attenuation loss between electronic and optical cables is shown in Figure 1.4. As can be seen, the 1.5 μ m optical fiber has the lowest loss, followed by the 1.3 and 0.8 μ m optical fiber. On the other hand, electronic cables have higher loss than optical fibers for any usable frequency [3].

Figure 1.4 Comparison of attenuation loss for electronic and optical cables [3]

1.1.1.2 Large Bandwidth

In electronic systems, high speed signal processing is difficult to be realized because of the bandwidth limitation of the electrical cable. As a solution, optical fibers which provide a huge bandwidth due to their operation in very high frequencies (THz) are employed for high speed signal processing. Comparison of bandwidth for electronic and optical telecommunication medium can be seen in Table 1.

Types of Communication medium	Carrier Frequency	Bandwidth				
Copper cable	1 MHz	100 KHz				
Coaxial cable	100 MHz	10 MHz				
Radio frequencies	500 KHz to 100 MHz	10 MHz				
Microwave frequencies	200 GHz	20 GHz				
Optical fiber cable	100 THz to 1000 THz	40 THz				

Table 1.1: Bandwidth of various telecommunication medium [4]

The bandwidth limitation in electronic systems is an encumbrance in huge bandwidth usage of optical links while transforming electronic signals into optical signals and vise versa. To overcome this problem, Sub-Carrier Multiplexing (SCM) is employed in analog optical systems and RoF systems, meanwhile Optical Time Domain Multiplexing (OTDM) and Dense Wavelength Division Multiplexing (DWDM) are employed in digital optical systems. Those techniques are able to increase the utilization of the optical bandwidth. This makes RoF systems cost-effective.

1.1.1.3 Immunity to Electro-Magnetic Interference

RoF systems transmit RF signals as light through optical fibers that are immune to Electro-Magnetic Interference (EMI). Interferences emerge while an external source emits electromagnetic inductions or radiations which generate an electrical current as they cut across the conductors. Therefore EMI can be transpired in electronic cables as conductors but they cannot occur in optical fibers [5].

1.1.1.4 Easy Installation and Maintenance

The radio system functionalities in the expensive and complex equipments are concentrated at the CS thereby making the BSs or remote antenna units (RAU) simpler in RoF systems. This makes the system installation and maintenance of BS/RAU easier and reduces the maintenance cost. Easy installations and low maintenance costs of RAUs are very important requirements for mm-wave systems, because of the large number of the required RAUs [5]. In applications where RAUs are not easily accessible, the reduction in maintenance requirements leads to major operational cost savings. Smaller RAUs also lead to reduced environmental impact.

1.1.1.5 Reduced Power Consumption

In RoF systems, the complicated equipments in BS/RAU are moved into the CS thereby reducing the power consumption of BS/RAU [5]. Since there are plenty of BSs and RAUs in RoF systems, the reduction of power consumption is essential. Moreover, some RAUs are located in the unreachable area of the power grid.

1.1.1.6 Multi-Operator and Multi-Service Operation

RoF technology is capable of transporting all kinds of signals and services in a scenario of the broadband wired and wireless convergence. Multi-operator and multi-service operation can be transmitted simultaneously in an RoF system by employing effective multiplexing such as SCM/WDM, resulting in plenty of economic savings [6]. By using RoF technology, RF signals in any modulation format can be transmitted for a long distance and distributed through wireless access systems. Standards independence and multiservice operation are also facilitated.

1.1.1.7 Dynamic Resource Allocation

RoF systems are able to allocate the capacity dynamically due to the centralization of RF functionalties in the CS. WDM technique can be employed to allocate the optical wavelengths. For an instance during the peak time, an area can be allocated more capacity than during off times and the capacity can also be reallocated to other areas. Conversely, it cannot occur while using the permanent allocation of capacity that dispose resources [6].

1.1.2 Applications of RoF Technology

Various applications that distribute RF signals through short as well as long transmission link, such as cellular communication systems, wireless data communication systems, CATV distribution system, etc, can be realized using RoF technology. In the following subsection, its applications are discussed.

1.1.2.1 Mobile Communication Network

One of the important application of RoF technology is the mobile communication system. It has evoluted into a higher speed and larger capacity system as shown in Figure 1.5. Larger capacity and higher speed can be achieved by converting the architectures into smaller cells together with increasing the carrier frequency. Using RoF technology, it can be realized in an effective cost because of the simplification of the BSs.

Figure 1.5 Evolution of wireless technology [7]

Mobile communication technology has evoluted rapidly ever since the first generation (1G) with analog traffic channels and FDMA for multiple access that has improved by Advanced Mobile Phone Service (AMPS) to overcome the spectral congestion. Second generation (2G) systems have been developed to address the demands for greater capacity, better-quality signals and higher data-rates to support the digital services with GSM and CDMA one. In order to support the increased throughput data rates that are required for modern mode applications, new datacentric standards have been developed and they can be overlaid upon the existing 2G infrastructures. There are three TDMA upgrades viz. High Speed Circuit Switched Data (HSCSD), General Packet Radio Service (GPRS), Enhanced Data Rate for GSM Evolution (EDGE) and one CDMA upgrade IS-95B have been categorized as 2.5G standards. To support multimedia transmissions, third generation (3G) standards, high-speed mobile technology have been developed, namely Wideband CDMA standards which are based on backward compatibility with GSM and IS-136/PDC and CDMA 2000 standards which are based on backward compatibility with IS-95. Furthermore, in order to solve the still-remaining problems of 3G systems and provide a wide variety of new services such as high-quality voice, highdefinition video, and high-data-rate wireless channels, Fourth Generation (4G) standards were developed. Table 1.2 describes the comparison of performance between mobile communication technologies [8, 9, 10].

Technology	1G	2G	2.5G	3 G	4 G
Standard	AMPS	GSM	GPRS	WCDMA/	Single
		IS-54TDMA	EDGE	CDMA2000/	Unified
		IS-95CDMA	1xRTT	EDVO/ LTE	Standard
RF Band	800 MHz	900, 1800,	900, 1800,	0.9, 1.8, 1.9	2-8 GHz
		1900 MHz	1900 MHz	& 2.1 GHz	
Data Rate	1.9 Kbps	14.4 Kbps	14.4 Kbps	2 Mbps	200 Mbps

Tabel 1.2: Comparison of the mobile communication technologies

1.1.2.2 Broadband Wireless Network

Another essential application of RoF technology is the broadband wireless data communication system. Using the technology, the complexity of the system can

be reduced by using a centralized architecture that incorporates a simplified Remote Antenna Unit (RAU) which can be located closer to the customer.

Broadband wireless data communication systems can be categorized into mobile and fixed wireless. The two broadband mobile wireless network technologies are the third Generation (3G) and Fourth Generation (4G) networks which have been discussed in the previous subsection. Meanwhile the emerging fixed wireless networks are shown in Figure 1.6 based on their coverage, namely ZigBee, WiFi-802.11n and WiMAX.

Figure 1.6 Types of wireless data network [11]

ZigBee is a Wireless Personal Area Networks (WPAN) technology based on IEEE 802.15.4 standard that is simpler and cheaper than other WPANs such as Bluetooth. It is able to provide low data rate wireless communications with highprecision ranging and localization by employing UWB technologies for a low-power and low cost solution. WiFi is a Wireless Local Area Network (WLAN) technology based on IEEE 802.11 standard, which consists of 802.11a, 802.11b, 802.11g and the newest standard, 802.11n that promises both higher data rates and increased reliability. Meanwhile the technology of Wireless Metropolitan Area Network (WMAN) based on IEEE 802.16 standards is known as WiMAX. WiMAX allows higher data rates over longer distances, efficient use of bandwidth, and it avoids

Technology	ZigBee	WiFi	WiMax	3G	4G
Standard	IEEE	IEEE	IEEE	WCDMA/	Single
	802.15.4	802.11	802.16	CDMA2000/	Unified
		a/b/g/n	a/d/e	EDVO/LTE	Standard
RF Band	2.4 GHz	5/2.4/2.4/	10-66/2-11	0.9, 1.8, 1.9	2-8 GHz
		2.4 &5GHz	2-6 GHz	& 2.1 GHz	
Data Rate	250 Kbps	54/11/54/	75 Mbps	2 Mbps	200 Mbps
		600 Mbps			
Coverage	70 – 100 m	100 m	50 km	6 miles	30 miles

Tabel 1.3: Comparison of the broadband wireless technologies

1.1.2.3 Video Distribution Services

RoF systems have been used for video (TV) broadcast employing cellular terrestrial transmission system known as Multipoint Video Distribution Services (MVDS). Recently, the services have been equipped by the service interactive using a return channel. While operating in 40 GHz, the maximun cell size of MVDS is about 5 km which can serve a small town. RoF systems can be used to increase the coverage and simplify remote transmitters that are usually located on a mast or a tall building [14]. Moreover, wireles cable TV (CATV) can be implemented using an RoF system that can provide seamless services between indoor and outdoor environments [15].

1.1.2.4 Intelligent Transport Systems

Another potential application of RoF is Intelligent Transport Systems (ITS) that provide continuous mobile communications on major roads. It intends to provide traffic informations, improve transportation efficiency, reduce burden on drivers, and contribute to the improvement of the environment [16]. Various ITS services such as electronic toll collection (ETC) system, vehicle information and

communication system (VICS), TV and radio broadcasting system, and mobile phone system can be integrated using RoF technology. It is able to enlarge the coverage by increasing the number of BSs while simplifying the BSs and reducing its cost.

1.1.3 Performance Limitation of RoF

RoF technology that is known as the intensity modulation and directdetection (IMDD) is fundamentally an analogue transmission system. Therefore, signal impairments such as noise and distortion are important in this system and they tend to limit the Noise Figure (NF) and Spurious Free Dynamic Range (SFDR) of the system. SFDR is the figure of merit that summarize the overall performance for mobile communication and wireless broadband network. The SFDR that is required in a radio over fiber system is influenced by the radio environment such as wireless standard specification and coverage range as well as the specific signal transport approach, and it can vary from 95 to 115 dB-Hz [17].

In RoF systems, the SFDR is mainly limited by the performance of the optical transmitter that is characterized by the application bandwidth, distortion and noise. Distortions can be caused by many factors. Static distortion occurs when the nonlinearities of the light-versus current (LI) are present. These nonlinearities are caused by spatial hole burning, gain compression, finite carrier transport times, and leakage currents. Dynamic distortion occurs when the nonlinearities of the devices cause different frequency components to mix together through the interaction of photons, electrons in the laser cavity. As a result of these nonlinearities in the device, it is possible for multiple frequencies from separate channels to interfere and mix with each other to produce new frequency components.

The application bandwidth determines the type of distortion that will affect the system. A narrow band system will be primarily affected by IMD3. The key figure of merit for such narrow band application is the spurious free dynamic range (SFDR), which is the range of inputs over which the output signal is unaffected by either noise or distortion. In contrast, a broadband system can be affected by IMD3 as well as second order harmonic and other intermodulation distortion products. The key figures of merit for broadband systems are the composite second order distortion and the composite triple beat (CTB) distortion.

The performance of the optical transmitter is also limited by the noise in the laser device, which is characterized by the relative intensity noise (RIN) and the linewidth. Both types of noise are related to the random carrier and photon fluctuations within the laser cavity. The linewidth is related to the phase noise and the RIN is related to the amplitude noise due to these random fluctuations.

1.2 Motivation

RoF system is potential to many important applications as highlighted above such as mobile communication system, wireless broadband communication system, video distribution system and ITS with many benefits such as cost effective, managable as well as low-loss, wide-bandwidth, EMI immunity, etc. However, the performance of an RoF system is limited by the nonlinearity of the optical transmitter. In multichannel systems, high linearity is required to avoid channel interference due to the nonlinear distortion.

For example, if two modulation frequencies, ω_1 and ω_2 , are transmitted within a channel, the second order distortions are $2\omega_1$, $2\omega_2$, $\omega_2 \pm \omega_1$ while the third order distortions are $3\omega_1$, $3\omega_2$, $2\omega_1 \pm \omega_2$, and $2\omega_2 \pm \omega_1$ as shown in Figure 1.7. If the transmission channel is carefully chosen, harmonic distortions $(2\omega_1, 2\omega_2, 3\omega_1, 3\omega_2, .$...) are of little concern since they generally do not fall within the channel. However, the third order intermodulation (IMD3) products at $2\omega_1 - \omega_2$ and $2\omega_2 - \omega_1$ usually lie within the channel and they must be carefully considered [18].

Figure 1.7 RF spectrum of nonlinear distortion

1.3 Problem Statement

The nonlinearity of the laser transmitter is a significant cause of performance degradation in multichannel RoF systems, while the application has stringent constraint on the system linearity. Many efforts have been done to improve the linerity using various linearisation techniques, however it still has the remaining problems. Predistortion technique might be a simpler approach but it has some restrictions since it exhibits device dependency and difficulty to suppress all order of distortions simultaneously [19-20]. In order to overcome the device dependency, feedback technique has been proposed by some researchers. Besides being a promising approach due to its cost effectiveness and simplicity, this technique is device-independent that can operate smoothly regardless of various device parameters. However, the feedback technique exhibits a limited operating bandwidth due to potential instability of the feedback loop at high frequency [21]. Likewise, the dual parallel modulation technique also suffers from narrow bandwidth [22]. Feed-forward linearisation technique offers a number of advantages compared to other techniques such as broadband distortion reduction at high frequency and reduction in all orders of distortion simultaneously [23,24]. However, in the feed-forward system, amplitude and phase matching are relatively complicated and sensitive, but critical for the optimum distortion reduction. Therefore the improved design of feed-forward linearisation for the optical transmitter is proposed to reduce its complexity and sensitivity without decreasing the performances.

1.4 Research Objectives

This research has several objectives based on the problems that were stated in the previous section. The main objectives are as follows:

- To determine the ability of an existing feed-forward linearisation technique for reducing the nonlinear distortion of an RoF optical transmitter system using Volterra series approach.
- (ii) To design an improved optical feed-forward transmitter system with less sensitive parameters that may deteriorate the system performances
- (iii) To verify the performance of the proposed feed-forward linearisation technique by the computer simulation and experimental results.

1.5 Project Scope

The research project focuses on the study of the feed-forward linearisation technique to reduce the nonlinear distortion of optical transmitters in RoF systems; which focuses on the design, analysis and practical measurement of the proposed system. Due to the limitation of the research equipment and facility, this project will focus on a certain properties of the system.

1. The research is considering utilization of a directly modulated semiconductor laser (DML) to transmit the optical signal through the single mode fiber

(SMF) in the RoF system. DML is simpler to implement and less expensive than the external modulation, therefore attractive for many applications.

- Performance analysis is carried out to calculate harmonic distortion (HD) and intermodulation distortion (IMD) reduction employing Volterra Series analysis as well as the effects of amplitude and phase matching in its loop on the achievement of nonlinear distortion reduction.
- 3. Software simulation is carried out to validate the calculation of HD and IMD reduction using Optical System Design Software Optisystem 10.
- 4. Practical measurement is carried out to revalidate the calculation of HD and IMD reduction at 2.4 GHz operating frequency.

1.6 Research Methodology

This section will cover all the issues of the approach considerations towards this project as shown in Figure 1.8.

Figure 1.8 Flowchart of the research methodology

1.6.1 Literature Review

In this phase, investigation on the current research and technology of the linearisation technique in the optical domain are undertaken. The advantages and disadvantages of the overall techniques are investigated thoroughly. The research progress on the feed-forward linearisation technique will be resumed. The laser

transmitter has to be studied thoroughly as well as the Volterra Series to model the laser nonlinearity.

1.6.2 Architectural Design

Investigation on the architecture of the optical feed-forward transmitter must be done as well as the operation of the system. Some issues such as the effect of loop imbalance, choosing of the optical-coupling ratio and dispersion penalty are important to be considered on the design since a perfect distortion cancellation is not possible.

1.6.3 Performance Analysis

Furthermore, performance analysis of the proposed design are investigated by modelling the system employing Volterra series approach. While the optimized performance is achieved, the next phase is continued. The architectural design are repeated as long as the expected performance is not achieved.

1.6.4 Modelling and Simulation

In this phase, modelling and simulations using industrial design and simulation suit Optisystem 10.0 from Optiwave System Inc. is carried out. The modelling and simulation are meant to provide the design guidelines and component selections of the feed-forward optical transmitter before the practical measurement. The semiconductor laser is modelled using the laser rate equation. While the optimized performance is achieved, the next phase is continued. The modelling and component selection are repeated as long as the expected performance is not achieved.

1.6.5 Experimental Setup

The optimum configuration from the simulation will be selected and realized through experimental setup. The prototype is developed based on the optimum specification, then the appropriate components are selected. After that, the laboratory testing is carried out.

1.6.6 Measurement and Analysis

In this phase the realized system is measured and performance characterisation is done. This is the crucial part where all the results from both the simulation and system implementation are analyzed thoroughly. It is important to compare both results and an optimum design is determined. If necessary, any problems and limitations on the design are solved and further implications, suggestions and any recommendations are illuminated. Modifications are done on the design until an optimum performance is obtained.

1.7 Thesis Outline

This thesis begins with Chapter 1 where the significance of radio over fiber technology in the future wireless communication systems, overview, benefits and limitation of the radio over fiber technology are described. The overview and performance limitation of semiconductor lasers are also presented. Then, the motivation and goals for the research are presented.

Following the introductory chapter, the previous research works related to this area are presented in Chapter 2. Several linearisation techniques in the optical domain are discussed as well as the state of the art of these techniques. The qualitative and quantitative comparisons between these techniques are also presented. Finally the advantages and disadvantages of these techniques are analyzed. In Chapter 3, the design and mathematical analysis of the OFT system are presented. Initially, investigation on a performance criteria of the RoF system and the optical transmitter is discussed. Investigation on the semiconductor laser using the Volterra series approach is then presented to be adopted in a mathematical analysis of the previous OFT system. Furthermore, the design methodology is discussed to describe the logical flow of the system design process. The architecural design of the OFT system is presented. The most fitting architecture as well as the system operation are demonstrated. Next, component selection is discussed. Volterra series representation is adopted to model the proposed design. This model is implemented in MATLAB to simulate the system performance. System characterisation is done to determine the optimum parameter. Finally, some design considerations such as the effect of loop imbalance, choosing of the optical-coupling ratio and dispersion penalty are also discussed based on the mathematical analysis.

In Chapter 4, the simulations of the proposed OFT system using the industrial design and simulation suit of 10.0 version Optisystem from Optiwave Design Group are presented. The schematic setups for simulation of the OFT system and nonlinearised system are described. The component parameters used in this simulation are also defined. Furthermore the system characterisation is carried out to predict the system performance. Before that, the amplitude and phase matching are carried out to optimize the system performance. The effect of loop imbalance to the system performance is also investigated. After the optimization, one- tone modulation is applied to predict the gain and harmonic distortion of the system. Moreover, two-tone modulation is applied to predict the IMD reduction.

Chapter 5 discusses the experimental setup of the proposed system to validate the previous results in chapter 3 and 4. The schematic setup for measurement is firstly presented. The components used in this measurement are also described. The measurement procedures and the related results are then presented. Finally the results are analyzed according to the previous results. Finally in Chapter 6, concluding remarks, achievements and suggestions for future works are discussed. The modelling technique obtained through this research can be applied for the future development of optical feed-forward transmitter design.

REFERENCES

- International Telecommunication Union. *ICT Facts and Figures*. Switzerland. 2011
- Ng'oma, A. Radio-over-Fibre Technology for Broadband Wireless Communication Systems. PhD Thesis. Eindhoven University of Technology. 2003
- 3. Cox, C. H. III. *Analog Optical Links: Theory and Practice*. Cambridge University Press, Cambridge, U. K. 2004
- 4. Gupta, S.C. *Texbook on Optical Fiber Communication and its Application*. New Delhi: PHI Learning Private Limited. 2009
- Hraimel, B. Enabling Technologies for Distribution of Broadband Radio over Fiber. PhD Thesis. Université De Montréal. 2010
- Medeiros, M. C. R. et. al. RoF net Reconfigurable Radio over Fiber Network Architecture Overview. *Journal of Telecommunication and Information Technology*. 2009. I (2011): 38-43.
- 7. Kumar, A., Liu.Y., Sengupta, J. and Divya. Evolution of Mobile Wireless Communication Networks: 1G to 4G. *IJET*. 2010. I(1): 68-72.
- Arshad, M. J., Farooq, A. and Shah, A. Evolution and Development Towards 4th Generation (4G) Mobile Communication Systems. Journal of American Science. 2010. 6(12): 63-68.
- Alomari, S. A., Sumari, P. and Taghizadeh, A. A Comprehensive Study of Wireless Communication Technology for the Future Mobile Devices. *European Journal of Scientific Research*.2011. 60(4): 583-591.
- Govil, J. and Govil, J. 4G Mobile Communication Systems: Turns, Trends and Transition. Proceedings of 2007 International Conference on Convergence InformationTechnology.IEEE.2007.13-18.

- Sidhu, B., Singh, H. And Chabra, A. Emerging Wireless Standards-WiFi, ZigBee and Wimax. World Academy of Science, Engineering and Technology. 2007. 25(2007) : 308-313.
- Šafarić, S. and Malarić, K. ZigBee wireless standard. Proceedings of 48th International Symposium ELMAR. June 7-9, 2006. Croatia. 2006. 259-262.
- Attar, A. Li, H. and Leung, V.M.C. Increasing TCP Throughput and Fairness in Cognitive WLAN over Fiber. *Proceedings of 2010 24th International Conference on Advanced Information Networking and Applications*. IEEE. 1069-1076.
- Hadow, M.M.M. Radio Access Point Design for Radio over Fiber Technology. Master Thesis. Universiti Teknologi Malaysia. 2008
- 15. Nazarathy, M. et. al. Progress in Externally Modulated AM CATV Transmission Systems. *Journal of Lightwave Technology*. 1993. 11(1): 82-105
- Al-Raweshidy, H. and Komaki, S. *Radio over Fiber Technologies for Mobile Communication Network*. 1st edition. Universal Personal Communication, Norwood, MA: Artech House Publishers. 2002
- Sauer, M, Kobyakov, A. and George, J. Radio over Fiber Technology for Picocellular Network Architectures. *Journal of Lightwave Technology*. 2007. 25(11): 3301-3320.
- Ghafouri-Shiraz, H. The Principles of Semiconductor Laser Diodes and Amplifiers: Analysis and Transmission Line Laser Modelling. Imperial College Press, London, 2004
- Alifah, S., Idrus, S.M. and Kassim, N.M. Simultaneous Noise Reduction and Linearity Improvement of Optical Feedforward Transmitter for Radio over Fiber Systems. *Proceedings of 5th International Symposium on High Capacity Optical Networks and Enabling Technologies*. November 18-20, 2008. Penang, Malaysia. IEEE. 2008. 97-101.
- 20. Alifah, S., Idrus, S.M. and Kassim, N.M. Better Performance of Optical Transmitter Using Feedforward Linearisation System for Multi Service Operation in Radio over Fiber Links. *Proceedings of 2008 IEEE Photonics Global@Singapore*. December 8-11, 2008. Singapore. IEEE. 2008. 1-4.
- Alifah, S. et. al. Intermodulation Distortion Analysis Of Feedforward Linearised Laser Transmitter Employing Volterra Series Approach. *Optik - Int. J. Light Electron Opt.* (2012), doi:10.1016/j.ijleo.2011.12.041.

- Korotky, S.K. and Ridder, R.M. Dual Parallel Modulation Schemes For Low-Distortion Analog Optical Transmission. *IEEE Journal on Selected Areas in Communications*. 1990. 8(7): 1377-1381.
- Ismail, T. and Seeds, A. J. Nonlinear distortion reduction in directly modulated semiconductor laser using feedforward linearization. *Proceedings of the London Communications Symposium*. September 8-9, 2003. London. University College London. 2003. 325-328.
- Ismail, T. and Mitchell, JE and Seeds, AJ. Linearity enhancement of a directly modulated uncooled DFB laser in a multi-channel wireless-over-fibre systems. *Proceedings of 2005 IEEE MTT-S International Microwave Symposium*. June 11-17, 2005. Long Beach, CA. IEEE. 2005. 7 – 10.
- Lin, H.T. and Kao, Y.H. Nonlinear Distortions and Compensations of DFB Laser Diode in AM-VSB Lightwave CATV Applications. *Journal of Lightwave Technology*. 1996.14(11):2561-2574.
- 26. Wilson, G. C. Predistortion of Electroabsorption Modulators for Analog CATV Systems at 1.55 μm. *Journal of Lightwave Technology*. 1997.15(9): 1654-1662.
- Roselli, L. et. al. Analog Laser Predistortion for Multiservice Radio-Over-Fiber Systems. *Journal of Lightwave Technology*.2003. 21(5):1211-1223.
- 28. Katz, A., et. al. Improved Radio Over Fiber Performance Using Predistortion Linearization. *IEEE MTT- S Digest*. 2003. 1403-1406.
- 29. Lin, F.C., et al. Linearisation for Analogue Optical Links Using Integrated CMOS Predistortion Circuits. *Proceedings of SPIE*. 2005. 5837:121-129.
- Tanaka, S., et al. A Predistortion Type Equi-Path Linearizer Designed for Radioon-Fiber System. IEEE. 2005. 15-18. *IEEE Transactions On Microwave Theory And Techniques*. 2006. 54(2): 938-944.
- Weber, C. et al. Electronic Precompensation of Intrachannel Nonlinearities at 40 Gb/s. *IEEE Photonics Technology Letters*. 2006. 18(16): 1759-1761.
- 32. Xu, Z. and MacEachern, L. A Predistortion Circuit Design Technique for High Performance Analogue Optical Transmission.IEEE. 2008. 213-216.
- Karar, A.S. Electronic Precompensation of the Nonlinear Distortion in a 10 Gb/s 4-ary ASK Directly Modulated Laser. *Proceedings of IEEE ECOC 2010*. 19-23 September 2010. Torino, Italy. 2010. P3-03.

- Meng, X.J., Yacoubian, A. and Bechtel, J.H. Electro-optical predistortion technique for linearisation of Mach-Zehnder modulators. *Electronics Letters*. 2001. 37(25):1545-1547.
- Choi, I. et al. Compensation of Intermodulation Distortion of Laser Diode by Using Optoelectronically Predistorted Signals. *Microwave And Optical Technology Letters*. 2006. 48(6):1144-1148.
- Moon, Y. T., Jang, J. W., Choi, W. K. and Choi, Y. W. A Broadband Linearization Method Using A Novel Opto-Electrical Predistorter For Radio-Over Fiber Systems. *Microwave And Optical Technology Letters*. 2010. 52(7):1638-1640.
- Chiu, Y. and Jalali, B. Broadband Linearization of Externally Modulated Fiber Optic Links. *Proceedings of 1998 International Topical Meeting on Microwave Photonics*. October 12-14, 1998. Princeton, N.J.. IEEE. 1998. 49-50.
- 38. Ellis, R. B. and Capstick, M. H. Feedback Control of a Linearised Mach-Zehnder Modulator for SCM Applications. *Proceedings of 1996 2nd High Frequency Postgraduate Student Colloquium*. September 13, 1996. Canada. York University. 1996. 33-38.
- Chiu, Y., et. al. Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links. IEEE Photonics Technology Letters. 1999. 11(1): 48-50.
- Shah, A.R., Jalali, B. Adaptive Equalisation for Broadband Predistortion Linearisation of Optical Transmitters. *IEE Proc.-Optoelectron*. 2005. 152(1): 16-32.
- 41. Moon, H. and Sedaghat, R. FPGA-Based adaptive digital predistortion for radioover-fiber links. *Microprocessors and Microsystems*. 2006. 30 (2006): 145-154.
- Tabatai, F and Al-Raweshidy, H.S. Optical predistortion feedback linearization for suppressing the nonlinearity in optical amplifier. *Proceedings of 2008 Asia-Pacific Microwave Conference*. December 16 -20, 2008. Macau. IEEE.2008. 1-4.
- Lee, S.H., et. al. Linearization of DFB Laser Diode By External Light-Injected Cross-Gain Modulation For Radio-Over-Fiber Link. *IEEE Photonics Technology Letters*.2006. 18(14): 1545-1547.
- 44. Yabre, G. and Bihan, J. L. Reduction of Nonlinear Distortion in Directly Modulated Semiconductor Lasers by Coherent Light Injection. *IEEE Journal of Quantum Electronics*.1997. 33(7):1132-1140.

- 45. Meng, X. J., Chau, T., Wu, M. C. Improved Intrinsic Dynamic Distortions in Directly Modulated Semiconductor Lasers by Optical Injection Locking. *IEEE Transactions On Microwave Theory And Techniques*. 1999. 47(7): 1172-1176.
- 46. Kaszubowska, A., Anandarajah, P. and Barry, L. P. Improved Performance of a Hybrid Radio/Fiber System Using a Directly Modulated Laser Transmitter with External Injection. *IEEE Photonics Technology Letters*. 2002. 14(2):233-235.
- Lee, S. et. al. Linearization of RoF Optical Source by using Light-injected Gain Modulation. *Proceedings of 2005 International Topical Meeting on Microwave Photonics*. October 12-14, 2005. Seoul, Korea. IEEE. 2005. 265-268.
- 48. Djupsjobacka, A. A Linearization Concept for Integrated-Optic Modulators. *IEEE Photonics Technology Letters*.1992. 4(8):869-872.
- Lee, G. W. and Han, S. K. Linearization of a Narrowband Analog Optical Link using Integrated Dual Electroabsorption Modulator. *Proceedings of 1999 International Topical Meeting on Microwave Photonics*. November 17-19, 1999. Melbourne. IEEE. 1999. 21-24.
- Jung, H. D. and Han, S. K. Nonlinear Distortion Suppression in Directly Modulated DFB-LD by Dual-Parallel Modulation. *IEEE Photonics Technology Letters*. 2002. 14(7): 980-982.
- Jung, H. D., Jeon, D. H. and Han, S. K. Linearity Enhancement of an Electroabsorption Modulated Laser by Dual-Parallel Modulation. *IEEE Photonics Technology Letters*. 2002. 14(4): 462-464.
- Straus , J. and Szentesi, O.I. Linearisation of Optical Transmitters by a Quasi feedforward Compensation Technique. *Electronics Letters*. 1977. 13(6): 158-159.
- Patterson, R.E. Linearization of Multichannel Analog Optical Transmitters by Quasi-Feedforward Compensation Technique. *IEEE Transactions On Communications*. 1979. 27(3): 582-288.
- Sung, K.Y., Elamaran, B. and Shiroma, W. A. A Quasi-Optical Linearizer. *Proceedings of 2001 IEEE MTT-S International Microwave Sysmposium Digest*. May 20-24, 2001. Phoenix. IEEE. 2001.1399-1401.
- Darcie, T.E. and Bodeep, J.E. Lightwave Subcarrier CATV Transmission Systems. *IEEE Transaction on Microwave Theory and Technique*. 1990. 38(5): 524-533.

- Bodeep, G.E. and Darcie, T.E. Semiconductor lasers versus external modulators: a comparison of nonlinear distortion for lightwave subcarrier CATV applications . *IEEE. Photonics Technology Letters*. 1989. 1(11): 401-403.
- 57. R. S. Tucker, Linearisation techniques for wideband analog transmitters, *Summer Top. Meeting Tech. Dig. LEOS*.1992. pp. 54-55, 1992.
- 58. Gopalakrishnan. Cancellation of distortion components in a fiber optic link with feed-forward linearization. US Patent 5699179. 1996.
- Farina, D.J. New Linearisation Technique for Analog Fiber-Optic Links. Proceedings og 1996 Optical Fiber Communications. February 25 – March 1, 1996. USA. IEEE. 1996. 283-285.
- Fock, L. S. and Tucker, R. S. Simultaneous Reduction of Intensity Noise and Distortion in Semiconductor Lasers by Feedforward Compensation. *Electronics Letters*. 1991. 27(14):1297-1299.
- Hassin, D. and Vahldieck, R. Feedforward Linearization of Analog Modulated Laser Diodes - Theoretical Analysis and Experimental Verification. *IEEE Transactions on Microwave Theory and Techniques*. 1993. 41(12):2376-2382.
- Hassin, D. and Vahldieck, R. Improved Feedforward Linearisation of Laser Diodes- Simulation and Experimental Results. *Proceedings of 1993 IEEE MTT-S International Microwave Sysmposium Digest*. June 14-18, 1993. Atlanta. GA, USA. IEEE. 1993. 727-730.
- 63. Buxton, B. and Vahldieck., R. Noise and Intermodulation Distortion Reduction in an Optical Feedforward Transmitter. *IEEE MTT-S International Microwave Symposium Digest.* IEEE. vol. 10, no. 12, pp. 1105-1108, 1994.
- Iwai, T., Sato, K. and Suto, K.-i. Signal Distortion and Noise in AM-SCM Transmission Systems Employing the Feedforward Linearized Mqw-Ea External Modulator. *Journal of Lightwave Technology*. 1995. 13(8):1606-1612.
- Cheung, H. K. Nested Loop Feedforward Linearization of Directly Modulated Laser Diode. *Proceedings of 2009 International Topical Meeting on Microwave Photonics*. October 14-16, 2009. Valencia. IEEE. 1-4.
- 66. Lee, J.J., Park, S.H. and Choi, Y.W. Enhanced ACPR of W-CDMA Signals in Optical Feedforward Transmitter by Optimization. *Proceedings of 2005 International Topical Meeting on Microwave Photonics*. October 12-14, 2005. Seoul, Korea. IEEE. 2005. 59-62.

- Ismail, T., Liu, C. P., Mitchell, J. E. and Seeds, A. J. High-Dynamic-Range Wireless-over-Fiber Link Using Feedforward Linearization. *Journal of Lightwave Technology*. 2007. 25(11): 3274-3282.
- Moon, Y. T., Jang, J. W., Choi, W. K. and Choi, Y. W., Simultaneous Noise and Distortion Reduction of a Broadband Optical Feedforward Transmitter for Multi-Service Operation in Radio-over-Fiber Systems, *Optics Express*, vol. 25, no. 19, pp. 12167-12173, 2007.
- Moon, Y.T., et. al. Compact Feedforward Optical Transmitter without Adaptive Vector Modulator.*Proceedings of 2008 Microwave Photonics*. September 9-October 3, 2008. Gold Coast, Qld. IEEE. 2008. 124-126.
- Moon, Y.T., Choi, W.K. and Choi, Y.W. Dispersion penalty analysis using light injection method in the feedforward optical transmitter for WDM/SCM radioover-fiber systems. *Optics Communications*. 2008. 281 (2008):5851–5854.
- Moon, Y.T., et. al. Systematic Design And Realization of The Optical Feedforward Transmitter Based on Microwave Circuit Modeling. Microwave And Optical Technology Letters. 2009. 51(1):192-195.
- Tabatai, F and Al-Raweshidy, H.S. Feedforward Linearization Technique for Reducing Nonlinearity in Semiconductor Optical Amplifier. *Journal of Lightwave Technology*. 2007. 25(9):2667-2674.
- Tabatai, F and Al-Raweshidy, H.S. Feed-forward linearisation technique for impulse radar ultra-wideband over fibre. *IET Microw. Antennas Propag.*, 2009. 3(7):1060–1068.
- 74. Tabatai, F and Al-Raweshidy, H.S. Feed-Forward Linearization for Fibre Optic Application using Semiconductor Optical Amplifier. *Proceedings of 2007 Asia-Pacific Microwave Conference*. December 11-14, 2007. Bangkok. IEEE.2007. 1-4.
- 75. Park, S. H. and Choi, Y. W. Significant Suppression of the Third Intermodulation Distortion in Transmission System with Optical Feedforward Linearized Transmitter. *IEEE Photonics Technology Letters*. 2005. 17(6):1280-1282.
- Novak, D., Clark, T.R. Broadband Adaptive Feedforward Photonic Linearization For High Dynamic Range Signal Remoting. *Proceedings of 2007 IEEE Military Communications Conference*. October 29-31. Orlando, FL, USA. IEEE. 2007. 1-6.

- Novak, D, et. al. High Performance, Compact RF Photonic Transmitter with Feedforward Linearization. *Proceedings of The 2010 Military Communications Conference*. October 31 – November 3, 2010. San Jose, CA..IEEE. 2010. 880-884.
- Meng, X.J., Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection. *Electronics Letters*.1998. 34 (21):2040-2041.
- 79. Lee, C.H. Microwave Photonics. Boca Raton: CRC Press. 2006
- Cox III, C. H., Ackerman, E. I, Betts, G. E. And Prince, J. L. Limits on the Performance of RF-Over-Fiber Links and Their Impact on Device Design. *IEEE Transactions On Microwave Theory And Techniques*. 2006. 54(2): 906-920.
- 81. Seeds, A. J. Optical Fiber Telecommunications V B: Systems and Networks :*Microwave-over-fiber systems*. Elsevier Inc. 2008
- Seeds, A. J. and Williams, K. J. Microwave Photonics. *Journal of Lightwave Technology*. 2006. 24(12): 4628-4641.
- 83. Salgado, H.M. and J.J. O'Reilly, Volterra series analysis of distortion in semiconductor laser diodes. *IEE Proceedings-J.* 1991. 138(6): 379-382.
- Hassine, L., Z. Toffano, F. L. Lagarrigue, A. Destrez, and C. Birocheau, Volterra Functional Series Expansions for Semiconductor Lasers under Modulation. *IEEE J. Quantum Elect.* 1994. 30(4):918-928.
- 85. Biswas, T.K. and W. McGee, Volterra series analysis of semiconductor laser diode. *IEEE Photon. Tech. Lett.* 1991. 3(8): 706-708.
- Oppenheim, A.V. and Willsky, A.S. Signals and Systems. 2nd. ed. Prentice Hall. 1996
- Schetzen, M. The Volterra and Wiener Theories of Nonlinear Systems. John Wiley and Sons. 1988
- Maas, S.A. Nonlinear Microwave Circuits. Norwood, MA: Artech House Inc. 1988
- Kavehrad, M. Subcarrier Optical Fiber Transmission Systems. In: Raweshidy, H.A. *Radio over Fiber Technologies for Mobile Communications Networks*. Norwood, MA: Artech House, Inc. 65-104; 2002.